Chapter Four

Dynamic Behavior

It Don't Mean a Thing If It Ain't Got That Swing.

Duke Ellington (1899-1974)

In this chapter we give a broad discussion of the behavioryoathical sys-
tems, focused on systems modeled by nonlinear differegqiadtions. This allows
us to discuss equilibrium points, stability, limit cyclescaother key concepts for
understanding dynamic behavior. We also introduce somaadstfor analyzing
global behavior of solutions.

4.1 SOLVING DIFFERENTIAL EQUATIONS

In the last two chapters we saw that one of the methods of rimgddynamical sys-
tems is through the use of ordinary differential equatiddBESs). A state space,
input/output system has the form

%: f(X, U), y= h(X,U), (4'1)

dt
wherex= (x1,...,%n) € R"is the statey € RP is the input ang € R%is the output.
The smooth map$ : R" x RP — R"andh: R" x RP — RY represent the dynamics
and measurements for the system. We will sometimes focusglesnput, single
output (SISO) systems, for whigh=q= 1.

We begin by investigating systems in which the input has Ise¢to a function

of the statepy = a(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equatio this case become

d

o = T a() = FX). (4.2)
To understand the dynamic behavior of this system, we needhatyze the

features of the solutions of equation (4.2). While in sormapéé situations we can

write down the solutions in analytical form, often we mudyren computational

approaches. We begin by describing the class of solutiari®problem.
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Initial Value Problems

We say thak(t) is asolutionof the differential equation (4.2) on the time interval
tocRtots e Rif

dx(t)
dt
A given differential equation may have many solutions. W# miost often be
interested in thenitial value problem wherex(t) is prescribed at a given time
to € R and we wish to find a solution valid for dlituretime,t > to.
We say thak(t) is a solution of the differential equation (4.2) with inlti@lue
X0 € RMattg € R if

=F(x(t)) foralltg<t <ts.

X(to) =% and d)(;(tt) =F(x(t)) foralltg<t<t;.

For most differential equations we will encounter, thera isiguesolution that is
defined fortg < t < t;. The solution may be defined for all tinhe> ty, in which
case we takés = . Because we will primarily be interested in solutions of the
initial value problem for ODEs, we will usually refer to thisrgly as the solution
of an ODE.

We will typically assume thap is equal to 0. In the case wheéris independent
of time (as in equation (4.2)), we can do so without loss ofegelity by choosing
a new independent (time) variable=t —ty (Exercise 4.1).

Example 4.1 Damped oscillator
Consider a damped linear oscillator with dynamics of thenfor

G+ 2¢ wod+ whq =0,

whereqis the displacement of the oscillator from its rest positibhese dynamics
are equivalent to those of a spring-mass system, as shownertigs 2.7. We

assume thaf < 1, corresponding to a lightly damped system (the reasorhfer t
particular choice will become clear later). We can rewtitis in state space form

by settingx; = g andx; = g/ wy, giving

dxg dxo
ddt — WoX2, ddt — Xy — 2{ WoX.

In vector form, the right hand side can be written as

(X
Fx) = [—woxl—ZZZasz] '

The solution to the initial value problem can be written in anter of different
ways and will be explored in more detail in Chapter 5. Here iwgoky assert that
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Figure 4.1: Response of the damped oscillator to the initial conditigr= (1,0). The
solution is unique for the given initial conditions and consists of an oscillaolytion for
each state, with an exponentially decaying magnitude.

the solution can be written as

1 .
X (t) = ot <xlocoswdt + @((Lbleo—FXQo) smwdt>
_ 1 .
Xo(t) =€ {axt (xZOcoswdt — @((J.ﬁXj[()—F wo{X20) smwat)

wherexg = (X10,X20) is the initial condition anduy = wo+/1— 2. This solution
can be verified by substituting it into the differential eqoat We see that the
solution is explicitly dependent on the initial conditiomdit can be shown that this
solution is unique. A plot of the initial condition resporiseshown in Figure 4.1.
We note that this form of the solution only holds fok0{ < 1, corresponding to
an “underdamped” oscillator. O

Existence and Uniqueness @

Without imposing some mathematical conditions on the fiondt, the differential
equation (4.2) may not have a solution fortaland there is no guarantee that the
solution is unique. We illustrate these possibilities viitlo examples.

Example 4.2 Finite escape time
Letx € R and consider the differential equation

dax
=2 4.3
a =X (4.3)
with initial conditionx(0) = 1. By differentiation we can verify that the function
1
t)=— 4.4
X(t)= 7 (4.4)

satisfies the differential equation and it also satisfies titialicondition. A graph
of the solution is given in Figure 4.2a; notice that the soluijoes to infinity as
goes to 1. We say that this system liagte escape timeThus the solution only
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Figure 4.2: Existence and uniqueness of solutions. Equation (4.3) only has a sdiotion
timet < 1, at which point the solution goes to, as shown in (a). Equation (4.4) is an
example of a system with many solutions, as showh.irFor each value o, we get a
different solution starting from the same initial condition.

exists in the time interval &t < 1. O

Example 4.3 No unique solution
Letx € R and consider the differential equation

dx

= _2
dt VX
with initial conditionx(0) = 0. We can show that the function
0 fo<t<a
(t) = 2
(t—a)“ ift>a

satisfies the differential equation for all values of the psetera > 0. To see this,
we differentiatex(t) to obtain

dx_ fo fo<t<a
dt  |2(t-a) ift>a

and hencex= 2,/x for all t > 0 with x(0) = 0. A graph of some of the possible
solutions is given in Figure 4.2b. Notice that in this casedlsge many solutions

to the differential equation. O

These simple examples show that there may be difficulties ewnsimple
differential equations. Existence and uniqueness can beugieged by requiring
that the functiorF has the property that for some fixe& R

IFO)—FW) <clx=y[ forallxy,

which is calledLipschitz continuity A sufficient condition for a function to be
Lipschitz is that the JacobiadF /dx, is uniformly bounded for alk. The diffi-
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Figure4.3: Phase portraits. The plot on the left shows the vector field for a plamamaigal
system. Each arrow shows the velocity at that point in the state spac@lditon the right
includes the solutions (sometimes called streamlines) from different inttfaditions, with
the vector field superimposed.

culty in Example 4.2 is that the derivatid¥ /dx becomes large for largeand
the difficulty in Example 4.3 is that the derivatigé /dx is infinite at the origin.

4.2 QUALITATIVE ANALYSIS

The qualitative behavior of nonlinear systems is importantihderstanding some
of the key concepts of stability in nonlinear dynamics. W4 f@icus on an im-
portant class of systems known as planar dynamical systEhese systems have
two state variableg € R?, allowing their solutions to be plotted in theg, x»)
plane. The basic concepts that we describe hold more ggnarallcan be used
to understand dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamicalesys with state
x € R? is to plot thephase portraitof the system, briefly introduced in Chapter 2.
We start by introducing the concept of a vector field. For aewsof ordinary
differential equations
dx
dt
the right hand side of the differential equation defines atyexec R" a velocity
F(x) € R". This velocity tells us how changes and can be represented as a vector
F(x) € R".
For planar dynamical systems, each state corresponds tmiipohe plane
and F(x) is a vector representing the velocity of that state. We can thlese
vectors on a grid of points in the plane and obtain a visuagenaf the dynamics
of the system, as shown in Figure 4.3a. The points where theitiekare zero

F(),
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are of particular interest, since they define stationarytsathe flow: if we start
at such a state, we stay at that state.

A phase portrait is constructed by plotting the flow of the wedield corre-
sponding to the planar dynamical system. That is, for a satitiéli conditions,
we plot the solution of the differential equation in the @ak?. This corresponds
to following the arrows at each point in the phase plane aadithg the resulting
trajectory. By plotting the resulting trajectories for eead different initial condi-
tions, we obtain a phase portrait, as show in Figure 4.3b.

Phase portraits give us insight into the dynamics of the systg showing us
the trajectories plotted in the (two dimensional) statecepat the system. For ex-
ample, we can see whether all trajectories tend to a singie gs time increases
or whether there are more complicated behaviors as thensystelves. In the ex-
ample in Figure 4.3, corresponding to a damped oscillatersyistem approaches
the origin for all initial conditions. This is consistent Wwibur simulation in Fig-
ure 4.1 but it allows us to infer the behavior for all initiardditions rather than a
single initial condition. However, the phase portrait donesreadily tell us the rate
of change of the states (although this can be inferred frentethgth of the arrows
in the vector field plot).

Equilibrium Points and Limit Cycles

An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a stages an equilibrium point for a dynamical system

dx _
dt
if F(xe) = 0. If a dynamical system has an initial conditig{®) = x then it will
stay at the equilibrium poini(t) = xe for all t > 0, where we have takdép= 0.
Equilibrium points are one of the most important features dfaamical sys-

tem since they define the states corresponding to constargtimgeconditions. A
dynamical system can have zero, one or more equilibriumtgoin

F(¥)

Example 4.4 Inverted pendulum
Consider the inverted pendulum in Figure 4.4, which is a ddhebalance system
we considered in Chapter 2. The inverted pendulum is a simph&esion of the
problem of stabilizing a rocket: by applying forces at thaedaf the rocket, we
seek to keep the rocket stabilized in the upright positione State variables are
the anglef = x; and the angular velocitg6 /dt = x,, the control variable is the
acceleratiornu of the pivot, and the output is the andle

For simplicity we assume thatgl/J = 1 andml/J = 1, whereJ = J+ m/?,
so that the dynamics (equation (2.10)) become

dx_ [ @ ] (4.5)

dt — | sinxy— yxo + ucosx

This is a nonlinear time-invariant system of second orders Saime set of equa-
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Figure 4.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a inode
for a class of balance systems in which we wish to keep a system uprightasia rocket
(a). Using a simplified model of an inverted pendulum (b), we can dpwelphase plane
diagram that shows the dynamics of the system (c). The system has matjiglérium
points, marked by the solid dots along the= 0 line.

tions can also be obtained by appropriate normalizatiohegystem dynamics as
illustrated in Example 2.7.
We consider the open loop dynamics by setting 0. The equilibrium points

for the system are given by
0
Xe = [inn] ’

wheren=10,1,2,.... The equilibrium points fon even correspond to the pendu-

lum pointing up and those farodd correspond to the pendulum hanging down. A

phase portrait for this system (without corrective inpigsghown in Figure 4.4c.

The phase portrait shows2m < x; < 21, so 5 of the equilibrium points are shown.
0

Nonlinear systems can exhibit rich behavior. Apart fromiltopia they can
also exhibit stationary periodic solutions. This is of gnestctical value to gener-
ate sinusoidally varying voltages in power systems or taegate periodic signals
for animal locomotion. A simple example is given in Exercis&4 which shows
the circuit diagram for an electronic oscillator. A norrzalil model of the oscilla-
tor is given by the equation

C:jX: =X+ x1(1— X2 —x3)
(4.6)
dx

2 2

The phase portrait and time domain solutions are given in Eigus. The figure
shows that the solutions in the phase plane converge towdanittajectory. In the
time domain this corresponds to an oscillatory solutiontidenatically the circle
is called dimit cycle More formally, we call an isolated solutiott) a limit cycle
of periodT > 0if x(t+T) = x(t) forallt € R.

There are methods for determining limit cycles for seconeépsystems, but
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Figure 4.5: Phase portrait and time domain simulation for a system with a limit cycle. The
phase portrait (a) shows the states of the solution plotted for different watiaitions. The
limit cycle corresponds to a closed loop trajectory. The simulation (b) slasingle solution
plotted as a function of time, with the limit cycle corresponding to a steady d#millaf
fixed amplitude.

for general higher order systems we have to resort to coripnghanalysis. Com-
puter algorithms find limit cycles by searching for periodigjeéctories in state
space that satisfy the dynamics of the system. In many &ihgtstable limit
cycles can be found by simulating the system with differaiital conditions.

4.3 STABILITY

The stability of a solution determines whether or not sohgioearby the solution
remain nearby, get closer or move further away.

Definitions

Let x(t;a) be a solution to the differential equation with initial catioh a. A
solution is stable if other solutions that start naatay close tx(t;a). Formally,
we say that thesolution Xt;a) is stable if for alle > 0, there exists & > 0 such
that

|b—al|<d = ||x(t;b)—x(t;a)]| <& forallt>O0.

Note that this definition does not imply theft; b) approaches(t;a) as time in-
creases, but just that it stays nearby. Furthermore, the bl may depend os,
so that if we wish to stay very close to the solution, we mayeha\start very, very
close @ < ¢). This type of stability which is illustrated in Figure 4.6 i3setimes
called stability “in the sense of Lyapunov”. If a solutiorsigble in this sense and
the trajectories do not converge, we say that the solutioeusrally stable

An important special case is when the solutidtta) = Xe is an equilibrium
solution. Instead of saying that the solution is stable wg$y say that the equi-
librium pointis stable. An example of a neutrally stableiglqium point is shown
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Figure4.6: lllustration of Lyapunov’s concept of a stable solution. The solutionasgmted
by the full line is stable if we can guarantee that all solutions remain within adidiameter
€ by choosing initial conditions sufficiently close the solution.

in Figure 4.7. From the phase portrait, we see that if we stat the equilibrium
point then we stay near the equilibrium point. Indeed, fog &xample, given any
¢ that defines the range of possible initial conditions, we @dauply choosed = ¢
to satisfy the definition of stability since the trajectorés perfect circles.

A solutionx(t; a) is asymptotically stablé it is stable in the sense of Lyapunov
and also(t; b) — x(t; a) ast — oo for b sufficiently close t@. This corresponds to
the case where all nearby trajectories converge to theessahition for large time.
Figure 4.8 shows an example of an asymptotically stable ibguiin point. Note
from the phase portraits that not only do all trajectoriey stear the equilibrium
point at the origin, but they all approach the origirt @ets large (the directions of
the arrows on the phase plot show the direction in which tjedtories move).

A solutionx(t; a) is unstableif it is not stable. More specifically, we say that a
solutionx(t;a) is unstable if given some > 0, there doesot exist ad > 0 such
that if ||b—a|| < & then||x(t; b) —x(t;a)|| < € for allt. An example of an unstable
equilibrium point is shown in Figure 4.9.

The definitions above are given without careful descriptiothefr domain of
applicability. More formally, we define a solution to heeally stable (or asymp-
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Figure 4.7: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium poirte at the origin is stable since all trajectories that

start neaxe stay neaxe.
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Figure4.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium poixg at the origin is asymptotically stable
since the trajectories converge to this point as .

totically stable) if it is stable for all initial conditions< B, (a) where
Br(a) = {x:[x—al| <r}

is a ball of radiug arounda andr > 0. A system is globally stable if it is sta-
ble for allr > 0. Systems whose equilibrium points are only locally stalale c
have interesting behavior away from equilibrium pointswasexplore in the next
section.

For planar dynamical systems, equilibrium points have lessigned names
based on their stability type. An asymptotically stableilgium point is called
a sink or sometimes amttractor. An unstable equilibrium point can either be
a source if all trajectories lead away from the equilibrium point, @saddle if
some trajectories lead to the equilibrium point and othesseraway (this is the
situation pictured in Figure 4.9). Finally, an equilibriumipicthat is stable but not
asymptotically stable (i.e. neutrally stable, such as tiein Figure 4.7) is called
acenter

Example 4.5 Congestion control
The model for congestion control in a network consistinglafientical computers
connected to a single router, introduced in Section 3.4 yvisgby

dw c ( W2> db wce

2

dt b
wherew is the window size anlis the buffer size of the router. Phase portraits are
shown in Figure 4.10 for two different sets of parameter &llieeach case we see
that the system converges to an equilibrium point in whiehlibffers are below
their full capacity of 500 packets. The equilibrium size of thuffer represents
a balance between the transmission rates for the sourcethamapacity of the
link. We see from the phase portraits that the equilibriurmisoare stable since
all initial conditions result in trajectories that converg these points. O

a—NF—C,
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Figure 4.9: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium pinte at the origin is unstable since not all trajectories
that start neaxe stay neaxe. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

Stability of Linear Systems

A linear dynamical system has the form

dx

Fri AX X0) = Xo, 4.7
whereA € R™" is a square matrix, corresponding to the dynamics matrix of a

linear control system (2.6). For a linear system, the stghif the equilibrium at
the origin can be determined from the eigenvalues of theixnatr

A(A) = {se C:detsl—-A) =0}.
We use the notatiod; for theith eigenvalue oA, so thatA; € A (A). In generald
can be complex valued, althoughAfis real-valued then for any eigenvaldeits
complex conjugatd * will also be an eigenvalue.

The easiest class of linear systems to analyze are those wysisen matrices
are in diagonal form. In this case, the dynamics have the form

A1 0
dx A2
= X. 4.8
dt (4.8)
0 An
It is easy to see that the state trajectories for this systenmdependent of each
other, so that we can write the solution in termsafdividual systems

X = AiX;.
Each of these scalar solutions is of the form
% (t) = eN'x(0).

We see that the equilibrium point = 0 is stable ifA; < 0 and asymptotically
stable ifA; < 0. The origin is always an equilibrium for a linear system. 8itiee
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Figure4.10: Phase portraits for a congestion control protocol running With 60 identical
source computers. The equilibrium values correspond to a fixed wiatithe source, which
results in a steady state buffer size and corresponding transmissioA fasger link (b) uses
a smaller buffer size since it can handle packets at a higher rate.

stability of a linear system only depends on the madrixe find that stability is a

property of the system. For linear system we can thereftkeatsout the stability

of the system rather than the stability of a particular sotubr equilibrium point.
Another simple case is when the dynamics are in the blockodiagorm

o1 W 0 0
—w O1 0 0
dx _ ]
dt 0 0 - : : -
0 0 Om Oh
0 0 —Wm Om

In this case, the eigenvalues can be shown tajbe g; +iwj. We once again can
separate the state trajectories into independent sofutisreach pair of states and
the solutions are of the form

Xoj—1(t) = €' (x;(0) coswjt +Xi11(0) sinwjt)
Xoj(t) = %' (% (0) sinwjt — X1 (0) coswjt)

wherej =12 ....m. We see that this system is asymptotically stable if and only
if 0 = ReAj < 0. Itis also possible to combine real and complex eigensgaiue
(block) diagonal form, resulting in a mixture of solutiorfstioe two types.

Very few systems are in one of the diagonal forms above, buessystems can
be transformed into these forms via coordinate transfdonst One such class
of systems is those for which the dynamics matrix has dis{inon-repeating)
eigenvalues. In this case there is a mairix R™" such that the matri¥ AT~1
is in (block) diagonal form, with the block diagonal elem®ibrresponding to
the eigenvalues of the original matiix(see Exercise 4.14). If we choose new



4.3. STABILITY 113

coordinateg = T xthen
7=Tx=TAx=TAT 1z

and the linear system has a (block) diagonal dynamics maixthermore, the
eigenvalues of the transformed system are the same as thieabsystem since
if v is an eigenvector oA thenw = Tv can be shown to be an eigenvector of
TAT-L. We can reason about the stability of the original system dityng that
X(t) = T~1z(t) and so if the transformed system is stable (or asymptofistdble)
then the original system has the same type of stability.

This analysis shows that for linear systems with distincesiglues, the sta-
bility of the system can be completely determined by exangjrthe real part of
the eigenvalues of the dynamics matrix. For more generésys we make use
of the following theorem, proved in the next chapter:

Theorem 4.1. The system

dx
2 A
at =

is asymptotically stable if and only if all eigenvalues oflthave strictly negative
real part and is unstable if any eigenvalue of A has strictigipve real part.

Example 4.6 Compartment model

Consider the two-compartment module for drug deliveryodtrced in Section 3.6.
Using concentrations as state variables and denotingadke\stctor by, the sys-
tem dynamics are given by

dx _[—ko—ki ki bo _

dt_[ ko “kp X+ 1| y= [0 1] X,
where the inpuu is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measurgzioy We wish to

design a feedback control law that maintains a constanubgipen byy = yjq.
We choose an output feedback control law of the form

U= —K(y—Yq) +Ug

whereuy is the rate of injection required to maintain the desiredcemtration
andk is a feedback gain that should be chosen such that the clospdystem is
stable. Substituting the control law into the system, weiabta

dX_ —ko—kl —klbok bO .
T [ ks "k X+ 0 Ug =:AX+Buy
y= (O l] X =:Cx

The equilibrium concentratiox, € R? is given byxe = —A~1Buy and
boko

— CA By = Ug.
Ye "™ koka 1 keka 1 Kkikabo
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Choosingug such thatye = yq provides the constant rate of injection required to
maintain the desired output. We can now shift coordinatgsdatoe the equilibrium
point at the origin, which yields

CLZ_ —ko—ky —kgbgk .
dt ko —ko ?

wherez = x— Xe. We can now apply the results of Theorem 4.1 to determine the
stability of the system. The eigenvalues of the system aenddy the roots of the
characteristic polynomial

A(S) = -+ (Ko + ka +ka)s+ (Ko + ki + kakobok).

While the specific form of the roots is messy, it can be showhnttheroots are
positive as long as the linear term and the constant termathegmsitive. Hence
the system is stable for arky> 0. 0

Stability Analysis via Linear Approximation

An important feature of differential equations is that ibiten possible to deter-
mine the local stability of an equilibrium point by approxting the system by a
linear system. The following example illustrates the baséai

Example 4.7 Inverted pendulum
Consider again the inverted pendulum, whose open loop digsare given by

de_ (%
dt  |sinxg—yxo )’

where we have defined the statexas (6,6). We first consider the equilibrium
point atx = (0,0), corresponding to the straight up position. If we assumethtea
anglef = x; remains small, then we can replacexginvith x; and cox; with 1,
which gives the approximate system

dx X2 0 1

s [_] - [1 _y] x 4.9)
Intuitively, this system should behave similarly to the m@omplicated model
as long asq is small. In particular, it can be verified that the equililonigpoint
(0,0) is unstable by plotting the phase portrait or computing tgerevalues of the
dynamics matrix in equation (4.9)

We can also approximate the system around the stable aquitilpoint atx =

(1,0). In this case we have to expand sjrand cox; aroundx; = 11, according
to the expansions

sin(rm+6) = —sinB~ —6 cogm+6) =cog0) ~ 1.

If we definez; = x; — irandz, = xo, the resulting approximate dynamics are given
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Figure 4.11: Comparison between the phase portraits for the full nonlinear systeft)s (le
and its linear approximation around the origin (right). Notice that near thiiledgum point
at the center of the plots, the phase portraits (and hence the dynamiedinast identical.

by

dZ_ i) B 0 1
o I B A (4.10)

Note thatz= (0,0) is the equilibrium point for this system and that it has thmea
basic form as the dynamics shown in Figure 4.8. Figure 4.11 sltosvphase por-
traits for the original system and the approximate systeyarat the corresponding
equilibrium points. Note that they are very similar, altgbunot exactly the same.
It can be shown that if a linear approximation has either gugtically stable or
unstable equilibrium points, then the local stability of thriginal system must be
the same (Theorem 4.3, page 123). O

More generally, suppose that we have a nonlinear system
x=F(X)

that has an equilibrium point at. Computing the Taylor series expansion of the
vector field, we can write

X = F(Xe) + ‘2'):( (X—Xe) + higher order terms ifix — xe).
Xe

SinceF (xe) = 0, we can approximate the system by choosing a new statédlearia
Z= X— Xe and writing

JoF

z=Az where A= —| .
dxXe

(4.11)

We call the system (4.11) tHmear approximationof the original nonlinear sys-
tem.

The fact that a linear model can be used to study the behaviamohlinear
system near an equilibrium point is a powerful one. Indeezlcan take this even
further and use a local linear approximations of a nonlirmatem to design a
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feedback law that keeps the system near its equilibriumtgdesign of dynam-
ics). Thus, feedback can be used to make sure that solutior@reslose to the
equilibrium point, which in turn ensures that the linear @p@mation used to sta-
bilize it is valid.

Linear approximations can also used to understand stabilitpn-equilibrium
solutions, as illustrated by the following example.

Example 4.8 Stable limit cycle
Consider the system given by equation (4.6),

dx

ditl =X+ x1(1—%x2 —x3)

d

d—)iz = X1+ X(1—x2 —X3),

whose phase portrait is shown in Figure 4.5. The differentjgbéion has a peri-
odic solution
X1(t) = x1(0) cost +x2(0) sint, (4.12)

with x2(0) +x3(0) = 1.
To explore the stability of this solution, we introduce pataordinates and¢
that are related to the state varialskgs@ndx, by

X1 = rcosg, Xo =rsing.
Differentiation gives the following linear equations foand¢
X1 =fcosp —rgsing, X =Fsing +r¢ cosp
Solving this linear system farand¢ gives, after some calculation,
F=r(1-r%), ¢=-1

Notice that the equations are decoupled, hence we can artakystability of each
state separately.

The equation for has three equilibria: = 0,r = 1 andr = —1 (not realizable
sincer must be positive).. We can analyze the stability of thesdlibga by
linearizing the radial dynamics with(r) = r(1—r?). The corresponding linear
dynamics are given by

- 2
r= or rer_(l 2ro)r re=0,1,
where we have abused notation and used represent the deviation from the
equilibrium point. It follows from the sign ofl — 2r2) that the equilibriunt = 0
is unstable and the equilibrium= 1 is asymptotically stable. Thus for any initial
conditionr > 0 the solution goes to= 1 as time goes to infinity, but if the system
starts withr = 0 it will remain at the equilibrium for all times. This implighat
all solutions to the original system that do not starkat xo = 0 will approach

the circlexf 4+ x5 = 1 as time increases.
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NI

Figure 4.12: Solution curves for a stable limit cycle. The phase plane plot on the lefisho
that the trajectory for the system rapidly converges to the stable limit cydie. sTarting
points for the trajectories are marked by circles in the phase portrait. Tealttmain plots
on the right show that the states do not convert to the solution but instéathima constant
phase error.

To show stability of the full solution (4.12), we must invgstte the behavior
of neighboring solutions with different initial conditisnWe have already shown
that the radius will approach that of the solution 4.12 as longré8) > 0. The
equation for the angl¢ can be integrated analytically to giggt) = —t + ¢ (0),
which shows that solutions starting at different anglesill neither converge nor
diverge. Thus, the unit circle &ttractingbut the solution (4.12) is only stable, not
asymptotically stable. The behavior of the system is ilatsl by the simulation
in Figure 4.12. Notice that the solutions approach the ciagtedly but that there
is a constant phase shift between the solutions. O

4.4 LYAPUNOV STABILITY @

We now return to the study of the full nonlinear system

dx_ F(x) xeR" (4.13)

dt

Having defined when a solution for a nonlinear dynamical systestable, we
can now ask how to prove that a given solution is stable, atyioplly stable
or unstable. For physical systems, one can often argue alalitity based on
dissipation of energy. The generalization of that techniguarbitrary dynamical
systems is based on the use of Lyapunov functions in placeevfg.

In this section we will describe techniques for determintimg stability of so-
lutions for a nonlinear system (4.13). We will generally hterested in stability
of equilibrium points and it will be convenient to assumettka= 0 is the equi-
librium point of interest. (If not, rewrite the equationsamew set of coordinates

Z=X—Xe.)
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Lyapunov Functions

A Lyapunov function V R" — R is an energy-like function that can be used to
determine stability of a system. Roughly speaking, if we ftath a non-negative
function that always decreases along trajectories of teeery, we can conclude
that the minimum of the function is a stable equilibrium gdlocally).

To describe this more formally, we start with a few definitiokige say that a
continuous functiorY is positive definitef V (x) > 0 for all x # 0 andV (0) = 0.
Similarly, a function ismegative definité V (x) < 0 for all x # 0 andV (0) = 0. We
say that a functioV is positive semidefinité V (x) > 0 for all x butV (x) can be
zero at points other than just= 0.

To illustrate the difference between a positive definite fiomcand a positive
semi-definite function, suppose that R? and let

VI(X) =x2,  Vo(X) =X+ 3.

BothV; andV;, are always non-negative. However, it is possibleMpto be zero
even ifx # 0. Specifically, if we sex = (0, c) wherec € R is any nonzero number,
thenVy(x) = 0. On the other hand/>(x) = 0 if and only ifx= (0,0). ThusV; is
positive semi-definite and, is positive definite.

We can now characterize the stability of an equilibrium poin= 0 for the
system (4.13).

Theorem 4.2 (Lyapunov stability) Let V be a non-negative function @&f' and
letV represent the time derivative of V along trajectories @& system dynam-
ics(4.13)

VvV = 07V@< — dl (x)

~ oxdt  ox '

Let B = Br(0) be a ball of radius r around the origin. If there exists>r0 such
thatV is positive definite and is negative semi-definite for allxBy, then x=0
is locally stable in the sense of Lyapunov. If V is positiviinite andV is negative
definite in B, then x= 0is locally asymptotically stable.

If V satisfies one of the conditions above, we say thit a (local)Lyapunov
functionfor the system. These results have a nice geometric intatfmet The
level curves for a positive definite function are the curveinged byV (x) = c,
¢ > 0 and for eaclt this gives a closed contour, as shown in Figure 4.13. The
condition thatV (x) is negative simply means that the vector field points towards
lower level contours. This means that the trajectories mogeraller and smaller
values ofV and ifV is negative definite thenmust approach 0.

Example 4.9 Stability of a ssmple nonlinear system
Consider the scalar nonlinear system

X= 2 —X
Cl4x
This system has equilibrium pointsat 1 andx = —2. We consider the equilib-
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Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov functd(x) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system vayalvaus¥® (x)

to decrease along the trajectory.

rium point atx = 1 and rewrite the dynamics usizg= x— 1:

. 2
Z=——-2z-1
2+2 ’
which has an equilibrium point at= 0. Now consider the candidate Lyapunov
function

V(X) = %22

which is globally positive definite. The derivative ¥falong trajectories of the

system is given by 5
z

21z
If we restrict our analysis to a baB, wherer < 2, then 2+z > 0 and we can
multiply through by 2+ zto obtain

22— (Z+2)(2+2)=-2-32=-2(z+3)<0 zeB,r<2

V() =z

It follows thatV (z) < 0 for all z€ By, z# 0 and hence the equilibrium poixg= 1
is locally asymptotically stable. O

A slightly more complicated situation occursvfis negative semi-definite. In
this case it is possible th¥t(x) = 0 whenx ## 0 and hence could stop decreasing
in value. The following example illustrates these two cases.

Example 4.10 Hanging pendulum
A normalized model for a hanging pendulum is

dxq dxo .
— =X —— = —sinx
at 2, at 1,
wherex; is the angle between the pendulum and the vertical, withtigesty
corresponding to counter-clockwise rotation. The equdtasian equilibriuny; =
x2 = 0, which corresponds to the pendulum hanging straight ddwrexplore the
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stability of this equilibrium we choose the total energy dyapunov function:

1 1 1
V(X) = 1—cosx + éxg ~ ix% + éxg.

The Taylor series approximation shows that the function sitpe definite for
smallx. The time derivative oV (x) is

V = Xq SiNX1 + XoXo = Xo SiNX1 — Xp Sinxy = 0.
Since this function is positive semi-definite it follows fromydpunov’s theorem
that the equilibrium is stable but not necessarily asynigatly stable. When per-
turbed the pendulum actually moves in a trajectory whichesponds to constant
energy. O

Lyapunov functions are not always easy to find and they are migua. In
many cases energy functions can be used as a starting poi@sadone in Ex-
ample 4.10. It turns out that Lyapunov functions can alwagsdund for any
stable system (under certain conditions) and hence onektimat if a system is
stable, a Lyapunov function exists (and vice versa). Rewslts using “sum
of squares” methods have provided systematic approachdmding Lyapunov
systems [163]. Sum of squares techniques can be applied tad Bariety of sys-
tems, including systems whose dynamics are described lyyquoiial equations
as well as “hybrid” systems, which can have different moéiglifferent regions
of state space.

For a linear dynamical system of the form

X = AX
it is possible to construct Lyapunov functions in a systeenaianner. To do so,
we consider quadratic functions of the form
V(x) = X" Px,
whereP € R™" is a symmetric matrix® = PT). The condition thaV be positive
definite is equivalent to the condition thRis apositive definite matrix
x'Px>0  forallx+£0,

which we write a? > 0. It can be shown that B is symmetric ther® is positive
definite if and only if all of its eigenvalues are real and pgsit

Given a candidate Lyapunov functidf(x) = x" Px, we can now compute its
derivative along flows of the system:

_ovdx_

-~ ooxdt
The requirement that be negative definite (for asymptotic stability) becomes a
condition that the matrix@ be positive definite. Thus, to find a Lyapunov func-

tion for a linear system it is sufficient to choos®a> 0 and solve thé.yapunov
equation

X" (ATP+PA)x =: —x" Qx.

ATP+PA=—Q. (4.14)
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Figure 4.14: Stability of a genetic switch. The circuit diagram on the left represents two
proteins that are each repressing the production of the other. The inpaitsiu, interfere
with this repression, allowing the circuit dynamics to be modified. The equifibpoints

for this circuit can be determined by the intersection of the two curvesrsioovthe right.

This is a linear equation in the entries Bf and hence it can be solved using
linear algebra. It can be shown that the equation always kakuton if all of the
eigenvalues of the matriX are in the left half plane (see Exercise 4.8). Moreover
the solutionP is positive definite ifQ is positive definite. It is thus always possible
to find a quadratic Lyapunov function for a stable linear syst&Ve will defer a
proof of this until Chapter 5 where more tools for analysidiméar systems will
be developed.

Knowing that we have a direct method to find Lyapunov functitordinear
systems we can now investigate stability of nonlinear systeConsider the sys-
tem dx

9=
whereF (0) = 0, andF (x) contains terms that are second order and higher in the
elements ok. The functionAxis an approximation df (x) near the origin and we
can determine the Lyapunov function for the linear appr@tion and investigate

if it also is a Lyapunov function for the full nonlinear syste The following
example illustrates the approach.

F(x) =: AX+F(x), (4.15)

Example 4.11 Stability of a Genetic Switch
Consider the dynamics of a set of repressors connectedhergiet a cycle, as
shown in Figure 4.14a. The normalized dynamics for this systeme given in
Exercise 2.10:
da _ p _ dz»_ p
dr 14z Y dr 1+7

wherez; and z, are scaled versions of the protein concentrationand u are
parameters that describes the interconnection betweegeties, and we have set
the external inputs; andus, to zero.

The equilibrium points for the system are found by equatiregtitme deriva-

— 2o, (4.16)
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tives to zero. We define

u pondf o —pnut

1+
and the equilibrium point are defined as the solutions of thmgons

71 = f(Zz) 7 = f(Z]_).

If we plot the curveqz;, f(z)) and(f(z),2) on a graph, then these equations
will have a solution when the curves intersect, as shown inre€ig¢.14b. Because
of the shape of the curves, it can be shown that there willydvwe three solutions:
one atzie = Zpe, ONe Withzye < zpe and one withege > zpe. If > 1, then we can
show that the solutions are given approximately by

1 1
e~ U, Ze= W’ Z1e = Z2e, Z1e ™ Tnil, Ze ~ . (4.17)

To check the stability of the system, we writéu) in terms of its Taylor series
expansion abouig

f(u) = f(Ue)+ f'(Ue) - (U— Ug) + f”(Ug) - (U— Ue)? + higher order terms

where f’ represents the first derivative of the function aifdthe second. Using
these approximations, the dynamics can then be written as

dw (-1 f'(z) =
a_ [f/(zle) _i ]W+F(W)>

wherew = z— 7 is the shifted state ariél(w) represents quadratic and higher order
terms.

We now use equation (4.14) to search for a Lyapunov funct@mosingQ = |
and lettingP € R%*? have elementsg;j, we search for a solution of the equation

-1 fp) (P P2 (Pu Pw2) (-1 f1)_ (-1 0

fi -1 P12 P22 P12 P22 f, —1 o -1)°
wheref; = f'(ze) and f) = f’(z2e). Note that we have sgh1 = p12 to forceP to
be symmetric. Multiplying out the matrices, we obtain

—2pu+2f3p12 pufi—2pa+p2f;) _ (-1 0
P11f] —2p12+ p22fy  —2p22+2f1p12 0o -1)°
which is a set ofinear equations for the unknowns;. We can solve these linear
equations to obtain
f2 5§42 f1 4t f5— f]f)+2

S s N

To check tha¥ (w) = w"Pwis a Lyapunov function, we must verify thetw) is
positive definite function or equivalently thBt> 0. SinceP is a 2x 2 symmetric
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matrix, it has two real eigenvalu@dg andA, that satisfy
)\1+/\2:trace{P), Al-AZ:det(P).

In order forP to be positive definite we must have thigtandA, are positive and
we thus require that

f2 25+ 5+ 4 f2 251+ 5+ 4
4— 4f/1) 16— 16f; 5

We see that tra¢®) = 4de(P) and the numerator of the expressions is jigt-

f2)2+4 > 0, so it suffices to check the sign of-1f; f;. In particular, forP to be

positive definite, we require that

f'(z16) ' (20e) < 1.

We can now make use of the expressionsffadefined earlier and evaluate at
the approximate locations of the equilibrium points detiireequation (4.17). For
the equilibrium points whereye # 2y, we can show that

tracgP) = > 0.

>0, detP)=

1 (20) () ~ () (g — HORT Y g O e
le 2e) ~ IJ) (Iln_l) - (1+un)2 1+H_n(n_1) ~ N .
Usingn = 2 andu = 200 from Exercise 2.10 we see thd{ze) f'(z¢) < 1 and
henceP is a positive definite. This implies th¥tis a positive definite function and
hence a potential Lyapunov function for the system. _

To determine if the system (4.16) is stable, we now compuge the equilib-
rium point. By construction

V =w' (PA+ATP)W+FT (W)Pw+w'PF (W) = —w'w+F T (w)Pw+w'PF (w).

Since all terms irF are quadratic or higher order i, it follows thatF T (w)Pw
andw' PF (w) consist of terms that are at least third ordemin Therefore ifw
is sufficiently close to zero then the cubic and higher ordengewill be smaller
than the quadratic terms. Hence, sufficiently close/te 0,V is negative definite
allowing us to conclude that these equilibrium points aréhlstable.

Figure 4.15 shows the phase portrait and time traces for ammysith u = 4,
illustrating the bistable nature of the system. When theaincondition starts with
a concentration of protein B greater than protein A, thetsmiuconverges to the
equilibrium point at (approximatelyl/u"~*, i) and if A is greater then B then it
goes to(u,1/u"1). The equilibrium point withzye = 25¢ is seen to be unstable.

0

More generally, we can investigate what the linear apprasion tells about
the stability of a solution to a nonlinear equation. The felltg theorem gives a
partial answer for the case of stability of an equilibriunino

Theorem 4.3. Consider the dynamical systef@ 15)with F(0) =0 and F such
thatlim ||F(x)||/||x|| — O as||x|| — O. If the real parts of all eigenvalues of A are
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Protein B (scaled)
Protein concentration (scaled)

0 1 2 3 4 5 0 5 10 15 20 25
Protein A (scaled) time (scaled)

Figure 4.15: Dynamics of a genetic switch. The phase portrait on the left shows that the
switch has three equilibrium points, corresponding to protein 1 havingeoration greater
than, equal to or less than protein 2. The concentration with equal prategectrations is
unstable, but the other equilibrium points are stable. The simulation on tHeskigtvs the
time response of the system starting from two different initial conditions.

strictly less than zero, then,x= 0 is a locally asymptotically stable equilibrium
point of equation(4.15)

This theorem implies that asymptotic stability of the linegproximation im-
plies local asymptotic stability of the original nonlinear system. Thedrem is
very important for control because it implies that stalilian of a linear approxi-
mation of a nonlinear system results in a stable equilibfionhe nonlinear sys-
tem. The proof of this theorem follows the technique used innip{a 4.11. A
formal proof can be found in [121].

Krasovskii-Lasalle Invariance Principle

For general nonlinear systems, especially those in symfmiin, it can be difficult
to find a positive definite functioM whose derivative is strictly negative definite.
The Krasovskii-Lasalle theorem enables us to conclude agfimgtability of an
equilibrium point under less restrictive conditions, nma the case thaV is
negative semi-definite, which is often easier to construotvéier, it applies only
to time-invariant or periodic systems.

We will deal with the time-invariant case and begin by introithg a few more
definitions. We denote the solution trajectories of the timeriant system

dx

dt
asx(t : a), which is the solution of equation (4.18) at tirhestarting froma at
to = 0. Thew limit setof a trajectoryx(t;a) is the set of all pointz € R" such
that there exists a strictly increasing sequence of titpesich thatx(tn;a) — z
asn — o. A setM C R" is said to be amnvariant setif for all b € M, we have

X(t;b) € M for allt > 0. It can be proved that the limit set of every trajectory is
closed and invariant. We may now state the Krasovskii-Lagaihciple.

F(X) (4.18)
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Theorem 4.4 (Krasovskii-Lasalle principle)Let V: R" — R be a locally positive
definite function such that on the compactQet= {x € R": V(x) < r} we have
V(x) < 0. Define ,

S={xe Q;:V(x) =0}.

As t— oo, the trajectory tends to the largest invariant set inside.&; its w limit
set is contained inside the largest invariant set in S. Irtipatar, if S contains no
invariant sets other than x 0, then 0 is asymptotically stable.

Proofs are given in [126] and [132].

Lyapunov functions can often be used to design stabilizioigtrollers as is
illustrated by the following example, which also illuseathow the Krasovskii-
Lasalle principle can be applied.

Example 4.12 Stabilization of an inverted pendulum
Following the analysis in Example 2.7, an inverted pendulamze described by
the following normalized model:

dX]_
at — X2,
wherex; is the angular deviation from the upright position ants the (scaled)
acceleration of the pivot. The system has an equilibriurr,at xo = 0, which
corresponds to the pendulum standing upright. This equilibis unstable.
To find a stabilizing controller we consider the following dadate for a Lya-
punov function

d .
d—);z = SiNX1 + UCOSXy, (4.19)

1 1 1
V(x) = (cosxg — 1) +a(1—cogxg) + éxg ~ (a— é)x§+ QX%'

The Taylor series expansion shows that the function is pesiefinite near the
origin if a> 0.5. The time derivative o¥ (x) is

V = —Xq SiNxXg + 2ax; SiNX1 COSX + XoXp = X2(U+ 2asinx; ) COSX;.
Choosing the feedback law
U= —2asinx; — X» COSX,

gives _
V = —x3c08xq,

It follows from Lyapunov’s theorem that the equilibrium ischlly stable. How-
ever, since the function is only negative semi-definite wenononclude asymp-
totic stability using Theorem 4.2. However, note thiat 0 implies thatx, =0 or
X1 = T/2+nm.
If we restrict our analysis to a small neighborhood of thgiorQ),, r < /2
then we can define
S={(x1,%) € Q; 1 xp =0}

and we can compute the largest invariant set inSideéor a trajectory to remain
in this set we must have, = 0 for allt and hence(t) = 0 as well. Using the
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Figure 4.16: Phase portrait for a stabilized inverted pendulum. The shaded regicates!
the set of initial conditions that converge to the origin. The ellipse corredpto a level
set of a Lyapunov functiol (x) for whichV(x) > 0 andV (x) < 0 for all points inside the
ellipse. This can be used as an estimate of the region of attraction of the gquiljoint.

dynamics of the system (4.19), we see thét) = 0 andx(t) = 0 impliesx;(t) =0
as well. Hence the largest invariant set ins&is (x1,x2) = 0 and we can use the
Krasovskii-Lasalle principle to conclude that the origidasally asymptotically
stable. A phase portrait of the closed loop system is shoviaigare 4.16.

O

4.5 PARAMETRIC AND NON-LOCAL BEHAVIOR

Most of the tools that we have explored are focused on thd lwelzavior of a
fixed system near an equilibrium point. In this section weflyrimtroduce some
concepts regarding the global behavior of nonlinear systand the dependence
of a system'’s behavior on parameters in the system model.

Regions of attraction

To get some insight into the behavior of a nonlinear systernamestart by finding
the equilibrium points. We can then proceed to analyze tbal loehavior around
the equilibria. The behavior of a system near an equilibriwimtpis called the
local behavior of the system.

The solutions of the system can be very different far away famrequilibrium
point. This is seen, for example, in the stabilized penduluiExample 4.12. The
inverted equilibrium point is stable, with small osciltatis that eventually con-
verge to the origin. But far away from this equilibrium pothere are trajectories
that converge to other equilibrium points or even cases iithvthe pendulum
swings around the top multiple times, giving very long datibns that are topo-
logically different from those near the origin.

To better understand the dynamics of the system, we can agraime set of all
initial conditions that converge to a given asymptoticaligble equilibrium point.
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This set is called thesgion of attractionfor the equilibrium point. An example is
shown by the shaded region in Figure 4.16. In general, compuégions of at-
traction is difficult. However, even if we cannot determine thgion of attraction,
we can often obtain patches around the stable equilibrizatteaattracting. This
gives partial information about the behavior of the system.

One method for approximating the region of attraction i®tigh the use of
Lyapunov functions. Suppose thdtis a local Lyapunov function for a system
around an equilibrium poing. Let Q; be set on whiclV (x) has value less than

Qr={xeR":V(x)<r},

and suppose that(x) < 0 for all x € Q;, with equality only at the equilibrium
pointxg. ThenQ; is inside the region of attraction of the equilibrium poiSince
this approximation depends on the Lyapunov function andhivéce of Lyapunov
function is not unique, it can sometimes be a very conservastimate.

It is sometimes the case that we can find a Lyapunov funati@uch thatv is
positive definite an¥ is negative (semi-) definite for atle R". In this case it can
be shown that the region of attraction for the equilibriuninpds the entire state
space and the equilibrium point is said todlebally stable.

Example 4.13 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Exampl2. The Lya-
punov function for the system was

V(x) = (cosxg — 1) +a(1—cogxg) + %x%

andV was negative semidefinite for alland nonzero wher; +711/2. Hence
anyx such thatxz| < /2, V(x) > 0 will be inside the invariant set defined by the
level curves oV (x). These level sets are shown in Figure 4.16. O

Bifurcations

Another important property of nonlinear systems is howrthehavior changes as
the parameters governing the dynamics change. We can $tisdiy the context
of models by exploring how the location of equilibrium paintheir stability, their
regions of attraction, and other dynamic phenomena suchmétscycles, vary
based on the values of the parameters in the model.
Consider a differential equation of the form

dx

4t = Foom), xeR", peRX (4.20)
wherex is the state angl is a set of parameters that describe the family of equa-
tions. The equilibrium solutions satisfy

F(x,u)=0
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Figure 4.17: Bifurcation analysis of the predator-prey system. (a) Parametric stadbidity
gram showing the regions in parameter space for which the system is atab(b) bifurca-
tion diagram showing the location and stability of the equilibrium point as a fumctidy,.
The dotted lines indicate the upper and lower bounds for the limit cycle apdrameter
value (computed via simulation). The nominal values of the parameterg imtidel are
rp = 0.02,K =500,a=0.03,T, =5, = 0.01 andk = 0.2.

and asu is varied, the corresponding solutiorg i) can also vary. We say that
the system (4.20) hasadfurcationat u = u* if the behavior of the system changes
qualitatively atu*. This can occur either due to a change in stability type or a
change in the number of solutions at a given valug of

Example 4.14 Predator-prey
Consider the predator-prey system described in SectionT®& .dynamics of the
system are given by

aH _ . (y HY)__aHL
dat " K) 1+aHT,

dL L

whereH andL are the number of hares (prey) and lynxes (predators)yarrg,
K, k, aandTy, are parameters that model a given predator-prey systerorijoed
in more detail in Section 3.7). The system has an equilibriumtd He > 0 and
Le > 0 that can be found numerically.

To explore how the parameters of the model affect the behafithe sys-
tem, we choose to focus on two specific parameters of interesire growth rate
of the lynxes, andl}, the time constant for prey consumption. Figure 4.17a is
a numerically computegarametric stability diagranshowing the regions in the
chosen parameter space for which the equilibrium poingaislst(leaving the other
parameters at their nominal values). We see from this figueftn certain com-
binations ofr; and T, we get a stable equilibrium point while at other values this
equilibrium point is unstable.

Figure 4.17b shows a numerically computatlrcation diagramfor the sys-

(4.21)
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tem. In this plot, we choose one parameter to vapy &nd then plot the equilib-
rium value of one of the statek)(on the vertical axis. The remaining parameters
are set to their nominal values. A solid line indicates thatequilibrium point is
stable; a dashed line indicates that the equilibrium paintistable. Note that the
stability in the bifurcation diagram matches that in thegpaetric stability diagram
for r; = 0.01 (the nominal value) an@, varying from 0 to 20. For the predator-
prey system, when the equilibrium point is unstable, thetsm converges to a
stable limit cycle. The amplitude of this limit cycle is showsing the dot-dashed
line in Figure 4.17b. O

A particular form of bifurcation that is very common when trtiing linear
systems is that the equilibrium remains fixed, but the stgwoli the equilibrium
changes as the parameters are varied. In such a case it &imgv® plot the
eigenvalues of the system as a function of the parameterdh [Bats are called
root locus plotsbecause they give the locus of the eigenvalues when parnamete
change. Bifurcations occur when parameter values are sathhere are eigen-
values with zero real part. Computing environments such LBk, MATLAB
and Mathematica have tools for plotting root loci.

Example 4.15 Root locus plot for a bicycle model

Consider the linear bicycle model given by equation (3. §eaation 3.2. Introduc-
ing the state variableg = ¢, xo = J, x3 = ¢ andx4 = & and setting the steering
torqueT = 0 the equations can be written as

dx 0 [

dt ~M~1(Ko+Kav3) —MiCv X=AX

wherel is a 2x 2 identity matrix ands is the velocity of the bicycle. Figure 4.18a
shows the real parts of the eigenvalues as a function of ¥gloEigure 4.18b
shows the dependence of the eigenvaluesarf the velocityy. The figures show
that the bicycle is unstable for low velocities because twemvalues are in the
right half plane. As the velocity increases these eigemslmove into the left
half plane indicating that the bicycle becomes self-sizbij). As the velocity is
increased further there is an eigenvalue close to the dfigirmoves into the right
half plane making the bicycle unstable again. However, ¢igenvalue is small
so it can easily be stabilized by a rider. Figure 4.18b showsttie bicycle is
self-stabilizing for velocities between 6 and 10 m/s. O

Parametric stability diagrams and bifurcation diagranmsaravide valuable in-
sights into the dynamics of a nonlinear system. It is ususdigessary to carefully
choose the parameters that one plots, including combihiegéatural parameters
of the system to eliminate extra parameters when possibbenpQter programs
such aAUTO, LOCBI F andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.
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Figure 4.18: Stability plots for balancing a bicycle. The left plot shows the real partef th
system eigenvalues as a function of the bicycle velocityvhen one or more eigenvalues
have positive real part, the system is unstable. The figure on the rigitssthe locus of
eigenvalues on the complex plane as the velocigyvaried and gives a different view of the
stability of the system. This type of plot is called a root locus plot.

* VeloGity v °

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations tcsag feedback laws
that stabilize and equilibrium point and provide a desim¢kl of performance.
However, for some classes of problems the feedback coatmolist be nonlinear
to accomplish its function. By making use of Lyapunov fuans we can often
design a nonlinear control law that provides stable bemaagowe saw already in
Example 4.12.

One way to systematically design a nonlinear controllemidegin with a
candidate Lyapunov functioW (x) and a control systert = f(x,u). We say
thatV (x) is acontrol Lyapunov functiotif for every x there exists ai such that
V(x) = %f(x, u) < 0. In this case, it may be possible to find a functim(x)
such thatu = a(x) stabilizes the system. The following example illustrates th
approach.

Example 4.16 Noise cancellation

Noise cancellation is used in consumer electronics anddinstrial systems to re-
duce the effects of noise and vibrations. The idea is to lpceliiuce the effect
of noise by generating opposing signals. A pair of headphoevith noise can-
cellation such as those shown in Figure 4.19a is a typical pl@anf schematic
diagram of the system is shown in Figure 4.19b. The system lmastarophones,
one outside the headphones that picks up exterior no&®d another inside the
headphones that picks up the sigaalvhich is a combination of the desired signal
and the external noise that penetrates the headphone. Ttz &@m the exterior
microphone is filtered and sent to the headphones in such ahatit tancels the
external noise that penetrates into the headphones. Thegta of the filter are
adjusted by a feedback mechanism to make the noise sigrted internal micro-
phone as small as possible. The feedback is inherently reanllmecause it acts by
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Figure 4.19: Headphones with noise cancellation. Noise is sensed by the exterior micro-
phone (a) and sent to a filter in such a way that it cancels the noise trettqtes the head
phone (b). The parameters of the filter are adjusted by the controller.

changing the parameters of the filter.

To analyze the system we assume for simplicity that the aipen of external
noise into the headphones is modeled by a first order dynasyst#m described
by

g—tz = apz+ bon, (4.22)

wherezis the sound level and the paramei&ys: 0 andbg are not known. Assume
that the filter is a dynamical system of the same type

d—W = aw+ bn
dt '

We wish to find a controller that updatesand b so that they converge to the
(unknown) parameteld andbp. Introducex; =e=w-—12z X = a—ap andxz =
b —bg, then

d
% — —ag(x—2) + (a—ag)w+ (b—bo)n = —agxs — XoX+Xan.  (4.23)

We will achieve noise cancellation if we can find a feedbackfiawchanging the
parameters andb so that the erroe goes to zero. To do this we choose

1
V(x50 %) = 5 (oX§ +5 +x3)

as a candidate Lyapunov function for (4.23). The derivativé s
V= AX1X1 + XoXo + X3X3 = —C(aoX% + X2(X2 + aXgW) + X3(X3 + X1n)

Choosing
Xo = AXX = AEW X3 = axn=aen (4.24)

we find thatv = —aaoxf, and it follows that the quadratic function will decrease
as long ae = x; =w—2z+# 0. The nonlinear feedback (4.24) thus attempts to
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Figure 4.20: Simulation of noise cancellation. The top left figure shows the headplgne s
nal without noise cancellation and the bottom left shows the signal with narseetiation.
The right figures show the parameterandb of the filter.

change the parameters so that the error between the sighth@noise is small.
Notice that feedback law (4.24) does not use the model (£23)citly.

A simulation of the system is shown in Figure 4.20. In the satiah we have
represented the signal as a pure sinusoid and the noisesabtiand noise. The fig-
ure shows the dramatic improvement with noise cancellafldre sinusoidal sig-
nal is not visible without noise cancellation. The filter paedens change quickly
from their initial valuesa = b = 0. Filters of higher order with more coefficients
are used in practice. O

4.6 FURTHER READING

The field of dynamical systems has a rich literature that chewizes the possi-
ble features of dynamical systems and describes how patiarabainges in the
dynamics can lead to topological changes in behavior. RBadatroductions to
dynamical systems are given by Strogatz [184] and the hidluistiated text by
Abraham and Shaw [2]. More technical treatments include énav, Vitt and

Khaikin [8], Guckenheimer and Holmes [91] and Wiggins [19Hor students
with a strong interest in mechanics, the texts by Arnold [A4fl Marsden and
Ratiu [144] provide an elegant approach using tools frorfecghtial geometry.
Finally, nice treatments of dynamical systems methods itobioare given by
Wilson [199] and Ellner and Guckenheimer [71]. There is a |ditgeature on

Lyapunov stability theory, including the classic texts bwlkin [141], Hahn [94]

and Krassovskii [126]. We highly recommend the comprehlenseatment by
Khalil [121].
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EXERCISES

4.1 Show that if we have a solution of the differential equatioril)4jiven by
X(t) with initial conditionx(tp) = Xo, thenxX{(1) = Xx(t —tg) — Xo is a solution of the
differential equation

with initial conditionX(0) = 0.

4.2 Consider the cruise control system described in Section Bldt the phase
portrait for the combined vehicle dynamics and Pl compemsaith k, = 1 and
ki = 0.5.

4.3 Consider the predator-prey example introduced in Secti@n $he phase
portrait for this system is shown in Figure 3.20b. In additothe two equilibrium
points, we see a limit cycle in the diagram. This limit cyclafgactingor stable
since initial conditions near the limit cycle approach itiage increases. It divides
the phase space into two different regions: one inside thi¢ ¢diycle in which the
size of the population oscillations grows with time (urttiéy reach the limit cycle)
and one outside the limit cycle in which they decay.

4.4 We say that an equilibrium point = 0 is anexponentially stablequilibrium
point of (4.2) if there exist constants, a > 0 ande > 0 such that
Ix(®)] < me 1) x(to) (4.25)

for all |x(tp)|| < € andt > tg. Prove that an equilibrium point is exponentially
stable if and only if there exists &> 0 and a functioV (x,t) that satisfies

a]|X|[? <V (x,t) < azlx|?
dv

— < —ag|x||*
dt [ r(xy)
oV
i <
| X ()] < aallX|

for some positive constants, a2, as, a4, and||x|| < e.

4.5 Consider the asymptotically stable system

dx (-A O

at b A%
whereA > 0. Find a Lyapunov function for the system that proves asytitpto
stability.

4.6 The following simple model for an electric generator conaddb a strong
power grid was given in Exercise 2.8:
d? EV .
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The parameter
_ Pmax  EV

Pn XPn
is the ratio between the maximum deliverable poRgsx= EV/X, and the me-

chanical poweR,. Considera as a bifurcation parameter and discuss how the
equilibria depend oa.

(4.26)

4.7 Consider the model in the previous example vétis 1. Show that there is a
center atpo = arcsir(1l/a) and a saddle ap = 11— ¢o. Also show that the orbit
through the saddle is given by

1 2
(20(;?) — ¢ +¢o—acosp —vaz—1=0. (4.27)
Simulate the system and show that the stability region isrttezior of this orbit.
Investigate what happens if the system is in equilibriunhvaitvalue ofa that is

slightly larger than 1 and suddenly decreases, corresponding to the reactance of
the line suddenly increasing.

4.8 Show that Lyapunov equation (4.14) always has a solution dfahe eigen-
values ofA are in the left half plane. (Hint: use the fact that the Lyamuequation
is linear inP and start with the case whefehas distinct eigenvalues.)

4.9 (Congestion control) Consider the congestion control lembdescribed in
Section 3.4. Confirm that the equilibrium point for the systengiven by equa-
tion (3.21) and compute the stability of this equilibriumintousing a linear ap-
proximation.

4.10 (Swinging up a pendulum) Consider the inverted penduluncudised in Ex-
ample 4.4, which is described by

6 = sinf +ucosb,

wheref is the angle between the pendulum and the vertical and theotsignal
u is the acceleration of the pivot. Using the energy function

V(6,0) =cosh — 1+ %62,
show that the state feedback
u=k(Vo—V)0cosh (4.28)
causes the pendulum to “swing up” to upright position.
4.11 (Root locus plot) Consider the linear system
a3 1) (2):
dt~ |0 -3 4

y= (1 o)x
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with the feedbacki = —ky. Plot the location of the eigenvalues as a function the
parametek.

4.12 An op amp circuit for an oscillator was shown in Exercise 3.5sTihear cir-
cuit was stable but naturally not asymptotically stable.cAesnatic of a modified
circuit which has nonlinear elements is shown in the figurewellhe modifica-

tion is obtained by making a feedback around each opera@omaglifier which has
capacitors using multipliers. The sigreal = V2 + V3 — V3 is the amplitude error.
Show that the system is modeled by

dVl . R4 1
dt R1R3C1V2+ R11C1V1(V% “viov)
d 1 1
2 V(G V2 —\3)

- v
dt RCo * * RooCo

Show that the circuit gives and oscillation with a stable fiayicle with amplitude
Vp. (Hint: Use the results of Example 4.8.)

4.13 (Self activating genetic circuit) Consider the dynamics ajemetic circuit
that implementself activation the protein produced by the gene is an activator
for the protein, thus stimulating its own production. Usthg models presented
in Example 2.13, the dynamics for the system can be written as

dm_ _ap®
dt ~ 1k (o ¥m
dp

E—Bm—ép

for p,m > 0. Find the equilibrium points for the system and analyze twall
stability of each using Lyapunov analysis.

4.14 Prove that if a matrix has distinct eigenvalues, it is diadjaahble.
4.15 (Pitchfork bifurcation) Consider the scalar dynamical sgst
X = ux—x2.

The equilibrium values of are plotted below, with solid lines representing stable
equilibria and dashed lines representing unstable egqailitAs illustrated in the
figure, the number and type of the solutions changgs at0 and hence we say
there is a bifurcation gt = 0.
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X" x*
—--
a8 \
k u ’ u
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(a) supercritical pitchfork (b) subcritical pitchfork

Note that the sign of the cubic term determines whether thedation gen-
erates a stable branch (calledsapercritical bifurcation and shown in (a) or a
unstable branch (calledsabcritical bifurcation and shown in (b).

4.16 Let A€ R™" be a matrix with eigenvalues,,...,A, and corresponding
eigenvectorss, ..., Vy.

(a) Show that if the eigenvalues are distingt£ A; for i # j) theny; # v; for
i .

(b) Show that the eigenvectors form a basiskdrso that any vectox can be
written asx =3 ajv; for a; € R.

(c) LetT=|v1 v ... vn| and show thaTAT lis a diagonal matrix of
the form (4.8) on page 111.

This form of the dynamics of a linear system is often referceddmodal form



