Department of Mathematical Sciences, Sharif University of Technology

```
همايش ملى رياضيات زيستى 
```


Applications of convex optimization in METABOLIC NETWORK ANALYSIS

Mojtaba Tefagh

October 22, 2020

Outline

- Motivation
- Introduction

Systems Biology

 COBRA- Consistency Checking
- QFCA

Background
Flux Coupling Equations
Fictitious Metabolites Implementation Applications

- Metabolic Network Reductions
- Conclusions
- Further Topics

Motivation

Many protein machines interact through complex,
interconnected pathways. Analyzing these dynamic processes will lead to models of life processes.

Introduction

Systems Biology
"However, many things have a plurality of parts and are not merely a complete aggregate but instead some kind of a whole beyond its parts."

Aristotle, Metaphysics 8.6

A metabolic network from KEGG pathway database

Introduction

COnstraint-Based Reconstruction and Analysis

Source: [Kim et al., 2012]

Introduction

COnstraint-Based Reconstruction and Analysis

- Genome-scale metabolic network: $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$

Source: [Kim et al., 2012]

Introduction

COnstraint-Based Reconstruction and Analysis

- Genome-scale metabolic network: $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$
- Metabolites: $\mathcal{M}=\left\{M_{i}\right\}_{i=1}^{m}$

Source: [Kim et al., 2012]

Introduction

COnstraint-Based Reconstruction and Analysis

- Genome-scale metabolic network: $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$
- Metabolites: $\mathcal{M}=\left\{M_{i}\right\}_{i=1}^{m}$
- Reactions: $\mathcal{R}=\left\{R_{i}\right\}_{i=1}^{n}$

Source: [Kim et al., 2012]

Introduction

COnstraint-Based Reconstruction and Analysis

- Genome-scale metabolic network: $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$
- Metabolites: $\mathcal{M}=\left\{M_{i}\right\}_{i=1}^{m}$
- Reactions: $\mathcal{R}=\left\{R_{i}\right\}_{i=1}^{n}$
- Stoichiometric matrix: S

Source: [Kim et al., 2012]

Introduction

COnstraint-Based Reconstruction and Analysis

- Genome-scale metabolic network: $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$
- Metabolites: $\mathcal{M}=\left\{M_{i}\right\}_{i=1}^{m}$
- Reactions: $\mathcal{R}=\left\{R_{i}\right\}_{i=1}^{n}$
- Stoichiometric matrix: S
- Irreversible reactions: $\mathcal{I} \subseteq \mathcal{R}$

Source: [Kim et al., 2012]

Introduction

COnstraint-Based Reconstruction and Analysis

- Genome-scale metabolic network: $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$
- Metabolites: $\mathcal{M}=\left\{M_{i}\right\}_{i=1}^{m}$
- Reactions: $\mathcal{R}=\left\{R_{i}\right\}_{i=1}^{n}$
- Stoichiometric matrix: S
- Irreversible reactions: $\mathcal{I} \subseteq \mathcal{R}$
- Flux distribution: $v \in \mathbf{R}^{n}$

Source: [Kim et al., 2012]

Introduction

COnstraint-Based Reconstruction and Analysis

- Genome-scale metabolic network: $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$
- Metabolites: $\mathcal{M}=\left\{M_{i}\right\}_{i=1}^{m}$
- Reactions: $\mathcal{R}=\left\{R_{i}\right\}_{i=1}^{n}$
- Stoichiometric matrix: S
- Irreversible reactions: $\mathcal{I} \subseteq \mathcal{R}$
- Flux distribution: $v \in \mathbf{R}^{n}$
- Mass balance condition: $S v=0$

Source: [Kim et al., 2012]

Introduction

COnstraint-Based Reconstruction and Analysis

- Genome-scale metabolic network: $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$
- Metabolites: $\mathcal{M}=\left\{M_{i}\right\}_{i=1}^{m}$
- Reactions: $\mathcal{R}=\left\{R_{i}\right\}_{i=1}^{n}$
- Stoichiometric matrix: S
- Irreversible reactions: $\mathcal{I} \subseteq \mathcal{R}$
- Flux distribution: $v \in \mathbf{R}^{n}$
- Mass balance condition: $S v=0$
- Thermodynamic directionality: $v_{\mathcal{I}} \succcurlyeq 0$

Source: [Kim et al., 2012]

Introduction

COnstraint-Based Reconstruction and Analysis

- Genome-scale metabolic network: $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$
- Metabolites: $\mathcal{M}=\left\{M_{i}\right\}_{i=1}^{m}$
- Reactions: $\mathcal{R}=\left\{R_{i}\right\}_{i=1}^{n}$
- Stoichiometric matrix: S
- Irreversible reactions: $\mathcal{I} \subseteq \mathcal{R}$
- Flux distribution: $v \in \mathbf{R}^{n}$
- Mass balance condition: $S v=0$
- Thermodynamic directionality:
$v_{\mathcal{I}} \succcurlyeq 0$
- Steady-state flux cone:

Source: [Kim et al., 2012]

$$
\mathcal{C}=\left\{v \in \mathbf{R}^{n} \mid S v=0, v_{\mathcal{I}} \succcurlyeq 0\right\}
$$

Introduction

COnstraint-Based Reconstruction and Analysis

- Genome-scale metabolic network: $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$
- Metabolites: $\mathcal{M}=\left\{M_{i}\right\}_{i=1}^{m}$
- Reactions: $\mathcal{R}=\left\{R_{i}\right\}_{i=1}^{n}$
- Stoichiometric matrix: S
- Irreversible reactions: $\mathcal{I} \subseteq \mathcal{R}$
- Flux distribution: $v \in \mathbf{R}^{n}$
- Mass balance condition: $S v=0$
- Thermodynamic directionality:
$v_{\mathcal{I}} \succcurlyeq 0$
- Steady-state flux cone:

Source: [Kim et al., 2012]

$$
\mathcal{C}=\left\{v \in \mathbf{R}^{n} \mid S v=0, v_{\mathcal{I}} \succcurlyeq 0\right\}
$$

- We call $R_{i} \in \mathcal{R}$ a blocked reaction if $v_{i}=0, \quad \forall v \in \mathcal{C}$.

Consistency Checking

The Naive Approach

Definition ([Schuster and Hilgetag, 1994])

A metabolic network with no blocked reactions is called a flux consistent metabolic network.

Consistency Checking

The Naive Approach

Definition ([Schuster and Hilgetag, 1994])

A metabolic network with no blocked reactions is called a flux consistent metabolic network.

By $n_{i}+2 n_{r}$ LP's:

Consistency Checking

The Naive Approach

Definition ([Schuster and Hilgetag, 1994])

A metabolic network with no blocked reactions is called a flux consistent metabolic network.

By $n_{i}+2 n_{r}$ LP's:

- The forward direction:

$$
\begin{array}{ll}
\operatorname{maximize} & v_{i} \\
\text { subject to } & v \in \mathcal{C} \\
& v_{i} \leq 1
\end{array}
$$

Consistency Checking

The Naive Approach

Definition ([Schuster and Hilgetag, 1994])

A metabolic network with no blocked reactions is called a flux consistent metabolic network.

By $n_{i}+2 n_{r}$ LP's:

- The forward direction:

$$
\begin{array}{ll}
\operatorname{maximize} & v_{i} \\
\text { subject to } & v \in \mathcal{C} \\
& v_{i} \leq 1
\end{array}
$$

- The reverse direction:

$$
\begin{array}{ll}
\operatorname{minimize} & v_{i} \\
\text { subject to } & v \in \mathcal{C} \\
& v_{i} \geq-1
\end{array}
$$

Consistency Checking

SWIFTCC

- Identifying irreversible blocked reactions by,

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{1}^{T} \min \left(v_{\mathcal{I}}, \mathbf{1}\right) \\
\text { subject to } & v \in \mathcal{C}
\end{array}
$$

Consistency Checking

- Identifying irreversible blocked reactions by,

$$
\begin{array}{ll}
\text { maximize } & \mathbf{1}^{\top} \min \left(v_{\mathcal{I}}, \mathbf{1}\right) \\
\text { subject to } & v \in \mathcal{C}
\end{array}
$$

- Equivalently,

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{1}^{T} u \\
\text { subject to } & S v=0 \\
& v_{\mathcal{I}} \succcurlyeq u \\
& \mathbf{1} \succcurlyeq u \succcurlyeq 0 .
\end{array}
$$

Consistency Checking

- Identifying irreversible blocked reactions by,

$$
\begin{array}{ll}
\text { maximize } & \mathbf{1}^{\top} \min \left(v_{\mathcal{I}}, \mathbf{1}\right) \\
\text { subject to } & v \in \mathcal{C}
\end{array}
$$

- Equivalently,

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{1}^{T} u \\
\text { subject to } & S v=0 \\
& v_{\mathcal{I}} \succcurlyeq u \\
& \mathbf{1} \succcurlyeq u \succcurlyeq 0 .
\end{array}
$$

- Requires one LP.

Consistency Checking

- Identifying reversible blocked reactions by,

$$
\left\{\begin{array}{l}
S x=0 \\
e_{i}^{T} x=1
\end{array}\right.
$$

- Equivalently,

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{1}^{T} u \\
\text { subject to } & S v=0 \\
& v_{\mathcal{I}} \succcurlyeq u \\
& \mathbf{1} \succcurlyeq u \succcurlyeq 0 .
\end{array}
$$

- Requires one LP.

Consistency Checking

- Identifying irreversible blocked reactions by,

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{1}^{\top} \min \left(v_{\mathcal{I}}, \mathbf{1}\right) \\
\text { subject to } & v \in \mathcal{C}
\end{array}
$$

- Equivalently,

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{1}^{T} u \\
\text { subject to } & S v=0 \\
& v_{\mathcal{I}} \succcurlyeq u \\
& \mathbf{1} \succcurlyeq u \succcurlyeq 0 .
\end{array}
$$

- Identifying reversible blocked reactions by,

$$
\left\{\begin{array}{l}
S x=0 \\
e_{i}^{T} x=1
\end{array}\right.
$$

- Requires one QR decomposition.
- Requires one LP.

Consistency Checking

SWIFTCC is more than $8 \times$ faster than FASTCC on average over 29 iterations of varying sizes for the Recon3D model.

FCA [Burgard et al., 2004]

Let $\left(R_{i}, R_{j}\right)$ be an arbitrary pair of unblocked reactions.

FCA [Burgard et al., 2004]

Let $\left(R_{i}, R_{j}\right)$ be an arbitrary pair of unblocked reactions.
Directional Coupling: $R_{i} \longrightarrow R_{j}$ if

$$
v_{i} \neq 0 \Rightarrow v_{j} \neq 0, \quad \forall v \in \mathcal{C} .
$$

FCA [Burgard et al., 2004]

Let $\left(R_{i}, R_{j}\right)$ be an arbitrary pair of unblocked reactions.
Directional Coupling: $R_{i} \longrightarrow R_{j}$ if

$$
v_{i} \neq 0 \Rightarrow v_{j} \neq 0, \quad \forall v \in \mathcal{C} .
$$

Partial Coupling: $R_{i} \longleftrightarrow R_{j}$ if

$$
v_{i} \neq 0 \Leftrightarrow v_{j} \neq 0, \quad \forall v \in \mathcal{C} .
$$

FCA [Burgard et al., 2004]

Let $\left(R_{i}, R_{j}\right)$ be an arbitrary pair of unblocked reactions.
Directional Coupling: $R_{i} \longrightarrow R_{j}$ if

$$
v_{i} \neq 0 \Rightarrow v_{j} \neq 0, \quad \forall v \in \mathcal{C} .
$$

Partial Coupling: $R_{i} \longleftrightarrow R_{j}$ if

$$
v_{i} \neq 0 \Leftrightarrow v_{j} \neq 0, \quad \forall v \in \mathcal{C} .
$$

Full Coupling: $R_{i} \Longleftrightarrow R_{j}$ if there exists a constant $c \neq 0$ such that

$$
v_{i}=c v_{j}, \quad \forall v \in \mathcal{C} .
$$

QFCA

Feasibility-based Flux Coupling Analysis

Problem

Given the stoichiometric matrix S and the subset of irreversible reactions \mathcal{I}, identify all the blocked reactions and the pairs of reactions which are directional, partially, or fully coupled.

QFCA

Feasibility-based Flux Coupling Analysis

Problem

Given the stoichiometric matrix S and the subset of irreversible reactions \mathcal{I}, identify all the blocked reactions and the pairs of reactions which are directional, partially, or fully coupled.

FFCA [David et al., 2011]			
By $n\left(n_{i}+2 n_{r}\right)+2 n_{p}$ LP's:			
maximize	v_{i}	minimize	v_{i}
subject to	$v \in \mathcal{C}$	subject to	$v \in \mathcal{C}$
	$v_{j}=0$		$v_{j}=0$
	$v_{i} \leq 1$.		$v_{i} \geq-1$.
maximize	v_{i}	minimize	$v i$
subject to	$v \in \mathcal{C}$	subject to	$v \in \mathcal{C}$
	$v_{j}=1$.		$v_{j}=1$.

For $t=2,3,4, R_{t} \longrightarrow R_{1}$ can be inferred from the DCE corresponding to M_{1}.

Directional Coupling Equation

- For $R_{i_{1}}, R_{i_{2}}, \ldots, R_{i_{i}} \in \mathcal{I}$, there exists $c_{i_{1}}, c_{i_{2}}, \ldots, c_{i j}>0$, such that

$$
v_{j}=c_{i_{1}} v_{i_{1}}+c_{i_{2}} v_{i_{2}}+\cdots+c_{i_{l}} v_{i_{1}} .
$$

For $t=2,3,4, R_{t} \longrightarrow R_{1}$ can be inferred from the DCE corresponding to M_{1}.

Directional Coupling Equation

- For $R_{i_{1}}, R_{i_{2}}, \ldots, R_{i_{i}} \in \mathcal{I}$, there exists $c_{i_{1}}, c_{i_{2}}, \ldots, c_{i j}>0$, such that

$$
v_{j}=c_{i_{1}} v_{i_{1}}+c_{i_{2}} v_{i_{2}}+\cdots+c_{i_{1}} v_{i_{i}} .
$$

- There exists $c_{i_{+1}}^{\prime} \neq 0$,

$v_{j}=c_{i_{1}}^{\prime} v_{i_{1}}+c_{i_{i}}^{\prime} v_{i_{2}}+\cdots+c_{i_{+1}}^{\prime} v_{i_{i+1}}$.
For $t=2,3,4, R_{t} \longrightarrow R_{1}$ can be inferred from the DCE corresponding to M_{1}.
- For $R_{i_{1}}, R_{i_{2}}, \ldots, R_{i_{1}} \in \mathcal{I}$, there exists $c_{i_{1}}, c_{i_{2}}, \ldots, c_{i_{1}}>0$, such that

$$
v_{j}=c_{i_{1}} v_{i_{1}}+c_{i_{2}} v_{i_{2}}+\cdots+c_{i_{l}} v_{i_{1}} .
$$

- There exists $c_{i_{+1}}^{\prime} \neq 0$,

$v_{j}=c_{i_{1}}^{\prime} v_{i_{1}}+c_{i_{2}}^{\prime} v_{i_{2}}+\cdots+c_{i_{++1}}^{\prime} v_{i_{++1}}$. For $t=2,3,4, R_{t} \longrightarrow R_{1}$ can be inferred from the DCE corresponding to M_{1}.

$$
\left(1+\frac{1}{c}\right) v_{j}=\left(c_{i_{1}}+\frac{c_{i_{1}}^{\prime}}{c}\right) v_{i_{1}}+\left(c_{i_{2}}+\frac{c_{i_{2}}^{\prime}}{c}\right) v_{i_{2}}+\cdots+\left(c_{i_{1}}+\frac{c_{i_{j}}^{\prime}}{c}\right) v_{i_{i}}+\frac{c_{i_{+1}}^{\prime}}{c} v_{i_{i_{+1}}}
$$

Theorem ([Tefagh and Boyd, 2018])

Suppose that $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$ has no irreversible blocked reactions. Let R_{j} be an arbitrary unblocked reaction, and $\mathcal{D}_{j} \subseteq \mathcal{I}$ denote the set of all the irreversible reactions which are directionally coupled to R_{j} excluding itself. Then, $\mathcal{D}_{j} \neq \emptyset$ if and only if there exists $c_{d}>0$ for each $R_{d} \in \mathcal{D}_{j}$, such that the following directional coupling equation (DCE)

$$
v_{j}=\sum_{d: R_{d} \in \mathcal{D}_{j}} c_{d} v_{d}
$$

holds for all $v \in \mathcal{C}$. Moreover, for any unblocked $R_{i} \notin \mathcal{I}$, we have $R_{i} \longrightarrow R_{j}$ if and only if there exists an extended directional coupling equation (EDCE)

$$
v_{j}=\sum_{d: R_{d} \in \mathcal{D}_{j}} c_{d}^{\prime} v_{d}+c_{i}^{\prime} v_{i} \quad c_{i}^{\prime} \neq 0
$$

which holds for all $v \in \mathcal{C}$.

QFCA

Flux Coupling Equations

(a) the original metabolic network

(b) the transformed metabolic network

$R_{2} \longrightarrow R_{4}$ can be inferred from the EDCEs corresponding to M_{1} and M_{2}.

M_{1} and $M_{1}+M_{3}$ provide EDCEs, M_{2} and $M_{2}+M_{3}$ provide DCEs, and M_{3} provides an FCE.

Fictitious Metabolites

Definition

We call $\lambda \in \mathbf{R}^{n}$ a fictitious metabolite if there exists $\nu \in \mathbf{R}^{m}$ such that $\lambda=S^{\top} \nu$.

Definition

We call $\lambda \in \mathbf{R}^{n}$ a fictitious metabolite if there exists $\nu \in \mathbf{R}^{m}$ such that $\lambda=S^{\top} \nu$.

Theorem

Suppose that in a given metabolic network specified by S and \mathcal{I}, there are no irreversible blocked reactions. Then for any $\lambda \in \mathbf{R}^{n}, \lambda$ is a fictitious metabolite if and only if

$$
\lambda^{\top} v=0, \quad \forall v \in \mathcal{C} .
$$

Definition

We call $\lambda \in \mathbf{R}^{n}$ a fictitious metabolite if there exists $\nu \in \mathbf{R}^{m}$ such that $\lambda=S^{\top} \nu$.

Theorem

Suppose that in a given metabolic network specified by S and \mathcal{I}, there are no irreversible blocked reactions. Then for any $\lambda \in \mathbf{R}^{n}, \lambda$ is a fictitious metabolite if and only if

$$
\lambda^{\top} v=0, \quad \forall v \in \mathcal{C} .
$$

Lemma

Suppose that in a given metabolic network specified by S and \mathcal{I}, there are no irreversible blocked reactions. Then for any $\lambda \in \mathbf{R}^{n}$,

$$
\lambda^{T} v=0, \quad \forall v \in \mathcal{C} \Leftrightarrow \lambda^{T} u=0, \quad \forall u \in \operatorname{ker}(S) .
$$

Fictitious Metabolites

$$
\begin{aligned}
M= & 4 \times 13 d p g[c]+2 \times 2 p g[c]+2 \times 3 p g[c] \\
& +4.8756 \times 6 p g c[c]+3.8756 \times 6 p g l[c]+2 \times \operatorname{actp}[c] \\
& -2 \times \operatorname{adp}[c]-4 \times \operatorname{amp}[c]+2 \times d h a p[c] \\
& -1.8756 \times e 4 p[c]+2 \times f 6 p[c]+4 \times \mathrm{fdp}[c] \\
& +2 \times g 3 p[c]+2 \times g 6 p[c]+2 \times \operatorname{pep}[c] \\
& +2 \times p i[c]+1 \times p i[e]-5.7513 \times r 5 p[c] \\
& +5.8756 \times r u 5 p-D[c]-1.8756 \times s 7 p[c] \\
& +5.8756 \times \mathrm{xu} 5 p-D[c]
\end{aligned}
$$

QFCA

Fictitious Metabolites

$$
\begin{aligned}
M= & 4 \times 13 d p g[c]+2 \times 2 p g[c]+2 \times 3 p g[c] \\
& +4.8756 \times 6 p g c[c]+3.8756 \times 6 p g l[c]+2 \times \operatorname{actp}[c] \\
& -2 \times \operatorname{adp}[c]-4 \times \operatorname{amp}[c]+2 \times d h a p[c] \\
& -1.8756 \times e 4 p[c]+2 \times f 6 p[c]+4 \times f d p[c] \\
& +2 \times g 3 p[c]+2 \times g 6 p[c]+2 \times \operatorname{pep}[c] \\
& +2 \times p i[c]+1 \times p i[e]-5.7513 \times r 5 p[c] \\
& +5.8756 \times r u 5 p-D[c]-1.8756 \times \operatorname{s7p}[c] \\
& +5.8756 \times \text { xu } 5 p-D[c]
\end{aligned}
$$

- 3-Phospho-D-glyceroyl-phosphate
- D-Glycerate-2-phosphate
- 3-Phospho-D-glycerate
- 6-Phospho-D-gluconate
- 6-phospho-D-glucono-1-5-lactone
- Acetyl-phosphate
- ADP
- AMP
- Dihydroxyacetone-phosphate

D D-Erythrose-4-phosphate

- D-Fructose-6-phosphate
- D-Fructose-1-6-bisphosphate
- Glyceraldehyde-3-phosphate
- D-Glucose-6-phosphate
- Phosphoenolpyruvate
- Phosphate (pi[c])
- Phosphate (pi[e])
- alpha-D-Ribose-5-phosphate
- D-Ribulose-5-phosphate
- Sedoheptulose-7-phosphate
- D-Xylulose-5-phosphate

QFCA

Table: a bird's eye view of QFCA

	positive certificates	negative certificates	A
\mathcal{B}_{R}		$\left.S^{(A)}\right)^{T} x=e_{i}^{(A)}$	$S^{(A)} u=0$
EDCE		$e_{i}^{(A)^{T}} u=1$	\emptyset
FCE			$\mathcal{D}_{j} \cup\left\{R_{j}\right\}$
\mathcal{B}_{l}	maximize	$\mathbf{1}^{T} \min \left(\lambda^{(A)}, \mathbf{1}\right)$	maximize $\quad \mathbf{1}^{T} \min \left(v_{\mathcal{I}}, \mathbf{1}\right)$
DCE	subject to	$S^{T} \nu=\lambda$	\emptyset
		$\lambda_{i}=0, \quad i \notin \mathcal{I}$	subject to $\quad v \in \mathcal{C}$
		$\lambda_{i} \geq 0, \quad i \in \mathcal{I} \backslash A$	
		$v_{A}=0$	$\left\{R_{j}\right\}$

QFCA

Table: a bird's eye view of QFCA

	positive certificates	negative certificates	A
\mathcal{B}_{R}		$\left.S^{(A)}\right)^{T} x=e_{i}^{(A)}$	$S^{(A)} u=0$
EDCE		$e_{i}^{(A)^{T}} u=1$	\emptyset
FCE			$\mathcal{D}_{j} \cup\left\{R_{j}\right\}$
\mathcal{B}_{l}	maximize	$\mathbf{1}^{T} \min \left(\lambda^{(A)}, \mathbf{1}\right)$	maximize $\quad \mathbf{1}^{T} \min \left(v_{\mathcal{I}}, \mathbf{1}\right)$
DCE	subject to	$S^{T} \nu=\lambda$	\emptyset
		$\lambda_{i}=0, \quad i \notin \mathcal{I}$	subject to $\quad v \in \mathcal{C}$
		$\lambda_{i} \geq 0, \quad i \in \mathcal{I} \backslash A$	
			$v_{A}=0$
			$\left\{R_{j}\right\}$

- Certificates as potential differences

QFCA

Table: a bird's eye view of QFCA

	positive certificates	negative certificates	A
\mathcal{B}_{R}		$\left.S^{(A)}\right)^{T} x=e_{i}^{(A)}$	$S^{(A)} u=0$
EDCE		$e_{i}^{(A)^{T}} u=1$	\emptyset
FCE			$\mathcal{D}_{j} \cup\left\{R_{j}\right\}$
\mathcal{B}_{l}	maximize	$\mathbf{1}^{T} \min \left(\lambda^{(A)}, \mathbf{1}\right)$	maximize $\quad \mathbf{1}^{T} \min \left(v_{\mathcal{I}}, \mathbf{1}\right)$
DCE	subject to	$S^{T} \nu=\lambda$	\emptyset
		$\lambda_{i}=0, \quad i \notin \mathcal{I}$	subject to $\quad v \in \mathcal{C}$
		$\lambda_{i} \geq 0, \quad i \in \mathcal{I} \backslash A$	
			$v_{A}=0$
			$\left\{R_{j}\right\}$

- Certificates as potential differences
- Certificates as fictitious metabolites

QFCA

Table: a bird's eye view of QFCA

	positive certificates	negative certificates	A
\mathcal{B}_{R}		$\left.S^{(A)}\right)^{T} x=e_{i}^{(A)}$	$S^{(A)} u=0$
EDCE		$e_{i}^{(A)^{T}} u=1$	\emptyset
FCE			$\mathcal{D}_{j} \cup\left\{R_{j}\right\}$
\mathcal{B}_{l}	maximize	$\mathbf{1}^{T} \min \left(\lambda^{(A)}, \mathbf{1}\right)$	maximize $\quad \mathbf{1}^{T} \min \left(v_{\mathcal{I}}, \mathbf{1}\right)$
DCE	subject to	$S^{T} \nu=\lambda$	\emptyset
		$\lambda_{i}=0, \quad i \notin \mathcal{I}$	subject to $\quad v \in \mathcal{C}$
		$\lambda_{i} \geq 0, \quad i \in \mathcal{I} \backslash A$	
			$v_{A}=0$
			$\left\{R_{j}\right\}$

- Certificates as potential differences
- Certificates as fictitious metabolites
- Certificates as generalizations of fully coupling constants

$$
v_{1}=-\frac{\lambda_{2}}{\lambda_{1}} v_{2}-\frac{\lambda_{3}}{\lambda_{1}} v_{3}-\cdots-\frac{\lambda_{l}}{\lambda_{1}} v_{l}
$$

Final Algorithm

QFCA

Input: $\mathcal{M}, \mathcal{R}, S, \mathcal{I}$
Output: A,b

Final Algorithm

QFCA

Input: $\mathcal{M}, \mathcal{R}, S, \mathcal{I}$
Output: A,b
identifying and removing the blocked reactions from the metabolic network

QFCA

Input: $\mathcal{M}, \mathcal{R}, S, \mathcal{I}$
Output: A,b
identifying and removing the blocked reactions from the metabolic network aggregating all the isozymes and removing the newly blocked reactions

QFCA

Input: $\mathcal{M}, \mathcal{R}, S, \mathcal{I}$
Output: A,b
identifying and removing the blocked reactions from the metabolic network aggregating all the isozymes and removing the newly blocked reactions identifying the fully coupled pairs of reactions and merging each pair

QFCA

Input: $\mathcal{M}, \mathcal{R}, S, \mathcal{I}$
Output: A,b
identifying and removing the blocked reactions from the metabolic network aggregating all the isozymes and removing the newly blocked reactions identifying the fully coupled pairs of reactions and merging each pair computing the set of fully reversible reactions and reversibility type pruning

QFCA

Input: $\mathcal{M}, \mathcal{R}, S, \mathcal{I}$
Output: A,b
identifying and removing the blocked reactions from the metabolic network aggregating all the isozymes and removing the newly blocked reactions identifying the fully coupled pairs of reactions and merging each pair computing the set of fully reversible reactions and reversibility type pruning finding the directional and partial coupling relations by positive certificates

Benchmark

(a) YEASTNET v3.0 with 2292 reversible and 49 irreversible reactions

(b) Recon3D with 5238 reversible and 5362 irreversible reactions

QFCA average runtime is 7% and 68% of $\operatorname{F2C2}$ average runtime, respectively.

- A quantitative approach to FCA

$$
v_{j} \geq c v_{i}
$$

- A quantitative approach to FCA

$$
v_{j} \geq c v_{i}
$$

Equivalently the optimal value of the following LP is zero.

$$
\begin{array}{ll}
\text { minimize } & v_{j}-c v_{i} \\
\text { subject to } & v \in \mathcal{C}
\end{array}
$$

A quantitative approach to FCA

$$
v_{j} \geq c v_{i}
$$

Equivalently the optimal value of the following LP is zero.

$$
\begin{array}{ll}
\text { minimize } & v_{j}-C v_{i} \\
\text { subject to } & v \in \mathcal{C}
\end{array}
$$

Deriving the dual,

$$
\begin{array}{ll}
\operatorname{maximize} & 0 \\
\text { subject to } & S^{T} \nu+e_{j}-c e_{i}=\lambda \\
& \lambda_{i}=0, \quad i \notin \mathcal{I} \\
& \lambda_{i} \geq 0, \quad i \in \mathcal{I}
\end{array}
$$

A quantitative approach to FCA

$$
v_{j} \geq c v_{i}
$$

Equivalently the optimal value of the following LP is zero.

$$
\begin{array}{ll}
\text { minimize } & v_{j}-c v_{i} \\
\text { subject to } & v \in \mathcal{C}
\end{array}
$$

Deriving the dual,

$$
\begin{array}{ll}
\operatorname{maximize} & 0 \\
\text { subject to } & S^{T} \nu+e_{j}-c e_{i}=\lambda \\
& \lambda_{i}=0, \quad i \notin \mathcal{I} \\
& \lambda_{i} \geq 0, \quad i \in \mathcal{I}
\end{array}
$$

As a result,

$$
\left(1-\lambda_{j}^{\star}\right) v_{j}=\left(c+\lambda_{i}^{\star}\right) v_{i}+\sum_{d \neq i, j} \lambda_{d}^{\star} v_{d},
$$

A quantitative approach to FCA

$$
v_{j} \geq c v_{i}
$$

Equivalently the optimal value of the following LP is zero.

$$
\begin{array}{ll}
\text { minimize } & v_{j}-c v_{i} \\
\text { subject to } & v \in \mathcal{C}
\end{array}
$$

Deriving the dual,

$$
\begin{array}{ll}
\operatorname{maximize} & 0 \\
\text { subject to } & S^{\top} \nu+e_{j}-c e_{i}=\lambda \\
& \lambda_{i}=0, \quad i \notin \mathcal{I} \\
& \lambda_{i} \geq 0, \quad i \in \mathcal{I}
\end{array}
$$

As a result,

$$
\left(1-\lambda_{j}^{\star}\right) v_{j}=\left(c+\lambda_{i}^{\star}\right) v_{i}+\sum_{d \neq i, j} \lambda_{d}^{\star} v_{d},
$$

- Sensitivity analysis

A quantitative approach to FCA

$$
v_{j} \geq c v_{i}
$$

Equivalently the optimal value of the following LP is zero.

$$
\begin{array}{ll}
\text { minimize } & v_{j}-c v_{i} \\
\text { subject to } & v \in \mathcal{C}
\end{array}
$$

Deriving the dual,

$$
\begin{array}{ll}
\operatorname{maximize} & 0 \\
\text { subject to } & S^{T} \nu+e_{j}-c e_{i}=\lambda \\
& \lambda_{i}=0, \quad i \notin \mathcal{I} \\
& \lambda_{i} \geq 0, \quad i \in \mathcal{I}
\end{array}
$$

As a result,

$$
\left(1-\lambda_{j}^{\star}\right) v_{j}=\left(c+\lambda_{i}^{\star}\right) v_{i}+\sum_{d \neq i, j} \lambda_{d}^{\star} v_{d}
$$

- Sensitivity analysis
- The metabolic gap-filling problem

Metabolic Network Reductions

A Toy example

$$
\begin{gathered}
\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I}) \\
\mathcal{M}=\left\{M_{1}, M_{2}, M_{3}\right\} \\
\mathcal{R}=\left\{R_{1}, R_{2}, R_{3}, R_{4}, R_{5}\right\} \\
\mathcal{I}=\mathcal{R} \\
S=\left[\begin{array}{ccccc}
+1 & -1 & 0 & +2 & 0 \\
0 & +1 & -1 & 0 & 0 \\
0 & 0 & 0 & +1 & -1
\end{array}\right]
\end{gathered}
$$

the original metabolic network

Metabolic Network Reductions

A Toy example

$$
\begin{gathered}
\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I}) \\
\mathcal{M}=\left\{M_{1}, M_{2}, M_{3}\right\} \\
\mathcal{R}=\left\{R_{1}, R_{2}, R_{3}, R_{4}, R_{5}\right\} \\
\mathcal{I}=\mathcal{R} \\
S=\left[\begin{array}{cccc}
+1 & -1 & 0 & +2 \\
0 & +1 & -1 & 0 \\
0 & 0 & +1 & -1
\end{array}\right] \\
v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{c}
v_{1} \\
v_{3} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{ccc}
+1 & 0 & 0 \\
0 & +1 & 0 \\
0 & +1 & 0 \\
0 & 0 & +1 \\
0 & 0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
M_{1}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right] .
\end{gathered}
$$

Metabolic Network Reductions

A Toy example

$$
\begin{aligned}
\tilde{S}= & {\left[\begin{array}{cccc}
+1 & -1 & +2 & 0 \\
0 & 0 & +1 & -1
\end{array}\right] } \\
& \tilde{R}_{1} \xrightarrow{r_{1}}\left\{R_{1}\right\} \\
& \tilde{R}_{3} \xrightarrow{r_{1}}\left\{R_{2}, R_{3}\right\} \\
& \tilde{R}_{4} \xrightarrow{r_{1}}\left\{R_{4}\right\} \\
& \tilde{R}_{5} \xrightarrow{r_{1}}\left\{R_{5}\right\}
\end{aligned}
$$

the reduced metabolic network

Metabolic Network Reductions

$$
\begin{aligned}
\tilde{S}= & {\left[\begin{array}{cccc}
+1 & -1 & +2 & 0 \\
0 & 0 & +1 & -1
\end{array}\right] } \\
& \tilde{R}_{1} r_{1} \\
& \left\{R_{1}\right\} \\
& \tilde{R}_{3} \xrightarrow{r_{1}}\left\{R_{2}, R_{3}\right\} \\
& \tilde{R}_{4} \xrightarrow{r_{1}}\left\{R_{4}\right\} \\
& \tilde{R}_{5} \xrightarrow{r_{1}}\left\{R_{5}\right\}
\end{aligned}
$$

the reduced metabolic network
$S v=S\left[\begin{array}{cccc}+1 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & +1\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{3} \\ v_{4} \\ v_{5}\end{array}\right]=\left[\begin{array}{cccc}+1 & -1 & +2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & +1 & -1\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{3} \\ v_{4} \\ v_{5}\end{array}\right]$

Metabolic Network Reductions

A Toy example

$$
\begin{aligned}
\tilde{S}= & {\left[\begin{array}{cccc}
+1 & -1 & +2 & 0 \\
0 & 0 & +1 & -1
\end{array}\right] } \\
& \tilde{R}_{1} \xrightarrow{r_{2}}\left\{R_{1}, R_{2}\right\} \\
& \tilde{R}_{3} \xrightarrow{r_{2}}\left\{R_{3}\right\} \\
& \tilde{R}_{4} \xrightarrow{r_{2}}\left\{R_{2}, R_{4}\right\} \\
& \tilde{R}_{5} \xrightarrow{r_{2}}\left\{R_{5}\right\},
\end{aligned}
$$

a DCE-induced reduction

Metabolic Network Reductions

$$
\begin{aligned}
\tilde{S}= & {\left[\begin{array}{cccc}
+1 & -1 & +2 & 0 \\
0 & 0 & +1 & -1
\end{array}\right] } \\
& \tilde{R}_{1} \xrightarrow{r_{2}}\left\{R_{1}, R_{2}\right\} \\
& \tilde{R}_{3} \xrightarrow{r_{2}}\left\{R_{3}\right\} \\
& \tilde{R}_{4} \xrightarrow{r_{2}}\left\{R_{2}, R_{4}\right\} \\
& \tilde{R}_{5} \xrightarrow{r_{2}}\left\{R_{5}\right\},
\end{aligned}
$$

a DCE-induced reduction

$$
v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{c}
v_{1} \\
v_{1}+2 v_{4} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
+1 & 0 & +2 & 0 \\
0 & +1 & 0 & 0 \\
0 & 0 & +1 & 0 \\
0 & 0 & 0 & +1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]
$$

Metabolic Network Reductions

QFCA Reductions

- First, we eliminate all the blocked reactions.

Metabolic Network Reductions

QFCA Reductions

- First, we eliminate all the blocked reactions.
- Second, we merge all the fully coupled reactions.

Metabolic Network Reductions

QFCA Reductions

- First, we eliminate all the blocked reactions.
- Second, we merge all the fully coupled reactions.
- Third, we remove the eligible reactions by the DCE-induced reductions.

Metabolic Network Reductions

QFCA Reductions

- First, we eliminate all the blocked reactions.
- Second, we merge all the fully coupled reactions.
- Third, we remove the eligible reactions by the DCE-induced reductions.

$$
\begin{gathered}
\mathcal{N} \stackrel{\phi_{1}, r_{1}}{\longleftarrow} \tilde{\mathcal{N}}_{1} \stackrel{\phi_{2}, r_{2}}{\Vdash} \cdots{\stackrel{\phi}{n-\tilde{n}, r_{n-\tilde{n}}} \tilde{\mathcal{N}}_{n-\tilde{n}}}_{\tilde{S}=S P A}^{\phi^{n-\tilde{n}}(\tilde{v})=P A \tilde{v}}
\end{gathered}
$$

Metabolic Network Reductions

Canonical Reductions
We say that the metabolic network $\tilde{\mathcal{N}}=(\tilde{\mathcal{M}}, \tilde{\mathcal{R}}, \tilde{\mathcal{S}}, \tilde{\mathcal{I}})$ is a reduction of $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$ if

Metabolic Network Reductions

Canonical Reductions
We say that the metabolic network $\tilde{\mathcal{N}}=(\tilde{\mathcal{M}}, \tilde{\mathcal{R}}, \tilde{\mathcal{S}}, \tilde{\mathcal{I}})$ is a reduction of $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$ if

1. there exists a surjection $\phi: \tilde{\mathcal{C}} \rightarrow \mathcal{C}$,

Metabolic Network Reductions

Canonical Reductions
We say that the metabolic network $\tilde{\mathcal{N}}=(\tilde{\mathcal{M}}, \tilde{\mathcal{R}}, \tilde{S}, \tilde{\mathcal{I}})$ is a reduction of $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$ if

1. there exists a surjection $\phi: \tilde{\mathcal{C}} \rightarrow \mathcal{C}$,
2. there exists a reduction map $r: \tilde{\mathcal{R}} \rightarrow \mathcal{P}(\mathcal{R})$ such that

$$
r\left(\tilde{R}_{i}\right) \nsubseteq \bigcup_{k \neq i} r\left(\tilde{R}_{k}\right) \quad \forall \tilde{R}_{i} \in \tilde{\mathcal{R}},
$$

Metabolic Network Reductions

Canonical Reductions
We say that the metabolic network $\tilde{\mathcal{N}}=(\tilde{\mathcal{M}}, \tilde{\mathcal{R}}, \tilde{S}, \tilde{\mathcal{I}})$ is a reduction of $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$ if

1. there exists a surjection $\phi: \tilde{\mathcal{C}} \rightarrow \mathcal{C}$,
2. there exists a reduction map $r: \tilde{\mathcal{R}} \rightarrow \mathcal{P}(\mathcal{R})$ such that

$$
r\left(\tilde{R}_{i}\right) \nsubseteq \bigcup_{k \neq i} r\left(\tilde{R}_{k}\right) \quad \forall \tilde{R}_{i} \in \tilde{\mathcal{R}},
$$

3. and the following diagram commutes

where $\tilde{r}: \mathcal{P}(\tilde{\mathcal{R}}) \rightarrow \mathcal{P}(\mathcal{R})$ is defined by

$$
\tilde{r}\left(\left\{\tilde{R}_{i}\right\}_{i \in I}\right)=\bigcup_{i \in 1} r\left(\tilde{R}_{i}\right) .
$$

Metabolic Network Reductions

Canonical Reductions
$\phi_{1} \circ \phi_{2}: \tilde{\mathcal{C}}_{2} \rightarrow \mathcal{C}$ is a surjection because the composition of surjective functions is surjective,

Metabolic Network Reductions

Canonical Reductions
$\phi_{1} \circ \phi_{2}: \tilde{\mathcal{C}}_{2} \rightarrow \mathcal{C}$ is a surjection because the composition of surjective functions is surjective,
$\tilde{r}_{1} \circ r_{2}: \tilde{\mathcal{R}}_{2} \rightarrow \mathcal{P}(\mathcal{R})$ is a legitimate reduction map because for any $\tilde{R}_{i} \in \tilde{\mathcal{R}}_{2}$ we have
$\exists \tilde{R}_{j} \in r_{2}\left(\tilde{R}_{i}\right) \backslash \bigcup_{k \neq i} r_{2}\left(\tilde{R}_{k}\right) \Rightarrow \exists R_{t} \in r_{1}\left(\tilde{R}_{j}\right) \backslash \bigcup_{k \neq j} r_{1}\left(\tilde{R}_{k}\right) \Rightarrow R_{t} \in \tilde{r}_{1} \circ r_{2}\left(\tilde{R}_{i}\right) \backslash \bigcup_{k \neq i} \tilde{r}_{1} \circ r_{2}\left(\tilde{R}_{k}\right)$,

Metabolic Network Reductions

Canonical Reductions
$\phi_{1} \circ \phi_{2}: \tilde{\mathcal{C}}_{2} \rightarrow \mathcal{C}$ is a surjection because the composition of surjective functions is surjective,
$\tilde{r}_{1} \circ r_{2}: \tilde{\mathcal{R}}_{2} \rightarrow \mathcal{P}(\mathcal{R})$ is a legitimate reduction map because for any $\tilde{R}_{i} \in \tilde{\mathcal{R}}_{2}$ we have

$$
\exists \tilde{R}_{j} \in r_{2}\left(\tilde{R}_{i}\right) \backslash \bigcup_{k \neq i} r_{2}\left(\tilde{R}_{k}\right) \Rightarrow \exists R_{t} \in r_{1}\left(\tilde{R}_{j}\right) \backslash \bigcup_{k \neq j} r_{1}\left(\tilde{R}_{k}\right) \Rightarrow R_{t} \in \tilde{r}_{1} \circ r_{2}\left(\tilde{R}_{i}\right) \backslash \bigcup_{k \neq i} \tilde{r}_{1} \circ r_{2}\left(\tilde{R}_{k}\right)
$$

and the following diagram commutes

because for any $\tilde{v} \in \tilde{\mathcal{C}}_{2}$

$$
\operatorname{supp}\left(\phi_{1} \circ \phi_{2}(\tilde{v})\right)=\tilde{r}_{1}\left(\operatorname{supp}\left(\phi_{2}(\tilde{v})\right)\right)=\tilde{r}_{1} \circ \tilde{r}_{2}(\operatorname{supp}(\tilde{v}))
$$

Metabolic Network Reductions

Canonical reductions preserve EM's

Definition ([Schuster and Hilgetag, 1994])

We call a nonzero feasible flux distribution $0 \neq v \in \mathcal{C}$ an elementary mode (EM), if its support is minimal, or equivalently, if there does not exist any other nonzero feasible flux distribution $0 \neq u \in \mathcal{C}$ such that $\operatorname{supp}(u) \subset \operatorname{supp}(v)$.

Metabolic Network Reductions

Canonical reductions preserve EM's

Definition ([Schuster and Hilgetag, 1994])

We call a nonzero feasible flux distribution $0 \neq v \in \mathcal{C}$ an elementary mode (EM), if its support is minimal, or equivalently, if there does not exist any other nonzero feasible flux distribution $0 \neq u \in \mathcal{C}$ such that $\operatorname{supp}(u) \subset \operatorname{supp}(v)$.

Minimal conserved pool identification (MCPI)

Replace FCA by Metabolite concentration coupling analysis (MCCA) and everything works!

Metabolic Network Reductions

Canonical reductions are minimal

Theorem (The reduction theorem)

Suppose that $\tilde{\mathcal{N}}=(\tilde{\mathcal{M}}, \tilde{\mathcal{R}}, \tilde{S}, \tilde{\mathcal{I}})$ is a metabolic network reduction of $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$ by the surjection $\phi: \tilde{\mathcal{C}} \rightarrow \mathcal{C}$ and the reduction map $r: \tilde{\mathcal{R}} \rightarrow \mathcal{P}(\mathcal{R})$. For each $\tilde{R}_{i}, \tilde{R}_{j} \in \tilde{\mathcal{R}}$ such that $\tilde{R}_{i} \longrightarrow \tilde{R}_{j}$, any reaction in $r\left(\tilde{R}_{i}\right) \backslash \bigcup_{k \neq i} r\left(\tilde{R}_{k}\right)$ is directionally coupled to any reaction in $r\left(\tilde{R}_{j}\right)$.
Conversely, if there exists a reaction in $r\left(\tilde{R}_{i}\right)$ which is directionally coupled to some reaction in $r\left(\tilde{R}_{j}\right) \backslash \bigcup_{k \neq j} r\left(\tilde{R}_{k}\right)$, then $\tilde{R}_{i} \longrightarrow \tilde{R}_{j}$.

Metabolic Network Reductions

Canonical reductions are minimal

Theorem (The reduction theorem)

Suppose that $\tilde{\mathcal{N}}=(\tilde{\mathcal{M}}, \tilde{\mathcal{R}}, \tilde{S}, \tilde{\mathcal{I}})$ is a metabolic network reduction of $\mathcal{N}=(\mathcal{M}, \mathcal{R}, S, \mathcal{I})$ by the surjection $\phi: \tilde{\mathcal{C}} \rightarrow \mathcal{C}$ and the reduction map $r: \tilde{\mathcal{R}} \rightarrow \mathcal{P}(\mathcal{R})$. For each $\tilde{R}_{i}, \tilde{R}_{j} \in \tilde{\mathcal{R}}$ such that $\tilde{R}_{i} \longrightarrow \tilde{R}_{j}$, any reaction in $r\left(\tilde{R}_{i}\right) \backslash \bigcup_{k \neq i} r\left(\tilde{R}_{k}\right)$ is directionally coupled to any reaction in $r\left(\tilde{R}_{j}\right)$.
Conversely, if there exists a reaction in $r\left(\tilde{R}_{i}\right)$ which is directionally coupled to some reaction in $r\left(\tilde{R}_{j}\right) \backslash \bigcup_{k \neq j} r\left(\tilde{R}_{k}\right)$, then $\tilde{R}_{i} \longrightarrow \tilde{R}_{j}$.

Remark

By setting $i=j$ in the reduction theorem, any reaction in $r\left(\tilde{R}_{i}\right) \backslash \bigcup_{k \neq i} r\left(\tilde{R}_{k}\right)$ is directionally coupled to any reaction in $r\left(\tilde{R}_{i}\right)$.

Metabolic Network Reductions

Benchmark

SWIFTCORE runs more than $3 \times$ faster on the reduced BiGG universal model

$$
\begin{gathered}
m=13249, n=24311, n n z(S)=95774 \\
\tilde{m}=1278, \tilde{n}=10255, n n z(\tilde{S})=56457
\end{gathered}
$$

Metabolic Network Reductions

Biological Intuition

The DCE reduced reactions are...

Metabolic Network Reductions

Biological Intuition

The DCE reduced reactions are...

- essential reactions

Essential reactions are the symmetric counterpart of the blocked reactions.

Metabolic Network Reductions

Biological Intuition

The DCE reduced reactions are...

- essential reactions
- exchange reactions

Essential reactions are the symmetric counterpart of the blocked reactions.

Metabolic Network Reductions

Biological Intuition

The DCE reduced reactions are...

- essential reactions
- exchange reactions
- of older evolutionary age

Essential reactions are the symmetric counterpart of the blocked reactions.

Metabolic Network Reductions

Biological Intuition

The DCE reduced reactions are...

- essential reactions
- exchange reactions
- of older evolutionary age
- evolutionary more conserved

Essential reactions are the symmetric counterpart of the blocked reactions.

Metabolic Network Reductions

Biological Intuition

The DCE reduced reactions are...

- essential reactions
- exchange reactions
- of older evolutionary age
- evolutionary more conserved
- essential in a wide range of conditions

Essential reactions are the symmetric counterpart of the blocked reactions.

Metabolic Network Reductions

Biological Intuition

The DCE reduced reactions are...

- essential reactions
- exchange reactions
- of older evolutionary age
- evolutionary more conserved
- essential in a wide range of conditions
- their associated genes are more expressed

Essential reactions are the symmetric counterpart of the blocked reactions.

Metabolic Network Reductions

Biological Intuition

The DCE reduced reactions are...

- essential reactions
- exchange reactions
- of older evolutionary age
- evolutionary more conserved
- essential in a wide range of conditions
- their associated genes are more expressed
- the reactions that produce biomass metabolites uniquely

Essential reactions are the symmetric counterpart of the blocked reactions.

Metabolic Network Reductions

Biological Intuition

The DCE reduced reactions are...

- essential reactions
- exchange reactions
- of older evolutionary age
- evolutionary more conserved
- essential in a wide range of conditions
- their associated genes are more expressed
- the reactions that produce biomass metabolites uniquely
- the reactions enriching the vital metabolic processes of the cell

Essential reactions are the symmetric counterpart of the blocked reactions.

Conclusions

- QFCA

Conclusions

- QFCA
- Flux coupling equations

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites
- Better worst-case complexity

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites
- Better worst-case complexity
- Faster in practice

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites
- Better worst-case complexity
- Faster in practice
- Biologically interpretable

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites
- Better worst-case complexity
- Faster in practice
- Biologically interpretable
- Providing lower bounds

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites
- Better worst-case complexity
- Faster in practice
- Biologically interpretable
- Providing lower bounds
- Robust to missing reactions

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites
- Better worst-case complexity
- Faster in practice
- Biologically interpretable
- Providing lower bounds
- Robust to missing reactions
- Metabolic gap-filling problem

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites
- Better worst-case complexity
- Faster in practice
- Biologically interpretable
- Providing lower bounds
- Robust to missing reactions
- Metabolic gap-filling problem

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites
- Better worst-case complexity
- Faster in practice
- Biologically interpretable
- Providing lower bounds
- Robust to missing reactions
- Metabolic gap-filling problem
- Metabolic Network Reduction
- Decreasing the size

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites
- Better worst-case complexity
- Faster in practice
- Biologically interpretable
- Providing lower bounds
- Robust to missing reactions
- Metabolic gap-filling problem
- Metabolic Network Reduction
- Decreasing the size
- Preserving sparsity

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites
- Better worst-case complexity
- Faster in practice
- Biologically interpretable
- Providing lower bounds
- Robust to missing reactions
- Metabolic gap-filling problem
- Metabolic Network Reduction
- Decreasing the size
- Preserving sparsity
- Context-free reductions

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites
- Better worst-case complexity
- Faster in practice
- Biologically interpretable
- Providing lower bounds
- Robust to missing reactions
- Metabolic gap-filling problem
- Metabolic Network Reduction
- Decreasing the size
- Preserving sparsity
- Context-free reductions
- Preserving EM's

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites
- Better worst-case complexity
- Faster in practice
- Biologically interpretable
- Providing lower bounds
- Robust to missing reactions
- Metabolic gap-filling problem
- Metabolic Network Reduction
- Decreasing the size
- Preserving sparsity
- Context-free reductions
- Preserving EM's
- The first axiomatic framework

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites
- Better worst-case complexity
- Faster in practice
- Biologically interpretable
- Providing lower bounds
- Robust to missing reactions
- Metabolic gap-filling problem
- Metabolic Network Reduction
- Decreasing the size
- Preserving sparsity
- Context-free reductions
- Preserving EM's
- The first axiomatic framework
- Provable optimal efficiency

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites
- Better worst-case complexity
- Faster in practice
- Biologically interpretable
- Providing lower bounds
- Robust to missing reactions
- Metabolic gap-filling problem
- Metabolic Network Reduction
- Decreasing the size
- Preserving sparsity
- Context-free reductions
- Preserving EM's
- The first axiomatic framework
- Provable optimal efficiency
- Speed up analysis in practice

Conclusions

- QFCA
- Flux coupling equations
- Fictitious metabolites
- Better worst-case complexity
- Faster in practice
- Biologically interpretable
- Providing lower bounds
- Robust to missing reactions
- Metabolic gap-filling problem
- Metabolic Network Reduction
- Decreasing the size
- Preserving sparsity
- Context-free reductions
- Preserving EM's
- The first axiomatic framework
- Provable optimal efficiency
- Speed up analysis in practice
- Biologically interpretable

Further Topics

- Closure of a metabolic network

Further Topics

- Closure of a metabolic network
- sWIFTCC++

Further Topics

- Closure of a metabolic network
- swifTCC++
- swiftcore

Further Topics

- Closure of a metabolic network
- sWIFTCC++
- swiftcore
- swiftGapFill

Further Topics

- Closure of a metabolic network
- sWIFTCC++
- swiftcore
- swiftGapFill
- sparseqFCA

Further Topics

- Closure of a metabolic network
- sWIFTCC++
- swiftcore
- swiftGapFill
- sparseQFCA
- Inhibition analysis

Further Topics

- Closure of a metabolic network
- swifTCC++
- swiftcore
- swiftGapFill
- sparseQfCA
- Inhibition analysis
- Biological fidelity

Cellular Respiration

Any Questions?

[Burgard et al., 2004] Burgard, A. P., Nikolaev, E. V., Schilling, C. H., and Maranas, C. D. (2004). Flux coupling analysis of genome-scale metabolic network reconstructions.
Genome Research, 14(2):301-312.
[David et al., 2011] David, L., Marashi, S.-A., Larhlimi, A., Mieth, B., and Bockmayr, A. (2011). FFCA: a feasibility-based method for flux coupling analysis of metabolic networks.
BMC Bioinformatics, 12(1):236.
[Kim et al., 2012] Kim, T. Y., Sohn, S. B., Kim, Y. B., Kim, W. J., and Lee, S. Y. (2012).
Recent advances in reconstruction and applications of genome-scale metabolic models.
Current opinion in biotechnology, 23(4):617-623.
[Schuster and Hilgetag, 1994] Schuster, S. and Hilgetag, C. (1994).
On elementary flux modes in biochemical reaction systems at steady state. Journal of Biological Systems, 2(02):165-182.
[Tefagh and Boyd, 2018] Tefagh, M. and Boyd, S. P. (2018).
Quantitative flux coupling analysis.
Journal of Mathematical Biology.

