Heat transfer II
Course by Dr.Moosavi
Homework set 5
Due date: 90/9/6

1- Air at $0.0004 \mathrm{Kg} / \mathrm{s}$ and 27 C enters a triangular duct that is 20 mm on a side and 2 m long. The duct surface is maintained at 100 C . Assuming fully developed flow throughout the duct, determine the air outlet temperature.

2- Water at a flow rate of $\mathrm{dm} / \mathrm{dt}=0.215 \mathrm{Kg} / \mathrm{s}$ is cooled from 70 C to 30 C by passing it through a thin-walled tube of diameter $\mathrm{D}=50 \mathrm{~mm}$ and maintaining a coolant at $T \infty=15 \mathrm{C}$ in cross flow over the tube.
a) What is the required tube length if the coolant is air and its velocity is $V=20 \mathrm{~m} / \mathrm{s}$?
b) What is the tube length if the coolant is water and $V=2 \mathrm{~m} / \mathrm{s}$?

3- A thick-walled, stainless steel (AISI 316) pipe of inside and outside diameters $D_{i}=20 \mathrm{~mm}$ and $D_{0}=40 \mathrm{~mm}$ is heated electrically to provide a uniform heat generation rate of $\mathrm{dq} / \mathrm{dt}=10^{6} \mathrm{~W} / \mathrm{m}^{3}$. The outer surface of the pipe is insulated, while water flows through the pipe at a rate of $d m / d t=0.1 \mathrm{Kg} / \mathrm{s}$.

