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Abstract. Breakup of non-uniform droplets in an asymmetric T junction consisting of an inlet channel
and two different-size outlet channels has been investigated numerically. Also, an analytical approach in
the limit of the lubrication approximation has been extended to provide some analytical relations to study
the system and verify the numerical results. Parameters that are important in the performance of the
system have been determined and discussed. Our results indicate that smaller droplets can be produced
by increasing the capillary number. As the geometry becomes symmetric the pressure drop decreases. Our
results also reveal that the breakup time and the pressure drop for this system are smaller than the previous
suggested method for producing non-uniform droplets, i.e., a uniform size T junction with different-length
outlet channels.

1 Introduction

The interest in droplet based microfluidic systems has
been increased significantly over the past decade. In these
systems, processes such as the transport, mixing, storage
and others are performed in separate volumes of the main
fluid [1–14]. Not only do these systems prevent contamina-
tion and dispersion of the samples, but also they provide
better mixing and allow one to conveniently handle minute
amounts of liquids in a specific time and speed [2, 5, 13].

In order to use these systems optimally efficient meth-
ods should be available to produce a large number of mi-
crodroplets in a short time. There exist a variety of meth-
ods that allow one to produce microdroplets [1, 3, 4, 6, 8].
However, in most of these methods the produced droplets
are either uniform or their sizes are not precisely con-
trolled [15]. In many applications, for example in mak-
ing emulsions in chemical and pharmaceutical industry,
it is necessary to have efficient methods that are capa-
ble of producing different droplets with precisely known
sizes [8, 16, 17]. In ref. [8] using pressure-driven flow in
simple microfluidic configurations two methods for this
purpose have been introduced. One of these methods re-
lies on considering an obstacle in the channel contain-
ing the droplets. A problem associated with this method
is that the produced small and large droplets move to-
gether along the channel after the obstacle and a different
method is required to separate the droplets. The second
method consists of a T junction with side channels that
have equal cross-section but the length of the channels
is different. The volume ratio of the produced droplets
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depends inversely on the length ratio of the channels,
namely, V1/V2 ≈ ℓ2/ℓ1, where Vi and ℓi (i = 1, 2) are the
volume of the droplet and the channel length in the outlet
channel i, respectively. In this method the size of the sys-
tem rapidly increases when the volume ratio is large. For
example consider a case with V1/V2 = 9. Since the cross-
section areas of the side channels are equal, the length
of one of the channels should be almost nine times that
of the other. Using asymmetric junctions with different
cross-section channels provides another option that has
been recently used for producing double-size droplets [16].
However, there is no systematic study on the effects of pa-
rameters involved in the system in order to use the method
efficiently.

In the present study a Volume of Fluid (VOF) numer-
ical method has been used to investigate the generation
of non-uniform droplets in the T junction with different
cross-section channels. In order to verify the numerical re-
sults an analytical method is extended in the limit of very
small contact angles and the numerical results have been
compared with the analytical results. Also the results of
the investigation have been compared with the results of
refs. [13, 14].

2 The system specification

Figure 1 shows the considered system to produce non-
uniform droplets. The geometry consists of a T junction
with an inlet channel and two different-size outlet chan-
nels. In this method an initial droplet (which is suspended
in the carrier fluid) enters the T junction through the inlet
channel and after reaching the junction breaks up into two
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Fig. 1. The geometry of the system considered for producing non-unifrom droplets.

unequal parts because of the asymmetry associated with
the system. In fig. 1 x and y are the horizontal and ver-
tical components of the coordinate system and subscripts
1 and 2 stand for the flow in the right and the left outlet
channels, respectively. U and u represents the average ve-
locity of the carrier fluid in the inlet and outlet channels,
respectively. h(x, y) is the thickness of the thin film cre-
ated between the droplet and the top wall. x∗ is the place
of minimum thickness and d represents the thickness at
x∗. w is the width of the channel and r stands for the
radius of curvature of the end parts of the droplet.

3 Analytical solution

It has been recently shown that the behavior of droplets at
symmetric T junctions can be classified into three regimes,
depending on the flow conditions, size of the droplets and
width of the channels, namely, 1) no breakup 2) breakup
with tunnel 3) breakup with obstruction [13, 18, 19]. Our
numerical results indicate that droplets at asymmetric T
junctions may also exhibit all these three regimes.

The analytical analysis reported in this section is an
extension of the method for symmetric T junctions [13]
and similar to the symmetric case considers only the
boundary region between regions of no breakup and
breakup with tunnel. In this situation the assumptions
made are those pointed out in ref. [13], namely, the capil-
lary number is small and it is also assumed that the pres-
sure drop of the carrier fluid mainly occurs in the thin film
between the top wall and the droplet. The final results of
this analysis are relations for the smallest thickness of the
thin film (d) as a function of other parameters in the out-
let channels (see appendix A). These relations are given
as
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where τ1 = d1/w1 and τ2 = d2/w2 as the smallest thick-
ness of the thin film scaled with the width of the cor-
responding outlet channel. The capillary number (Ca) is

defined as

Ca =
μ Uin

γ
, (3)

with μ as the viscosity of the fluid of the continuous
phase and γ as the surface tension between the two fluids.
Equations (1) and (2) are major relations to calculate the
smallest thickness of the thin film in the T junction with
unequal channels. For the case of equal outlet channels
(w1 = w2 = w) eqs. (1) and (2) will be reduced to the
following:

τ1 = τ2 =
d

w
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7

4
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which is equal to the relation derived in ref. [13] for the
smallest thickness in symmetric T junctions with assump-
tion 1 − d/w ≈ 1. Using eqs. (1) and (2) one can calcu-
late the smallest thickness of the thin film as a function
of w1/w2 (see fig. 2) and as a function of capillary num-
ber (see fig. 3). As can be seen from fig. 2 by increasing
w1/w2 the value d1 (d2) increases (decreases). This is be-
cause by increasing w1/w2 the volume of droplet entering
the narrow (wide) branch increases (decreases). (However,
the volume of droplet entering the wide branch is always
larger than that of the narrow branch.)

For any capillary number there is a critical value for
w1/w2 = (w1/w2)critical such that by selecting the value of
w1/w2 less than (w1/w2)critical, one obtains d1 = 0 for the
narrower branch and d2 → ∞ for the wider branch. The
meaning of this situation is that no part of the droplet can
enter the narrower branch. The critical values of w1/w2

linearly change with capillary number as depicted in fig. 2
with a long dashed line. For the case w1/w2 = 1, i.e., a
symmetric T junction we have d1/w1 = d2/w2. Also in
fig. 2 the results of the simulation have been compared
with analytical results for Ca = 0.1. As can be seen the
numerical results are in a very close agreement with the
analytical results.

According to fig. 3 at small capillary numbers with
decreasing w1/w2 the changes of d2/w2 is much less than
the changes of d1/w1. Also for the case w1/w2 = 1 the
curves d1/w1 and d2/w2 are coinciding at all the capillary
numbers. The radius of curvature of the end parts of the
droplet (r1 and r2 in fig. 1) can be obtained from the
following relation:

r1 =
w1 − d1
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⇒
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Fig. 2. The smallest thickness of the thin film as a function of
w1/w2 (eqs. (1) and (2)). The critical values for w1/w2 for
capillary numbers 0.016, 0.04 and 0.1 are 0.675, 0.568 and
0.429, respectively. (w1/w2)critical changes linearly vs. capil-
lary number as is shown with a long-dashed line. Note that for
w1/w2 < 0.449 the droplet does not break up and only enters
into the wider channel.

Fig. 3. The smallest thickness of the thin film as a function
of capillary number (eqs. (1) and (2)). By increasing capillary
number, d2 increases more than d1.

if d1/w1 and d2/w2 are known the radius of curvature can
be easily calculated.

4 Numerical algorithm

A Volume of Fluid (VOF)-based method [20] is used
to study the two-phase flow system. Briefly the method
solves the equations of momentum and continuity simul-
taneously for each of the fluids. To calculate the average
viscosity, volume fraction of the phases φ have been used.
φ in each cell is a value between 0 and 1 (0 ≤ φ ≤ 1). The
boundary is situated on the regions where φ is equal to
0.5. A piecewise linear interface reconstruction method is
used to construct the boundary. For the surface tension a
continuum surface force (CSF) model is also used [21,22].
The numerical procedure is checked to make sure that the
results do not depend on the grid size and the time step
size. Finally one node per 1μm is used in the simulations

Fig. 4. The critical length as a function of capillary number
for symmetric T junctions. The critical length is scaled with w.
The breakup and non-breakup regions have been distinguished
by the critical length curve (eq. (6)). Note that the capillary
number is defined by 0.5Uin. The triangle symbols indicate
the occurrence of obstruction breakup and diamond symbols
indicate the occurrence of breakup with tunnel. As can be seen
when long droplets break up they fill the spaces of the outlets
and prevent the formation of tunnel.

to determine the number of required nodes and also the
time step size is considered to be 10−8 s. A QUICK rou-
tine is used for differencing the momentum equation and
a SIMPLEC algorithm has been employed to couple the
pressure and velocity. The convergence criterion is consid-
ered to be 0.0005.

5 Results and discussion

In this section we first validate the methods used in the
study by considering symmetric T junctions. Then nu-
merical results for asymmetric T junctions are presented.
The production of non-uniform droplets in asymmetric
T junctions can be via either breakup with tunnel or
breakup without tunnel. In the first part we briefly con-
sider breakup with tunnel and then we study breakup
without tunnel or obstruction breakup in more detail.

5.1 Validation of the theory and the numerical
simulations

In ref. [13] a relation for the critical length l, namely the
extension of droplet just before the breakup (for better
understanding this parameter note that in fig. 1 l is equal
to x∗

1 + x∗

2 + r1 + r2) for the boundary region between
regions of no breakup and breakup with tunnel, as a func-
tion of the capillary number and the width of the channel,
was derived as

l

w
= 1.3Ca−0.21, (6)

where w is the width of the channel. In order to check the
reliability of the numerical result a numerical simulation
was performed for a symmetric T junction and the results
were compared with eq. (6). The results are depicted in
fig. 4. Also in fig. 5 the analytical solution for a droplet
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Fig. 5. Velocity of the droplet as a function of the average
velocity in the pipe. There is a small difference between the
numerical and analytical results for cases with average velocity
above 0.03. This happens due to the fact that in the analytical
solution it is assumed that the velocity is small.

Fig. 6. Breakup of a droplet with tunnel for an asymmetric
T junction. Ca is equal to 0.04 and the channel width ratio
is 0.95. The dimensionless times (Uint/win) are 2 (a), 4 (b),
4.8 (c), 6.48 (d), and 8 (e). Uin in dimensional form is equal to
0.16 m/s and the inlet channel has a width equal to 20 µm.

in a cylindrical pipe reported in ref. [14] has been com-
pared with the results of the numerical simulation. Since
the system in this case is axi-symmetric the simulation
can be simplified to a 2-D simulation. In both the cases
excellent agreement was obtained between the analytical
and numerical results (see figs. 4 and 5).

5.2 Breakup with tunnel

Figure 6 shows a typical example of break with tunnel. In
the simulation it is assumed that w2 = win and the length
of the channels are equal. The channel width ratio is equal
to 0.95 and Ca is equal to 0.04. For this case the velocity
of the fluid in the film before the breakup is much larger
than the velocity of the droplet in the narrower channel.

5.3 Breakup without tunnel

A typical result for the breakup without tunnel is shown
in fig. 7. Similar to the case of breakup with tunnel, in the

Fig. 7. The process of generating unequal-size droplets (ob-
struction regime). (a) The starting stage of the production,
(b) the breakup process (c) the final stage. w1/w2 = 0.85,
Ca = 0.1 and the volume ratio of the droplets is equal to
0.572.

simulation, it is assumed that w2 = win and the length of
the channels are equal. The distribution of the pressure
inside the system at the time of breakup is depicted in
fig. 8 for this case. In fig. 9 the volume ratio of the droplet
as a function of channel width ratio is also shown.

The results can be well described in terms of a power
law function of w1/w2. In each capillary number the verti-
cal line shows a width ratio below which no droplet enters
the narrower channel. Also based on fig. 9 by increasing
the capillary number smaller droplets (in the narrower
channel) can be produced. For example the minimum
volume ratios of the droplets that can be produced for
capillary numbers 0.016, 0.04 and 0.1 are 0.5363, 0.2206
and 0.1012, respectively. In the process of generating the
droplets with a specific size, the droplets are transfered
through several consecutive T junctions as depicted in
fig. 10. By decreasing the distance between the droplets
more droplets can enter the T junction in a period of time
and consequently this will improve the efficiency of the
system. The minimum distance between the droplets can
be obtained from

Xmin = Ud × tbreakup , (7)

where Xmin and Ud represent the minimum distance be-
tween the droplets and velocity of the droplets in the inlet
channel before reaching the junction, respectively. tbreakup

is the breakup time of the droplets in the T junction (see
fig. 11). Since Ud is an already known parameter, it can be
stated that if tbreakup is reduced the distance between the
droplets can also be reduced and as a result the rate of pro-
duction will be increased. Figure 12 shows the time of the
breakup in the system as a function of w1/w2 for several
capillary numbers. According to the figure, the breakup
time for any capillary number is independent of the chan-
nel width ratio and is almost constant but by increasing
the capillary number the breakup time decreases. There-
fore, the rate of production will be higher for larger values
of the capillary number.

An examination of fig. 10 also reveals that there is
an elbow after each T junction. Thus, by decreasing the
distance between T junction and the elbow the perfor-
mance of the system can be improved. However, the dis-
tance should be large enough such that a droplet enters
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Fig. 8. The distribution of pressure for the system shown in part (b) of fig. 7. The inset shows the concentration of pressure in
the region of breakup.

Fig. 9. The volume ratio of the droplets as a function of chan-
nel width ratio w1/w2 for the obstruction breakup regime. For
w1/w2 = 1 (symmetric T junction) for all the capillary num-
bers the droplets entering the outlet channels have the same
size. Also for creating a specific volume ratio as the capillary
number decreases, the width ration should be chosen larger,
namely, the T junction would be more similar to the symmet-
ric T junction.

Fig. 10. Generation of equal-size droplets using consecutive
symmetric T junctions (in order to see the actual system, see
ref. [8]).

the junction only after breakup of the previous droplet.
To handle the situation the length of the droplet at the
time of the breakup that we call it breakup length of the
droplet (see fig. 13) should be calculated first. For non-
symmetric T junctions since the droplet is divided into

Fig. 11. The breakup time is the time between part (a) and
part (b). In the shown case w1/w2 = 0.71 and Ca = 0.04.

Fig. 12. The breakup time as a function of the channel width
for the obstruction breakup regime. The breakup time t has
been made dimensionless as Ut/w, where U is the velocity of
the fluid in the inlet channel and w is the width of the channel.
The average breakup times for Ca = 0.016, 0.04 and 0.1 are
4.569, 4.103 and 3.924, respectively.

two unequal parts, there are two breakup lengths. As a
result, if the breakup length in one of the channels is min-
imized, the length of that channel will be optimized. In
fig. 14 the droplet breakup length as a function of w1/w2

for some capillary numbers is shown. As the channel width
decreases, since less (more) droplet volume enters the nar-
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Fig. 13. The droplet breakup length for the channels. Note
that because of the asymmetry associated with the system the
breakup lengths are different and the breakup length is larger
in the wider channel.

Fig. 14. The breakup length of the droplet as a function of the
channel width ratio for the obstruction breakup regime. The
breakup length has been scaled with the channel width. The
breakup length is a linear function of the channel width for all
the capillary numbers. As w1/w2 → 1 (symmetric T junction)
the produced droplets entering the channels have the same size,
as expected, and the breakup lengths are equal.

Fig. 15. The pressure drop as a function of channel width
ratio for the obstruction breakup regime. The pressure drop
has been made dimensionless as ∆p/ρeU

2

in, where ∆p is the
pressure drop, ρe represents the density of the carrier liquid
and Uin stands for the average velocity of the fluid transferring
droplets in the inlet channel. In the figure the pressure drop is
measured at the time of breakup.

rower (wider) channel, the breakup length of the smaller
(larger) droplet will be smaller. As a result of reducing
the breakup length in the narrower (wider) channel, the
width ratio should decrease. In fluidic systems, the pres-
sure drop is one of the main parameters that should be
taken into account. Since the breakup process in sym-
metric and asymmetric T junctions is an unsteady pro-
cess, the pressure drop takes different values during the
process. For design purposes the maximum pressure drop
should be considered. In fig. 15 the pressure drop of the
system is shown at the time of breakup as a function of
the channel width ratio. The numerical results indicate
that this pressure drop can be approximately considered
as the maximum pressure drop. By decreasing w1/w2 the
pressure drop linearly increases. Also by increasing the
capillary number the pressure drop increases such that at
w1/w2 = 0.88 and capillary numbers equal to 0.016 and
0.04 the pressure drop is 1041.9 and 1654.5 Pa, respec-
tively.

For an asymmetric T junction with unequal length out-
lets it is shown that droplets initially are driven towards
the short outlet because of lower hydrodynamic resis-
tance [23]. However, by increasing the number of droplets
in the short branch, the hydrodynamic resistance increases
and becomes larger than that of the long outlet. In this sit-
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uation droplets at the T junction rather enter into the long
outlet. By entering the droplets into the long outlet the
hydrodynamic resistance in this branch increases as well.
As a result, for such a system droplets are alternately dis-
tributed between the different outlets [23]. This behavior
can be neglected for symmetric T junctions because the
droplets are of the same size. For unequal length asym-
metric T junctions this behavior can also be neglected
provided that the hydrodynamic resistance in the short
outlet always remains below that of the long outlet [8,23].
On the other hand, as the outlet lengths become shorter
this behavior diminishes because the number of droplets
in the branches decreases and the hydraulic resistances do
not change appreciably. Therefore, for an asymmetric T
junction with unequal width (case of our study), since the
length of the outlets is smaller than those of the outlets
for an asymmetric T junction with unequal length, this
behavior diminishes or can be completely neglected.

6 Conclusion

A VOF numerical algorithm was used to investigate a
method to produce unequal-size droplets. An analytical
theory in the limit of thin-film approximation was de-
veloped and by comparing the analytical and numerical
results the validity of the numerical results were veri-
fied. The numerical results were also in agreement with
already reported results for symmetric T junctions (the
case w1/w2 → 1). The effect of the width ratio on the
volume ratio of the produced droplets were investigated
and it was found that by increasing the capillary number
smaller droplets can be produced. Two new parameters,
i.e., the breakup time and breakup length of the droplets,
were introduced and the effect of the channel width ratio
and capillary number on these parameters was studied. It
was found that increasing the width ratio decreases the
breakup length and consequently decreases the required
length for the outlet channels. Also the pressure drop
of the carrier fluid was investigated for different channel
width ratios and capillary numbers and it was found that
increasing the width ratio decreases the pressure drop.
It was also found that by increasing the capillary num-
ber the breakup time decreases and the production speed
increases but the pressure drop also increases. In order
to compare the system with a T junction with different
length of outlet channels, a series of simulations was per-
formed. The results revealed that the breakup times for a
volume ratios equal to 1.92 and 2.2 are about 13 and 17
percents smaller, respectively and the pressure drops (the
maximum pressure drop occurs slightly before the com-
plete breakup of the droplets) are also about 10% smaller
for both the cases considered.

Appendix A.

Consider the geometry and the details shown in fig. 1.
Suppose that the droplet is in a position that its velocity

is very small compared to the velocity of the carrier fluid
(the results of the simulation confirm this). Applying the
thin-film analysis for the space between the droplet and
the top wall [14] for each of the channels the following
relation for the thickness of the thin film h(x) is obtained:

h3
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where u1 and u2 are the average velocity of the carrier fluid
in the small and large channels, respectively, and μ and γ
are the viscosity of the carrier fluids and the surface ten-
sion between the carrier fluid and the fluid of the droplet,
respectively. In the following the subscript 1 refers to the
narrower branch. A similar analysis can be developed for
the wider branch. Defining the dimensionless parameters
η1 and ζ1 as
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Equation (A.1) will be reduced to the following dimen-
sionless form:
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since 1/(∂2h1/∂x2
1) = (w1 − d1)/2 eq. (A.4) will be
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with definition τ1 = d1/w1 and simplification we have
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Equation (A.5) describes the relation between the
thickness of the thin film (τ1) with other parameters. As
already mentioned this relation is related to a region near
x1 = x∗

1. So the value d2η1/dζ2
1 should be calculated near

x1 = x∗

1. For this purpose eq. (A.3) should be solved with
three boundary conditions. Two boundary conditions are
η′

1 = 0 and (η1)min = 1 and for the third boundary condi-
tion an arbitrary value can be considered for η′′

1 = 0. With
numerical integration of eq. (A.3) with the boundary con-
ditions and finding η1(ζ1), and calculating d2η1/dζ2

1 near
ζ1 = ζ∗1 it is observed that d2η1/dζ2

1 near ζ1 = ζ∗1 is not
dependent on η′′

1 (0) (which is selected arbitrary) and is
almost equal to 1.75.
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Now the unknown u1 in eq. (A.5) should be deter-
mined. The pressure drop in the thin film from Δp1 =
μu1w1l1/d3

1 (where l1 ≈
√

d1w1/2) [13] and the pres-
sure drop in the pipe (after droplet) from the Darcy-
Weisbach equation Δptube = ρfL1u

2
1/(2w1) can be de-

termined. Using a dimensional analysis it can be shown
that the pressure drop in the pipe (after droplet) is negli-
gible compared to the pressure drop in the thin film. Thus,
Δp1 = Δpfilm+Δptube ≈ Δpfilm. The flow rate in the chan-
nels is divided such that the pressure drop is equal in the
channels. In the relation for pressure drop in the thin film
l1 ≈

√

d1w1/2, as a result we have l1/l2 =
√

d1w1/d2w2.
Substituting this relation in (Δpfilm)1 = (Δpfilm)2 and
upon simplification, we obtain
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from the conservation of the mass we also have

Qin = Q1 + Q2 ⇒ Uinwin = u1w1 + u2w2, (A.9)

simultaneously solving eqs. (A.6) and (A.7) u1 will be
found as
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By substituting and using d2/d1 = (τ2/τ1) × (w2/w1)
and d2η1/dζ2

1 = 7/4 one gets
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repeating a similar procedure for the second channel the
following relation is obtained:
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