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Thin liquid film flow over substrates with two topographical features
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A multicomponent lattice Boltzmann scheme is used to investigate the surface coating of substrates with two
topographical features by a gravity-driven thin liquid film. The considered topographies are U- and V-shaped
grooves and mounds. For the case of substrates with two grooves, our results indicate that for each of the grooves
there is a critical width such that if the groove width is larger than the critical width, the groove can be coated
successfully. The critical width of each groove depends on the capillary number, the contact angle, the geometry,
and the depth of that groove. The second groove critical width depends on, in addition, the geometry and the
depth of the first groove; for two grooves with the same geometries and depths, it is at least equal to that of the
first groove. If the second groove width lies between the critical widths, the second groove still can be coated
successfully on the condition that the distance between the grooves is considered larger than a critical distance.
For considered contact angles and capillary numbers our results indicate that the critical distance is a convex
function of the capillary number and the contact angle. Our study also reveals similar results for the case of
substrates with a mound and a groove.
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I. INTRODUCTION

Understanding the behavior of thin liquid films flowing
over topographical structures is essential in qualitative coatings
of these substrates and has various applications, including in
microelectronics [1–3], micro- and nanofluidics [4], displays
and sensors [5], and heat-transfer processes [6,7]. Therefore,
the subject has been extensively studied both experimentally
[5,8–10] and theoretically [2,11–15].

In theoretical studies, the main approach is to use the
lubrication approximation [11–13,15,16]. However, it is well
known that the applicability of the lubrication theory is limited
to small contact angles. Thus, other methods have been
given attention. Gramlich et al. [2] studied the dynamics of
thin liquid films over topographical structures by solving the
Stokes equation via the biharmonic boundary integral method
(BBIM). Alexeev et al. [10] studied Mrangoni convection
and heat transfer in thin liquid films on heated walls with
topography. In their study, the mobile gas-liquid interface
was tracked by the volume-of-fluid method. Scholle et al.
[17] studied the formation and presence of eddies within
thick gravity-driven free-surface film flow over a corrugated
substrate via the finite-element method. Sadigh et al. [18]
studied falling thin liquid films on a substrate with complex
topography using a three equation integral boundary layer
system. Wang et al. [19] have studied the effects of height, the
interval space and the cavitations depth on the electro-osmotic
flow rate for both the homogenously and heterogeneously
charged rough channels.

Recently, the lattice Boltzmann method (LBM) has been
increasingly used to study various problems concerning fluids
on structured substrates [20–30]. Dupuid and Yeomans [23,24]
studied behavior of droplets on topographical substrates. They
found that patterning can appreciably increase the contact
angle. Huang et al. [26] investigated dynamics of droplets
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on grooved channels under a constant body force. It was
found that for small scales the wettability and topography can
considerably affect the drag on the droplet and the flow pattern.
Hyväluoma et al. [27] performed simulations for slip flow on
nanobubble-laden surfaces and showed that a strong shear can
deform the bubbles and, thus, reduce the apparent roughness
of the surface. Hyväluoma et al. [29] studied simulation of
liquid penetration in paper and demonstrated that Shan-Chen
multiphase model captures well the essential physics of
capillary penetration. Chibbaro et al. [30] investigated the
impact of wall corrugations in microchannels on the process
of capillary filling and compared the results were compared
against the Concus-Finn (CF) criterion for pinning of the liquid
front at different contact angles.

The motivation for applying the LBM for the above
problems stems from the fact that, in contrast to traditional
numerical methods, which are based on discretizing the
macroscopic equations of the continuum and momentum, the
LBM is based on the microscopic models or mesoscopic
kinetic equations. The LBM, because of the hyperbolic nature
of the kinetic algorithms, can efficiently handle complex
interfaces and geometries [31]. The characteristics are constant
and the particles jump only from one lattice site to another one
and this provides many advantages. Moreover, there is no need
to consider any assumption for the relation between the contact
angle and the contact line velocity because coalescence of the
contact line is naturally treated by this method [32].

The LBM was developed originally from the lattice gas
automaton (LGA) [33] and later was modified by modeling the
LGA with a lattice Boltzmann equation. There are several LB
schemes available for modeling multicomponent systems. The
main methods include the recoloring process [34], the potential
method [27,29,35–39], and the free-energy-based method
[23,24,40].

In the recoloring model [34], Laplace’s law is satisfied
and formation of the interface between two fluids is done
automatically. However, it is shown that in the perturbation
step of the procedure, redistribution of the coloring functions
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creates anisotropic surface stress, which produces unphysical
vortices near the interfaces [41]. Moreover, the main problems
associated with the original LB color gradient method is the
lattice pinning. Latva-Kakko and Rothman [42] have shown
that this problem can be removed if the recoloring step is
changed and wider interfaces are used. The method has been
further extended by Halliday et al. [43] and Spencer et al. [44]
to obtain a more efficient multicomponent LBM. Santos et al.
[45] have proposed a field mediator’s concept to the framework
of the lattice-Boltzmann equation for simulating the flow of
immiscible fluids which reduces computer processing. The
method has been extended and applied for study via wetting in
liquid-vapor systems [46] and capillary rise between parallel
plates [47].

In the free-energy model the local momentum is conserved
in addition to the overall momentum and this reduces the
spurious velocity. However, the fundamental problem of
this model is the effect of nonphysical effects of Galilean
invariance [48]. There have been some efforts to remove this
effect. It is shown that adding the density gradient to the
pressure tensor can reduce this effect [40,49]. However, in
this method, the problem is not removed completely. Also, for
multiphase systems, it is shown that incorporating a correction
term can considerably reduce the problem [50]. Li and Wagner
[51] have proposed a method for multicomponent systems,
which is based on the free energy, but in their method there
has been no effort to remove the problem and the other, related,
problem is that the viscosity and mobility are the same [51,52].

Systems with two immiscible liquids appear in various
important applications. Relevant to our study, examples are
two-layer slot coating [53], film formation during the spin-
coating process [54], reverse roll coating flow [55], and
double-layer coating in a wet-on-wet optical fiber coating
process [56]. Among the models available for such mul-
ticomponent systems, the potential method has been used
extensively for different applications because of its simplicity
and flexibility [27,29,35–39]. The surface tension in this model
is isotropic and conservation of the overall momentum is
satisfied completely. One of the concerns in this method is
the thermodynamic inconsistency [57]. However, Sbragaglia
et al. [58] have shown that adding a gradient force, which has
a fairly negligible effect on the evolution of the system, can
make this model compliant with a free-energy functional. This
may help to explain why this method is successful in various
applications [37,59–64].

II. DESCRIPTION OF THE PROBLEM

Despite various studies conducted on the dynamics of thin
liquid films on textured substrate and determining the required
conditions for successful coating [1–3,10–13,15,17,18], to our
knowledge, there is no research on the effect of a groove
(or any other topographical texture) on the coating of the
subsequent grooves in the flow direction. This is important,
as generically the substrates contain many grooves and the
required conditions for successful coating of these substrates
may differ completely from those with a single groove.

In the present study, our main purpose is to examine the
effects of various parameters such as the capillary number

FIG. 1. A schematic representation of the contact line motion
over textured substrate. A topographical substrate with two grooves
(a) and a mound and a groove (b).

and the contact angle on the coating of a surface with two
topographical features. As depicted in Fig. 1 we consider two
immiscible and Newtonian fluids with viscosities μ1 and μ2

and densities ρ1 and ρ2. The surface tension between the fluids
is equal to σ . An external force F , which is proportional
to the gravity, is applied to the system and the liquid film
under influence of this force is moving downward while the
advancing front of the film flow is making a dynamic contact
angle equal to φ with the substrate. In order to simulate
the system, a rectangular region with the size L × W in the
directions x and y, respectively, is considered (see Fig. 1). It
is shown that for the upward positions, far from the contact
line, the interface becomes parallel to the substrate with a
thickness equal to hc and the average velocity is given by
ūc = ρ1gh2

c/3μ1, where g is the gravitational acceleration.
Therefore, in order to avoid tangible changes in the average
velocity or thickness of the film near the inlet (x = 0) and the
outlet (x = L), the following boundary condition is applied:

∂u
∂x

= 0 at x = 0,L, (1)

where u = (u,v) represents the velocity vector. On the solid
surfaces it is assumed that the surfaces are impermeable,

u = 0 on S, (2)

where S represents the interface between the solid and the
fluids. At the boundary y = W a constant pressure P is
considered:

P = const at y = W. (3)

All the corners that connect two plane surfaces have a
dimensionless radius r = 0.4 and the dimensions are scaled
with the film thickness in the inlet (hc). In order to provide
the basic information for the subsequent considerations, we,
first, try to find the required conditions for successful coating
of a surface with a U- or V-shaped groove. The case with a
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U-shaped groove has been already studied using the boundary
integral method with constant elements [2]. However, for
considering such a method, the numerical slip was used to
tackle the singularity at the contact point and it was assumed
that the film at the contact position makes a contact angle
equal to the equilibrium contact angle [65]. In order to check
the results and validity of such assumptions, we consider this
structure again and compare our results with those of Ref. [2].

The paper is organized as follows: the next section explains
the numerical technique used in the study. The results and
discussion are presented in Sec. IV. In the first parts of this
section, calculation of the surface tension and verification of
the numerical algorithm have been described. The results for
different topographical features then are given. Finally, the last
section summarizes the key findings of the study.

III. THE NUMERICAL METHOD

In order to study the problem, we use a multicomponent
lattice Boltzmann method from Shan and Chen [35–37].
Considering the equivalence between the lattice Boltzmann
algorithm and the incompressible form of the Navier-Stokes
and the continuity equations, the Boltzmann equation can be
discretized as follows [66]:

f k
i (x + eiδt ,t + δt ) − f k

i (x,t) = f k
i (x,t) − f

k(eq)
i (x,t)

τk

,

(4)

where the distribution function f k
i (x,t) is a scalar quantity

which describes the probability of finding a fluid particle
at location x in the direction i and the time t for the kth
component. Therefore, it has a real and non-negative value.
This quantity can specify all the macroscopic properties and
also determine the dynamics of the system [67]. δt represents
the time increment. On the right-hand side of the equation, τk is
the relaxation time of the kth component in lattice units [67].
Also, f

k(eq)
i (x,t), on the right-hand side, is the equilibrium

distribution function and is derived from the following relation
[63,68,69]:

f
k(eq)
i = ηkρk − 2

3
ρkueq

k · ueq
k (for i = 0),

f
k(eq)
i = (1 − ηk)ρk

5
+ 1

3
ρk

(
ei · ueq

k

) + 1

3
ρk

(
ei · ueq

k

)2

− 1

6
ρkueq

k · ueq
k (for i = 1, . . . ,4),

f
k(eq)
i = (1 − ηk)ρk

20
+ 1

12
ρk(ei · ueq

k ) + 1

8
ρk

(
ei · ueq

k

)2

− 1

24
ρkueq

k · ueq
k (for i = 5, . . . ,8), (5)

where ρk = ∑
i f

k
i represents the macroscopic density for the

kth component and ρkuk = ∑
eif

k
i with uk as the macroscopic

velocity of kth component. ηk is a free parameter that, via
(ck

s )2 = 3
5 (1 − ηk), is related to the sound speed in the region

that includes component k [69]. In the study, we consider ηk =
4/9 so ck

s = 1/
√

3 [63]. ei’s represent the discrete velocities

and for a D2Q9 lattice are given by

ei =

⎧⎪⎨
⎪⎩

0,0 i = 0

cos (i−1)π
2 , sin (i−1)π

2 i = 1 − 4√
2
(

cos
[ (i−5)π

2 + π
4

]
, sin

[ (i−5)π
2 + π

4

])
i = 5 − 8.

(6)
The macroscopic velocities can be calculated from

ρkueq
k = ρku′ + τkFk, (7)

where u′ is a common velocity that is added to the equilibrium
velocity of each part because of the interactions between the
particles. Fk = F1k + F2k + F3k is the total force exerted on
kth component and F1k , F2k , and F3k are the forces due to
fluid-fluid interactions, fluid-solid interactions, and the gravity,
respectively [66]. Assuming that the equilibrium velocity is
equal to the common velocity u′ (Fk = 0) and because in
this condition total momentum of all the particles should be
preserved by the collision operator, using the multicomponent
LBM we have

u′ =
(∑

k

ρkuk

τk

) / (∑
k

ρk

τk

)
. (8)

The total fluid-fluid interaction force at any position x is
given by

F1k(x) = −Gcψk(x,t)
∑

i

wiψk̄(x + ei�t,t)ei , (9)

where ψk(x) is the effective mass, which is a function of x
through its dependency of density, i.e., ψ(x,t) = ψ(ρ(x,t)),
and parameter Gc represents the interparticle interactions. The
interparticle force of each phase and the solid boundary is
defined as

F2k(x,t) = −gkwρk(x,t)
∑

i

wis(x + ei�t)ei , (10)

where gkw represents the interaction strength between the fluid
and the solid and s is an indicator function which is equal to
1 and 0 for solids and fluids, respectively. The interaction
strength between the fluid and the solid boundary is adjusted
by the parameter gkw. To simulate the hydrophobic and
hydrophilic surfaces, gkw is considered positive and negative,
respectively. wi’s are the weight coefficients associated with
the lattice and, for a D2Q9 lattice, have the following values:

wi =

⎧⎪⎨
⎪⎩

4/9 i = 0

1/9 i = 1,2,3,4

1/36 i = 5,6,7,8.

(11)

The effect of the gravity can be simply included by considering

F3k = ρkg. (12)

Using the Chapman-Enskog expansion, the following conti-
nuity and momentum equations can be obtained for the fluid
mixture as a single fluid [36,63]:

∂ρ

∂t
+ ∇ · (ρu) = 0, (13)

ρ

[
∂ρ

∂t
+ (u · ∇)u

]
= −∇p + ∇[μ(∇ · u + u · ∇)] + ρF,

(14)
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where ρ = ∑
k ρk is the density of the fluid mixture and the

velocity of the fluid mixture is given by ρu = ∑
k ρkuk +

1
2

∑
k Fk . F is the total forces exerted on the components.

IV. RESULTS AND DISCUSSION

As depicted in Fig. 1, our simulation domain is a rectangle
with a width equal to W and a length equal to L. In all
the simulations it is supposed that ρ2/ρ1 = 1, μ2/μ1 = 1,
and g1w = −g2w. The values of g1w and g2w are derived
from Gc cos θE = g2w − g1w by keeping θE fixed [66]. The
parameter Gc determines the surface tension and in this study
is considered equal to 1.3. By controlling the parameter g1w

we can obtain different contact angles and wettabilities. The
contact angle is smaller (larger) than 90◦ when g1w is negative
(positive). In order to solve our problem we, first, calculate the
surface tension. The average velocity then is calculated from
u1 = ρ1gh2

c/3μ1. The capillary number can be determined
from Ca = μ1u1/σ .

A. Calculation of the surface tension

The previous LBM studies employ the Laplace’s law to
calculate the surface tension. Periodic boundary conditions are
usually used for all the boundaries in the procedure [66,70].
In the present study we also apply such an approach. We
consider a static droplet in a 100 × 100 square box in lattice
units and apply the periodic boundary conditions. According
to Laplace’s law [66], we have

pi − po = σ

R
, (15)

where pi and po are the internal and the external pressures
of the droplet, respectively, σ represents the surface tension,
and R stands for the droplet radius. In order to calculate the
pressure from the Laplace’s law, the radius of the droplet is
determined once the droplet reaches its equilibrium state. The
internal and the external pressures are calculated at positions
far from the interface because this value changes near the
interface [71]. The results are depicted in Fig. 2. The radius

1/R

P
i
-

P
o

0.05 0.1 0.15 0.2 0.25

0.01

0.02

0.03

0.04

0.05

Simulation Results
Fit Function

y= 0.1872x-0.0033

FIG. 2. (Color online) Calculation of the surface tension using
the Laplace’s law.

of the droplet, the pressure difference, and the surface tension
are all in lattice units, which can be conveniently converted to
practical values. From Fig. 2 it can be concluded that the slope
of the curve, which is equal to the surface tension, is equal to
0.1872.

B. Numerical verification

In order to verify the numerical results, the LBM results
were compared with those obtained using the lubrication
theory for a range of capillary numbers and contact angles
where the lubrication approximation is valid. Figure 3 depicts
the results of the conducted simulations on a plane substrate
for θE = 0◦ and Ca = 0.1. In the lubrication approximation it
is assumed that the velocity is unidirectional and is a function
of the local height h(x) and its derivative. It can be shown that
the height of the film in nondimensional form is given by the
following fourth-order differential equation [20]:

∂h∗

∂t∗
= −�∇∗ · [h∗3 �∇∗ �∇∗2h∗ − Ah∗3 �∇∗h∗ + h∗3 î], (16)

where A = (3Ca1/3) cot(β) is the only controlling parameter.
In the expression for A, β stands for the inclination angle of the
substrate. In Eq. (16) the dimensionless parameters are x∗ =
x/xc (the gradient terms), h∗ = h/hc, and t∗ = t/tc, where
xc = hc(3Ca)−1/3 and tc = xc/ū. We compare the results with
the results of Ref. [72], which considers a slip boundary
condition in the above equation. For a plane substrate it is
shown that the steady shape of the interface profile can be
given by Ref. [20]

∂3h∗

∂x∗3
= 1 − 1 + ζ

h∗2 + ζ
, (17)

where ζ denotes the slip factor. Similarly to Ref. [20], in order
to compare the results with the LBM results, the slip parameter
and C = (3Ca)−1/3 tan(ϕ) were changed until the best match
between the results was achieved. Figure 3 displays the results
for C = 1.536 and ζ = 0.05. As can be seen, the LBM results
are in a very close agreement with those of the lubrication
theory. The effect of the spatial discretization on the results is
given in the Fig. 3(b) and, as is evident, a 300 × 500 lattice is
adequate to study the system.

C. A U-shaped groove

Before considering this case, because of the similarity
between the near wall of the U-shaped groove (the first
horizontal wall of the groove: see Fig. 1) and the horizontal
wall of a right angle wedge, analogously to the work of Ref. [2],
we, first, consider the motion of the contact line over a right
angle wedge, as depicted in Fig. 4. The fluid 1 has initially
occupied a rectangular region and Ca = 0.1 and θE = 45◦.
As the contact line arrives at the corner it gets pinned at this
point. Since the inflow rate is constant, an accumulation of
the coating material around this region starts to develop [2].
After reaching the height of the capillary ridge to a value large
enough for providing the necessary pressure, the contact line
moves in the horizontal direction. When the liquid reaches
the maximum length that can move along the horizontal wall,
the so-called runout length [2], it starts to grow in the vertical
direction and drips. As is evident from the figure, the runout
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600×1000Lattice
Lubrication Theory

ζ =0.05 C=1.536

Ca=0.1

(a) (b)

FIG. 3. (Color online) (a) Thin liquid film
flow over a plane surface. (b) A comparison be-
tween the results of the LBM and the lubrication
theory for ζ = 0.05, C = 1.536, and Ca = 0.1.
The effect of the spatial discretization is shown
in the figure.

lengths for θE = 30◦ and Ca = 0.1, 0.15, and 0.2 are equal to
lmax = 10.68,7.52, and 5.46, respectively. This means that by
increasing the capillary number the runout length decreases.

Now, let us consider the coating problem over the groove,
as depicted in Fig. 5(a). W and L in the simulation domain are
equal to 400 and 400, respectively, in lattice units (the units
in Fig. 5 and all the following figures are scaled by a factor

of 10 in both the x and y directions, namely the units should
be multiplied by a factor of 10). We are interested in finding
the conditions under which successful coating is possible. It
is clear that for deep U-shaped grooves (D > lmax) successful
coating is not possible because, as already discussed, the drip
failure occurs. For narrow grooves, again, successful coating
is not possible because the bulge contacts the far wall before

step

l

10 20 30 40 50
0

2

4

6

8

10 0.1
0.15
0.2

Ca

hmax

wmax

l

×103

(a) (b) (c)

(d)

FIG. 4. (Color online) [(a), (b), and (c)] Transient evolution of the moving film over a right angle wedge during different times for θE = 45◦

and Ca = 0.1. (d) The position of the contact line on the horizontal wall of the right angle wedge as a function of time for θE = 30◦ and
Ca = 0.1, 0.15. and 0.2. The maximum value of the l is the runout length (lmax).
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FIG. 5. (Color online) (a) Motion of the contact line over a substrate with a U-shaped groove. (b) A narrow groove (H = 2.2) and
unsuccessful coating. (c) A wider groove (H = 2.6) but the coating is still unsuccessful. (d) Time-dependent evolution of the film during a
continuous and successful coating (H = 8.5). Ca = 0.1, θE = 30◦, and D = 4. The units are scaled by a factor of 10.

reaching the contact line to this wall (capping failure). Based
on the groove width, Fig. 5 explains three scenarios that may
occur for the groove coating for Ca = 0.1 and θE = 30◦. As
displayed in Fig. 5(b) if the groove is very narrow, the bulge
contacts the front wall before reaching the contact line to
the bottom wall of the groove. Therefore, the coating is not
continuous. In Fig. 5(c) the groove is wider than the previous
case and the contact line can reach the bottom wall but the
bulge still reaches the front wall. In Fig. 5(d) the depth is the
same as the cases of Figs. 5(b) and 5(c) but the width is so
large that the contact line can surpass the bulge front and the
capping problem is removed. It is clear from the above that
for a groove with a certain depth, the width should be large
enough for successful coating of the groove. These results are
in complete agreement with the results of Ref. [2].

Figure 6 depicts the minimum required groove width
for successful coating as a function of the depth for Ca =
0.1 and 0.15 and θE = 30◦ and 45◦. Figure 6(b) of the

figure indicates that a 400 × 400 lattice is suitable for this
purpose and considering a finer lattice does not change the
results appreciably. An examination of Fig. 6 reveals that the
minimum required width or the critical width (Hcr) increases
by increasing θE for a given value of Ca. These results also
are in complete agreement with the results of Ref. [2]. It is
seen from Fig. 6 that, for D � 3, by increasing D the width
increases, while for larger values of D the width decreases
by increasing D. As the contact line surpasses the bulge, the
bulge moves backward and this decreases the critical width by
increasing D.

D. A V-shaped groove

Topographical features can be in various shapes. In this
section we consider a V-shaped groove as depicted in Fig. 7 and
explore geometric conditions under which successful coating
is possible for different values of Ca and θE . W and L in the

D

H
cr

1 2 3 4 5 6
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1.5

2

2.5

3

3.5

4
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θΕ =30

successful coating

unsuccessful coating

D

H
cr

1 2 3 4 5 6
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1.5
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2.5
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0.1 45

Ca θΕ

successful coating

unsuccessful coating

(a) (b)

100×100 Lattice
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300×300 Lattice
400×400 Lattice
500×500 Lattice
600×600 Lattice

FIG. 6. (Color online) (a) The minimum required width (Hcr) for successful coating of a U-shaped groove as a function of the groove depth
(D) for different values of the capillary number (Ca) and the contact angle (θ ). (b) the effect of the spatial discretization on the results. The
units are scaled by a factor of 10.
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FIG. 7. (Color online) (a) Motion of the contact line over a V-shaped groove. The height and the width of the groove are D and H ,
respectively. The groove angle tan (α) = H/2D is also shown in the figure. (b) The groove angle α is very small (H = 5.5, α = 34.7◦) and
the coating is not successful. (c) α is larger (H = 8.2, α = 49.96◦) compared to the previous case but the coating is not successful. (d) The
width and groove angle (H = 11.5, α = 66.32◦) are greater than the critical groove angle and coating is successful. Ca = 0.1, θE = 30◦, and
D = 8.8 for all the cases considered. The units are scaled by a factor of 10.

simulation domain are equal to 400 and 400, respectively, in
lattice units. For a V-shaped groove, the important geometric
parameters are height H , width D (all scaled with hc), and
groove angle α. The groove angle is related to H and D via
tan(α/2) = H/(2D). As illustrated in Fig. 7 for a V-shaped
groove with a fixed depth, successful coating is not possible
for all the widths H . As is evident in Fig. 7(b), if H is small, the
value of α will be small and the bulge contacts the front wall
of the groove before the contact line can reach this wall and
this results in noncontinuous coating. Noncontinuous coating
may occur even if the contact line can reach the front wall
of the groove [see Fig. 7(c)]. Figure 7(d) explains that by
increasing α from a certain value (αcr) the coating becomes
continuous. Figure 8 represents the critical groove angle (αcr)
as a function of depth for Ca = 0.1 and 0.15 and θE = 30◦
and 45◦. As depicted in Fig. 8(b), a 400 × 400 lattice can
predict the critical width well. Based on these results, it can
be concluded that the αcr increases by increasing Ca and θE .
Moreover, for D � 4, by increasing D the critical groove angle

(αcr) for continuous coating increases. However, for D � 4, αcr

decreases by increasing D.
It should be noted that although for α > αcr the contact line

can reach all the points over the surface of the groove and the
coating is continuous, when the contact angle exceeds a value,
the groove is not completely filled with the coating material.
Therefore, there is a maximum groove angle for which the
groove is completely filled and the coating is successful. Our
results suggest that the coating is continuous and the groove is
filled completely as long as αcr � α � 1.3αcr.

E. Two U-shaped grooves

As depicted in Fig. 1(a), we consider surface coating of
the substrates with two U-shaped grooves. W and L in the
simulation domain are considered equal to 300 and 600,
respectively. From the results of the previous sections we can
determine the critical dimensions for the successful coating of
the first groove for given values of Ca and θE . For the second
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FIG. 8. (Color online) (a) The critical contact angle for a successful coating of a V-shaped groove as a function of the groove depth for
different values of Ca and θE . (b) The effect of the spatial discretization on the results. The units are scaled by a factor of 10.
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FIG. 9. (Color online) The selected strategy to determine the
critical width of the second groove for successful coating. The second
groove is considered very close to the first one and the width of the
second groove is increased until the whole area of the second groove
is filled with the coating material. For the shown case D1 = D2 = 3.2,
H1 = 1.6, and H2 = 1.9. The critical height for the second groove is
equal to 2. The units are scaled by a factor of 10.

groove we suppose that the depth of the groove is fixed equal
to the depth of the first groove (D2 = D1) and concentrate
our attention on finding the width of the groove such that the
coating is successful.

As explained in Fig. 9, the dynamic contact angle obtains
its maximum value just after leaving the first groove. For the
considered case θE = 5◦ and Ca = 0.1. The depths of the
groove are equal to 3.2. The critical width for the first groove
is equal to 1.6. Clearly, the coating over the second groove will
not be successful if the width of the second groove is smaller
than the critical width of the first groove, independent of the
distance between the grooves. The capping and drip failures
will happen over the second groove if the distance between the
grooves is small and the width of the second groove is equal
to this critical width. Because of the small distance between
the grooves the ridge does not have enough time to recover its
configuration before entering the first groove and the dynamic
contact angle remains not suitable for successful coating.

Now, as illustrated in Fig. 9, let us consider the second
groove in a very close distance of the first groove and increase
the width until the minimum width for which the coating is
successful is achieved. If the width of the second groove is

FIG. 10. (Color online) Continuous coating of the second groove
when the width of the second groove (H2 = 2.6) is greater than the
critical width (H2,cr = 2.0). In this condition continuous coating does
not depend on the distance between the grooves and for any distance
[cases (a), (b), and (c)] the coating will be continuous. For the cases
shown, θE = 5◦, Ca = 0.1, and D1 = D2 = 3.2. The units are scaled
by a factor of 10 and are shown only for the first case (a).

considered equal to this size, the second groove always will
be coated successfully, independent of the distance between
the grooves (see Fig. 10) because the ridge recovers its initial
profile and the dynamic contact angle gradually reduces and
reaches to its value before entering the first groove. We call
this width the critical width of the second groove (H2,cr). If the
width of the second groove is considered between the critical
widths of the first and the second grooves, continuous coating
of the second groove will be possible only if the second groove
is in a certain distance (critical distance) from the first groove.
This distance is required to provide a suitable dynamic contact
angle for successful coating. Otherwise the coating will be
noncontinuous (see Fig. 11).

Our results indicate that, similarly to the critical width of
the first groove, the critical width of the second groove is a
function of Ca and θE . In Table I the critical widths are given
for different values of Ca and θE . For a constant Ca (contact
angle), since the contact angle (Ca) changes, the critical widths
of the first and the second grooves change accordingly. One
should also change the depth of the grooves to prevent drip
failure for successful coating. In order to have a comparison
between the critical distances, we reduce the width of the
second groove to H2,cr − 0.1 for all the cases mentioned in
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FIG. 11. (Color online) The existence of the critical distance between two U-shaped grooves for successful coating. The width of the
second groove (H2 = 1.9) is less than the critical width for the second groove, H2,cr = 2.0. From (a) to (f) the distance between the grooves is
increased. For the cases (a)–(e) the coating is not continuous and a part of the second fluid (white color) is trapped below the coating film as
the bulge meets the far wall of the second groove. For the case (f) the distance between the grooves is equal to the critical distance (Lc = 18.1)
and the coating is continuous. For the shown case θE = 5◦, Ca = 0.1 and D1 = D2 = 3.2. The units are scaled by a factor of 10 and are shown
only for (a).

Table I and then calculate the critical distance for this width.
As depicted in Fig. 12(a) the critical distance between the
two grooves may decrease or increase as a function of the
contact angle for a given Ca. For Ca = 0.1 the critical distance
decreases by increasing the contact angle when θE < 10◦ and
increases by increasing the contact angle when θE > 10◦. Also,
as is evident from Fig. 12(b) for θE = 10 and different values
of Ca, the critical distance between the grooves decreases by
increasing Ca when Ca < 0.1 and increases by increasing Ca
when Ca > 0.1. In other words, at θE ≈ 15 and Ca ≈ 0.1 the

TABLE I. The critical widths for the first and the second grooves
for the case with two U-shaped grooves for various values of the
capillary number and the contact angle.

Ca = 0.1 θE = 10◦

θE D1 = D2 H1,cr H2,cr Ca D1 = D2 H1,cr H2,cr

0◦ 3.2 1.5 1.9 0.05 3.2 1.2 1.4
5◦ 3.2 1.6 2.0 0.075 2.8 1.2 1.4
10◦ 3.2 1.7 2.1 0.1 3.2 1.7 2.1
15◦ 3.4 1.9 2.2 0.125 3.1 1.9 2.3
20◦ 3.4 2 2.3 0.15 2.7 1.9 2.4
25◦ 3.2 2.3 2.3 0.175 2.3 1.7 2.0
30◦ 3.1 2.5 2.4 0.2 2 1.3 1.9

system behavior alters and the slope of the curve changes its
sign. In order to determine the critical distance between two
grooves, since the results may depend on the number of the
lattices that are located in the grooves, we compared the results
for different lattice numbers. The results have also been shown
in Fig. 12. As can be seen by increasing the lattice numbers
from 300 × 600, the changes in the results for both cases are
negligible.

It has been shown that by increasing Ca the capillary height
decreases [65]. Therefore, for small values of Ca (Ca = 0.05),
the capillary height is very large. This results in accumulation
of a considerable amount of fluid during the coating of the first
groove as displayed in Fig. 13(a). This creates a large value for
the dynamic contact angle after leaving the contact line from
the first groove [see Fig. 13(b)]. Therefore, the film should
travel a large distance to reach a suitable dynamic contact
angle to coat the second groove successfully. For this reason,
for Ca < 0.1, by increasing the capillary number, the critical
distance decreases due to the decrease of the capillary height
but for Ca > 0.1 the critical distance increases despite the
decrease of the capillary height. Our results indicate that for
Ca > 0.1 the effect of increasing Ca on the dynamic contact
angle [65] is more than the effect of decreasing the capillary
height and, in total, the dynamic contact angle increases. As the
dynamic contact angle increases, the fluid film should travel
a larger distance to reach a suitable dynamic contact angle
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FIG. 12. (Color online) The effect of Ca and θE on the critical distance. (a) Ca = 0.1 and different values of the contact angle and
(b) θE = 10◦ and different values of Ca. The effect of the lattice numbers on the results have been shown. The units are scaled by a factor of 10.

for suitable coating of the second groove. Due to this, by
increasing Ca, the critical distance increases for Ca > 0.1. A
similar situation occurs for the case when the capillary number
is fixed and the contact angle changes.

FIG. 13. (Color online) The effect of increasing the capillary
height for a substrate with two U-shaped grooves. The width of the
second groove is equal to that of the first groove H2 = 1.8 (less than
the critical width for the second groove, H2,cr = 2.1, in lattice units).
For the shown cases Ca = 0.1 and θE = 10◦. (a) The capillary height
increases before entering the film into the first groove. (b) The first
groove is coated with the material of the film. The units are scaled by
a factor of 10 and the units are shown only for (a).

In coating problems it is important to study the effects
of the viscosity and the density ratios. It is known that
the multicomponent Shan-Chen model is prone to numerical
instabilities when the viscosity or density ratios differ from
1. By increasing these ratios the numerical instabilities grow.
However, the method has shown its capabilities in capturing
essential physics of many systems and problems such as
dynamical systems [37], micro- and nanosystems [59–61],
capillary imbibition [62], capillary filling [63], and nonideal
fluids in confined geometries [64]. Despite the restrictions, we
were able to simulate the system for density and viscosity
ratios differing from 1, although close to it. Figures 14
and 15 illustrate the differences between the results of
the case with ρ2/ρ1 = 2 and μ2/μ1 = 6 (ρ2 = 1,ρ1 = 0.5,

x/xc
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h c
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FIG. 14. (Color online) The effect of the viscosity and density
ratios on the dynamics and the ridge profile for a film over a smooth
surface. Ca = 0.1, θE = 30◦, and the time step is equal to 30 000 for
both cases. The units are scaled by a factor of 10.

022409-10



THIN LIQUID FILM FLOW OVER SUBSTRATES WITH . . . PHYSICAL REVIEW E 87, 022409 (2013)

FIG. 15. (Color online) The effect of the viscosity and the density ratios on the coating procedure. Panels (a), (b), and (c) belong to the
case with the same viscosities and densities and panels (e), (f), and (g) belong to the case with ρ2/ρ1 = 2 and μ2/μ1 = 6. The time steps for
the panels (a) to (g) are 7000, 11 000, 15 000, 10 000, 16 000, and 21 000, respectively. For all the cases considered Ca = 0.1 and θE = 10◦.
The units are scaled by a factor of 10 and the units are shown only for (a).

τ2 = 1.248,τ1 = 0.752) and the case with the same densities
and viscosities. Figure 14 reveals that, for the case of steady-
state film flow over a smooth surface, by increasing the
viscosity and density ratios, the dynamics is weakened and
the ridge profile is flattened. Figure 15 shows that the coating
procedure is affected qualitatively when the viscosity and
density ratios are increased. However, the available results
do not support a more substantial conclusion and to get
deeper insight into the case further investigation is required.
Nevertheless, one may anticipate some differences in the
results if a liquid-vapor or liquid-gas system is used instead of
the current liquid-liquid system. One of the main differences
may appear in the blocking of the vapor or gas phase in the
groove (capping failure). While for the liquid-liquid case the
trapped liquid is expected to remain blocked, the isolated vapor
or gas phase may possibly move away from the groove into
the contiguous liquid phase area, particularly for small contact
angles. For the vapor case condensation also may occur.

F. Two V-shaped grooves

Our strategy in determining the dimensions for the case
with two V-shaped grooves is the same as described for the
case with two U-shaped grooves. We, first, obtain the critical
width (groove angle) of the first groove for given values of

the equilibrium contact angle and the capillary number such
that for smaller widths (groove angles) the coating is not
successful. In determining the dimensions of the second groove
we consider the depth of the second groove equal to that of
the first and find the minimum width of the groove such that
for smaller values of the width the coating is not continuous.
Table II reports the calculated critical widths for different
values of Ca and θE .

TABLE II. The critical widths for the first and second grooves for
the case with two V-shaped grooves for various values of the capillary
number and contact angle.

Ca = 0.1 θE = 10◦

θE D1 = D2 H1,cr H2,cr Ca D1 = D2 H1,cr H2,cr

0◦ 3.4 2.8 3.0 0.05 3.4 2.1 2.3
5◦ 3.5 3.0 3.2 0.075 3.6 3.1 3.3
10◦ 3.5 3.1 3.3 0.1 3.5 3.1 3.3
15◦ 3.7 3.2 3.4 0.125 3.4 3.1 3.3
20◦ 3.8 3.5 3.5 0.15 3.5 3.4 3.6
25◦ 3.9 3.6 3.6 0.175 3.6 3.5 3.8
30◦ 3.9 3.9 3.6 0.2 3.6 3.9 4.6
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FIG. 16. (Color online) The existence of the critical distance between two V-shaped grooves for successful coating. The width H2 = 3.1
(groove angle α2 = 47.73◦) of the second groove is less than the critical width Hc = 3.2 (groove angle αc = 49.13◦). From (a) to (f) the
distance between the grooves is increased. For the cases (a)–(e) the coating is not continuous and a part of the second fluid (white color) is
trapped below the coating film as the bulge meets the far wall of the second groove. For case (f) the distance between the grooves is equal to
the critical distance Lc = 9.4 and the coating is continuous. For the shown cases θE = 5◦, Ca = 0.1, H1 = 3, and D1 = D2 = 3.5. The units
are scaled by a factor of 10 and the units are shown only for (a).

As depicted in Fig. 16 our results indicate that there
is a critical distance between the grooves when the width
of the second is a value between the critical widths and
continuous surface coating is possible only if the distance
between the grooves is not smaller than this certain distance.
Applying the procedure described in Fig. 16, we calculated

the critical distance for different values of Ca and θE given in
Table II. The results are presented in Fig. 17. As is evident
from Fig. 17(a), the critical distance between two grooves
for Ca = 0.1 decreases by increasing the contact angle when
θE < 10 and increases by increasing the contact angle when
θE > 10. Also from Fig. 17(b) it can be observed that for
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FIG. 17. (Color online) The effect of Ca and θE on the critical distance for a substrate with two V-shaped grooves. The results are for
(a) Ca = 0.1 and different values of the contact angle and (b) θE = 10◦ and different values of Ca. The units are scaled by a factor of 10.
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TABLE III. The geometric parameters and the critical width for
the groove for the case with a mound and a U-shaped groove for
various values of the capillary number and the contact angle.

Ca = 0.1 θE = 10◦

θE D1 = D2 H1 H2,cr Ca D1 = D2 H1 H2,cr

0◦ 3.0 1.8 1.6 0.05 3.0 1.8 1.1
5◦ 3.0 1.8 1.7 0.075 3.0 1.8 1.3
10◦ 3.0 1.8 1.8 0.1 3.0 1.8 1.8
15◦ 3.0 1.8 1.9 0.125 3.0 1.8 1.9
20◦ 3.0 1.8 2.0 0.15 3.0 1.8 2.1
25◦ 3.0 1.8 2.1 0.175 3.0 1.8 2.4
30◦ 3.0 1.8 2.2 0.2 3.0 1.8 2.7

θE = 10 the critical distance between the grooves decreases
by increasing Ca when Ca < 0.1 and increases by increasing
Ca when Ca > 0.1.

G. A mound and a groove

In order to check the effects of locating a mound before
a groove on the coating process we consider a driven liquid
film over a substrate with a mound and a U-shaped groove,
as depicted in Fig. 1(b). W and L in the simulation domain

are equal to 300 and 700, respectively. For our purpose we
keep the height and the width of the mound almost equal
to the average widths and depths of the already considered
cases, namely, D1 = 3 and H1 = 1.8, for all the cases
considered.

Similarly to the previous sections, our results imply that
there is a critical width for the groove (see Table III). Moreover,
if the groove width lies between the critical widths without and
with the mound, continuous surface coating is not possible
for an arbitrary distance between the mound and the groove.
Figure 18 illustrates that, based on the value of Ca and θE ,
there is a critical distance such that for distances between
the mound and the groove that are larger than this distance,
continuous coating is possible and, for smaller distances,
coating is not successful. Figure 19 depicts the critical distance
between the mound and the groove for a given capillary number
(Ca = 0.1) and different values of the contact angle and also
for a given contact angle (θE = 10◦) and different values of the
capillary number. As is evident from the figure, for θE < 20◦
(Ca < 0.075), by increasing θE (Ca), the critical distance
decreases and for the other region the critical distance increases
by increasing the θE . As already discussed, this behavior is
due to the increase of the dynamic contact angle that arises
because of increasing the capillary height or the static contact
angle.

FIG. 18. (Color online) There is a critical distance between the mound and the groove such that for distances smaller than it the coating is
not continuous [cases (a)–(e)]. As can be seen, by increasing the distance to Lc = 21.3 the substrate is finally coated successfully [case (f)].
For the cases shown Ca = 0.1, θE = 5◦ and the critical width for the groove is 1.7. The units are scaled by a factor of 10 and the units are
shown only for (a).
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FIG. 19. (Color online) The effect of the contact angle and the capillary number on the critical distance for the case of a substrate with a
mound and a U-shaped groove. The results are for (a) Ca = 0.1 and different values of the contact angle and (b) θE = 10◦ and different values
of Ca.The units are scaled by a factor of 10.

V. CONCLUSION

We employed a multicomponent lattice Boltzmann scheme
and investigated the dynamics of gravity-driven thin liquid
films over topographically textured surfaces. For a surface
with a U-shaped groove it was shown that there are certain
conditions under which the coating is not successful. For
a given capillary number, contact angle, and depth of the
groove, there is a critical width such that, if the groove
width exceeds this critical value, the coating is successful.
These results were in complete agreement with the available
results [2,65]. For a V-shaped-type groove our investigation
revealed that there is no runout length. Because of the direction
of gravity, the contact line continues its motion over the
inclined face and drip failure does not occur. If the groove
angle is smaller than a certain critical value (αcr), capping
failure may occur. Moreover, if the groove angle is very large
(α > 1.3αcr), the groove is not filled completely by the material
of the coating layer. For a definite groove height, the critical
contact angle depends on the contact angle and the capillary
number.

Our results revealed that the presence of a topographical
feature such as a groove or a mound imposes more difficult
conditions on successful coating of the subsequent grooves.
This means that the required conditions for coating of
the substrates with many topographical features can differ

completely from those understood for the substrates with a
single topographical feature.

For substrates with two grooves, based on the values of Ca
and θE , there is a critical width for the second groove, which is
larger than the critical width of the first groove. If the width of
the second groove is larger than the critical width, the coating
will be successful independent of the distance between the
grooves. However, if the width of the second groove is smaller
than this critical width and larger than the critical width of the
first groove, there is a critical distance between the grooves
such that, for a distance smaller than the critical distance, the
coating of the second groove is not continuous. Our results
showed that for a given contact angle (capillary number) the
critical distance is a convex function of the capillary number
and it is large for both the small and large capillary numbers
(contact angles). For large capillary numbers, the dynamic
contact angle is large and this increases the critical distance.
For small capillary numbers, the capillary height is large and
this increases the dynamic contact angle just after leaving the
contact line from the first groove and, as a result, the critical
distance increases.

Our investigation showed that the presence of a mound
also makes the coating conditions more restrictive and similar
results to those with two grooves may be obtained for the cases
with a mound and a groove.
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