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Motion of Nanodroplets near Edges and Wedges
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Nanodroplets residing near wedges or edges of solid substrates exhibit a disjoining pressure induced
dynamics. Our nanoscale hydrodynamic calculations reveal that nonvolatile droplets are attracted or
repelled from edges or wedges depending on details of the corresponding laterally varying disjoining
pressure generated, e.g., by a possible surface coating.
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Wetting phenomena [1,2] and thin film dynamics [3] on
rough [4] or topographically structured [5,6] substrates
have been studied in detail both experimentally [5—8]
and theoretically [4,9,10]. To a large extent these investi-
gations are motivated by the fact that generically substrates
are rough, in particular, those playing an important role in
technological processes such as oil recovery, coating, lu-
brication, and paper processing. A second driving force for
the progressive application of these micro and nanofluidic
processes stems from the lab-on-a-chip concept which in-
tegrates pipes, pumps, reactors, and analyzers into a single
device allowing for a cost efficient handling of minute
amounts of liquid containing, e.g., DNA or proteins [11].

Most theoretical investigations of wetting of structured
substrates have been concerned with thermal equilibrium.
Only recently efforts have been made towards understand-
ing the corresponding dynamics. Using various numerical
techniques, time-dependent free surface flow over topo-
graphic features has been investigated [12—15]. However,
the applicability of these results to the nanoscale is im-
peded because the effect of intermolecular interactions,
relevant at the nanoscale, either has not been considered
[12,13] or only in a rather crude way [14,15].

In contrast, here we study nanoscale fluid dynamics on
topographical surface structures by properly taking into
account the spatial variation of the long-ranged intermo-
lecular interactions. We focus on edges and wedges as two
paradigmatic geometric structures and provide a detailed
dynamical study of their effects on nanodroplets positioned
in their vicinity. We consider a partially wetting, nonvola-
tile, and incompressible liquid film composed of a nano-
droplet on top of a precursor wetting layer on a possibly
coated solid substrate [16]. Our analysis shows that the
dynamics of droplets on such structures depends on subtle
details of the substrate properties.

For given intermolecular interactions, based on density
functional theory the free energy of a prescribed liquid film
configuration in contact with, e.g., a wedgelike substrate is
a functional of the liquid-vapor interface shape [17] which
can be expressed in terms of the so-called effective inter-
face potential w [17,18]. For a flat substrate and film
thickness & one has w(h) = — [’ I1(y)dy, where II is
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the disjoining pressure (DJP). Since the equation of motion
can be expressed in terms of 11, we determine II directly
following Ref. [16]. Assuming Lennard-Jones type pair
potentials V,g(r) = M,g/r'? — Nop/r°, where M,z and
N,p are material parameters, and o and S relate to liquid
(1), substrate (s), or coating (c) particles, the DJP corre-
sponding to chemically homogeneous substrate is given by
[19]

Wﬂ=ﬁ#ﬁm@—ﬂ—mmW@—ﬂMW (1)

with r = (x,y,z) € R3, and p; and p, are the number
densities of the liquid and the substrate, respectively. ()
is the substrate volume. Equation (1) assumes that the
vapor density is so low that its contribution to I can be
neglected. For a noncoated edge Q, ={reR3 | x,y =
0, z € R} (see Fig. 1) this yields

AM AN
I,(x,y) = fn,ilr — e d3r - fﬂ — &, ()
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where AM = ple” - plpSMSl and AN = pllel -
p;psNy. The first (second) term dominates near (far
from) the substrate. On a flat and homogeneous substrate
the equilibrium thickness of the wetting layer is given by
the zero of I which corresponds to the minimum of w. For
the interactions considered here, AM = 0 is a necessary
condition for the occurrence of an equilibrium wetting
layer of nonzero thickness. Both integrals in Eq. (2) can
be calculated analytically and one obtains the DJP as the
corresponding difference of two contributions II, =
T2 — 16,

In order to enrich the model we consider in addition the
case that the substrate is covered by a thin coating layer of
thickness d. Actual coating layers have a more complicated
structure, in particular, around edges or wedges, which
depends on the specific combination of coating and sub-
strate material as well as how the coating is deposited.
Such details do influence the motion of droplets very close
to the edge but corresponding calculations carried out by us
indicate that a simple model with rather small d captures
correctly the dynamics at lateral distances from the edge
larger than d. The contribution of a thin coating layer to the
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FIG. 1. Edge (top) and wedge (bottom) configurations. A
nanodroplet (full line) is placed near these geometrical structures
and thus it is exposed to the action of the laterally varying DJP.
Contour plots of the corresponding dimensionless DJP for the
minus [(a) B = —1, C = 1)] and plus [(b) B = —2.5, C = 1)]
case are shown [see Eq. (3)].

DIJP can be determined as above, assuming a van der Waals
type interaction between the coating and the liquid par-
ticles. We do not consider an additional repulsive part
of the liquid-coating interaction as this is shorter ranged
(~y~19) than the corresponding part IT)> ~y~° [16,18].
The contribution II%(x,y) of the coating layer on the
horizontal upper part of the edge {(x,y, z)|x <0,y = 0}
to the DJP can also be calculated analytically. By symme-
try, the contribution of the vertical coating layer is
IT“(y, x). Thus the DJP with the coating is Il (x, y) =
I, (x, y) + IT¥(x, y) + ITE(y, x).

Far from the edge, i.e., for x — —oo, the DJP reduces to
that of a coated flat substrate: II,,(y) = wAM/ (45y°) —
wAN/(6y*) + mAN'd/2y*, with AN" = p?Ny; — p;p.N
measuring the interaction strength of the coating layer. We
introduce dimensionless quantities (marked by *) such that
lengths are measured in units of b = [2AM/(15|AN])]/®
which for AN > 0 is the equilibrium wetting film thickness
on the uncoated flat substrate. For the relation between b
and the equilibrium wetting film thickness on the coated
substrate, see the insets in Fig. 2. The DJP is measured in
units of the ratio o/b where o is liquid-vapor surface
tension. Thus the dimensionless DJP 117, = I ./b/o far

from the edge has the form
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FIG. 2. Rescaled DJP far from the edge in the plus (a) and the
minus (b) case for different B [see Eq. (3)]. The insets show the
positions of the zeros of II7; as a function of B. In the plus case
II7 has zeros only for B < —1.57. The full curves in the insets
correspond to the equilibrium wetting layer thickness.

The dimensionless amplitude C = Ab/o, where A =
w(AM/45)~Y/2(|AN|/6)*/2, compares the strengths of
the effective intermolecular forces in the uncoated case
and of the surface tension forces. The amplitude B =
mAN'd/(2Ab*), which can be positive or negative, mea-
sures the strength of the coating layer. Note that an analysis
of the DJP, which is more refined than Eq. (1), yields B # 0
even in the absence of a coating layer [2,18]; therefore, in
the following we consider B as an independent parameter.
In the second term on the right-hand side of Eq. (3) the
upper (lower) sign corresponds to AN <0 (AN > 0). In
the following we shall refer to these cases as the plus and
the minus case (see Fig. 2). In the minus case, the DJP has a
single zero for all B, while in the plus case there is no zero
for B > —1.57 and two zeros for B < —1.57. The dimen-
sionless form of the DJP for a coated edge is given by

A5T122(x*, y*) . 6I18(x*, y¥)
5 (x* v¥) = e ’ + e’
) = e
N 2B[TT%(x*, y*) + I (y*, x)]
7| AN|

}. @)

The physically possible ranges of C and B in these cases
can be inferred from considering the macroscopic equilib-
rium contact angle 0, given by cosfl,q = 1 + w,(y;) with
¥ being the minimum of the corresponding effective inter-
face potential wtf(y*) = f;° Hf,f(y’)dy’ [2]. |cost9eq| =1
implies B < —1.87 for the plus case so that the disjoining
pressure has two zeros. In the minus case there is no
limitation for B.

Figure 1 shows a typical example of the DJP at an edge
for both the minus and the plus case, respectively. If a
droplet is placed near the edge, it is exposed to the lateral
gradient of the disjoining pressure resulting in a lateral
force on the droplet. In the following we restrict our
analysis to ridges translationally invariant along z, expect-
ing that our arguments and conclusions carry over qualita-
tively to actual three-dimensional droplets. For a ridge, the
lateral force density on the droplet is f* = Ql? X

Jagz Hee(x", y)n-dS*. 9Qg and Q are the dimension-
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less droplet surface and volume, respectively, and n,- is the
x* component of the unit surface normal vector pointing
outward. In Fig. 3 this force density, estimated by the force
density on a parabolic droplet crossing over smoothly to a
wetting layer of thickness y; (discussed as initial configu-
ration for the Stokes dynamics below, see also Fig. 1), is
plotted as a function of the distance w* (see Fig. 4) between
the three-phase contact line and the edge for different
values of B. For the minus case there is a critical value
B. = —10 which depends weakly on the drop size. For
B > B, the force is always positive and increases towards
the edge. Thus one expects the droplet to move towards the
edge. However, for B < B, the force changes sign from
plus to minus upon approaching the edge and the droplet
will stop at a certain distance from the edge which in-
creases with decreasing B. In the plus case the force is
always pointing away from the edge, and becomes stronger
upon approaching the edge. Therefore, in this case one
expects a droplet to move away from the edge.

We analyze the liquid flow of this motion in terms of a
two-dimensional Stokes equation. In dimensionless form
the continuity and Stokes equation read V- u* = 0 and
CV2u* = V(p* + IT*), where u* = (u}, u}.) is the veloc-
ity vector and p* is the hydrostatic pressure. The velocity
and time scales are Ab/u and w/A, respectively, with the
viscosity u. Lengths and pressure have been scaled with b
and o /b, respectively. At the liquid-solid interface a no-
slip condition is applied and there is no flux into the
impermeable substrate. Along the liquid-vapor interface
the tangential stresses are zero (neglecting the viscosity of
the vapor phase) and normal stresses are balanced by the
pressure, the DJP, and the surface tension [13,20]. There is
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FIG. 3. Normalized DJP induced lateral force densities f*
acting on an initial droplet configuration (see Fig. 1) of height
a* = 15 and at distance w* (see Fig. 4) from an edge (top) and a
wedge (bottom) for the minus (a) and the plus (b) case.

no flux through the boundaries of the box used for the
numerical calculations, guaranteeing mass conservation.
We solve these equations numerically with a standard
biharmonic boundary integral method [13,20] for initial
droplet shapes of the form y*(x*;z=0) = y; + a*{1 —
[(Ix*| — g*)/a* PII=¢"1"+1 4" is the droplet height in
the center and half the basewidth, and g* is the distance of
the droplet center from the edge. In this study m was
chosen to be 10. At t = 0 the droplet is positioned with
its three-phase contact line [x* = —(g" — a”), y* = y;, 2]
at a distance w* = g* — ¢* away from the edge (see
Fig. 4).

Figure 4 illustrates the difference of the motion of the
droplets in the minus and the plus case for values of B and
C chosen such that in both cases 6., = 90°. (Thus the
present dynamics is complementary to the motion of drop-
lets caused by chemically generated contact angle gra-
dients [21].) The droplet moves towards the edge in the
minus case and away from the edge in the plus case. The
motion towards the edge in the minus case accelerates but
comes to a stop when the right three-phase contact line of
the drop reaches the edge. In the plus case, the drop motion
decelerates but does not stop.

As a second system we consider a wedgelike substrate.
A wedge can be viewed as being composed of a flat vertical
substrate and an edge. Thus, combining their contributions
yields IT¢, (x*, y*) = IT7,(x") = IIE (y", %) + TS (=", y*) +
I1#*(—x*y*). For a noncoated wedge, within our model
this is in accordance with Ref. [17]. Typical examples of
the DJP in the wedge for the minus and the plus cases are
depicted in Fig. 1. For different values of B the DJP
induced lateral force on a parabolic ridge is shown in
Fig. 3 for the minus and the plus case, respectively. The
force is always positive, i.e., pointing away from the wedge
for the minus case with its strength decreasing with dis-
tance. Thus, one expects a droplet to move away from the
wedge. For the plus case the force changes sign from
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FIG. 4. Motion of a droplet (¢* = 15, w* = 10) near an edge
for the minus (lower left, B= —1, C = 1.27) and the plus
(lower right, B = —2.5, C = 4.23) case. For y; see the insets
in Fig. 2. The upper figure shows the initial droplet shape. Shown
are interface profiles at * = 339 (dashed line) and * = 20893
(solid line) for the minus case and at * = 210 (dashed line) and
t* = 93699 (solid line) for the plus case. The chosen values of B
and C provide 6.4 = 90°.
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FIG. 5. Motion of a droplet (¢* = 15, w* = 10) near a wedge
for the minus (lower left, B= —1, C = 1.27) and the plus
(lower right, B = —2.5, C = 4.23) case. For y; see the insets
in Fig. 2. The upper graph shows the initial droplet shape. Shown
are interface profiles at * = 450 (dashed line) and * = 99750
(solid line) for the minus and * = 160 (dashed line) and #* =
14 683 (solid line) for the plus case. The chosen values of B and
C provide 6.4 = 90°.

negative to positive near the wedge at a distance which
increases with decreasing B. Thus one expects the droplet
to move towards the wedge and then to stop before reach-
ing the wedge. This is indeed what is observed in the
numerical calculations of a liquid ridge as shown in
Fig. 5. The droplet moves away from the wedge with
decreasing speed in the minus case and towards the wedge
with increasing speed in the plus case. However, in the plus
case the droplet stops before it reaches the wedge. Only if
the droplet is driven into the wedge (e.g., by external
forces) or if it touches the wedge during the initial relaxa-
tion process, the droplet gets trapped in the wedge and
forms a configuration symmetric with respect to the bisec-
tor of the wedge.

In summary, we have shown how topographic substrate
features generate motion of nonvolatile nanodroplets resid-
ing in their vicinity. This motion depends on the details of
the interplay between the liquid-liquid and the liquid-
substrate interactions. This resembles similar phenomena
occurring near chemical heterogenities [22]. Taking 1 nm
and 0.02 N/m as typical values of b and o, respectively,
and for the values of C and B chosen in Figs. 4 and 5, our
model calculations predict that near an edge the DJP
induced lateral force on a liquid ridge 30 nm long, 15 nm
high, and 1 nm thick is of the order of 10~!3 N. For this
droplet size the gravitational body force is about 8 orders of
magnitude smaller. Only for micron-sized drops the gravi-
tational force becomes competitive. The time scale u/A
for the motion is roughly [1078u/(Pas)]s so that the
average velocities for the cases studied are ca.
{107°/[u/(Pas)]}m/s. Taking u between 0.1 Pa s and
100 Pa s (different polydimethylsiloxanes at ambient tem-
perature) the velocity ranges from 0.1 mm/s to 0.1 um/s,
which is comparable with the velocities of droplets of the
same kind of liquid but exposed to and driven by a chemi-
cal step generated by a contact angle contrast of a few
degrees [21]. Our calculations indicate that relaxation of
the droplet radius is faster than the motion of the droplet as

a whole which leads to the expectation that the velocity of
precursor spreading is larger than the droplet motion [23].

Our findings have a bearing on the distribution of drop-
lets after condensating liquid onto nanosculptured sub-
strates and on breath figures, in addition to possible
implications for the design of open nanofluidic systems
in which the activating force, partially or totally, is pro-
vided by the system itself.
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