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Analytical relations for long-droplet breakup in asymmetric T junctions
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We develop accurate analytical relations for the droplet volume ratio, droplet length during breakup process,
and pressure drop of asymmetric T junctions with a valve in each of the branches for producing unequal-sized
droplets. An important advantage of this system is that after manufacturing the system, the size of the generated
droplets can be changed simply by adjusting the valves. The results indicate that if the valve ratio is smaller
than 0.65, the system enters a nonbreakup regime. Also the pressure drop does not depend on the time and
decreases by increasing the valve ratio, namely, opening the degree of valve 1 to valve 2. In addition, the results
reveal that by decreasing (increasing) the valve ratio, the droplet length of branch 1 decreases (increases) and
the droplet length of branch 2 increases (decreases) linearly while the whole length of the droplet remains
unchanged.
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I. INTRODUCTION

Improving the performance of droplet-based microfluidics
is a prerequisite for optimizing many procedures such as bio-
logical and chemical reactions, material synthesis, and DNA
analysis. Microdroplets act as excellent microreactors that
improve the heat and mass transfer due to high mixing inside
the droplet [1,2]. Droplet-based microfluidics contain various
droplet processes such as transport [3], symmetric breakup
[4,5], asymmetric breakup [6,7], merging [8], generation
[9,10], and storage [11]. The processes that use microdroplets
have many advantages such as monitoring the kinetic of the
process by means of the droplet motion, generating the samples
with precise volume and production rate, and no dispersion of
droplet in the base fluid [12–14].

For increasing the production rate of the droplets, various
methods are available including dividing an initial droplet into
a large number of small droplets by means of geometrical
facilities such as symmetric T junctions [4,5,15–17]. However,
a symmetric breakup process cannot be used for the production
of unequal-sized droplets which are used in many applications
such as the chemical and pharmaceutical industries. Moreover,
the symmetric breakup process has only one, nonarbitrary
production rate. In order to resolve such problems, a number of
methods has been proposed. One of the methods for producing
unequal-sized droplets relies on using an obstacle in the
channels [18]. The disadvantage of this method is that the
small and large droplets after the obstacle are moving together
and another process is needed to separate them. A different
method is based on using a T junction with unequal length
branches [18]. This method increases the pressure drop and
the manufacturing costs for small volume ratios, namely, the
volume ratio of the small droplet to the large droplet after
breakup. A T junction with unequal width branches is a
method that does not have the disadvantage of T junctions with
unequal length branches [19]. However, after manufacturing
the system, only a specific volume ratio can be generated.
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There is a method without any T junction in which the droplets
move through a vertical tube and break up into unequal smaller
droplets for Weber numbers less than 5 [20]. The disadvantage
of this method is that after breakup of the initial droplets,
the small generated droplets are moving together. A different
suggested method is based on using a pneumatic valve inside of
a tube such that the consecutive droplets break up into smaller
ones by transferring through the pneumatic valve [21]. The
pressure of the pneumatic valve determines the volume ratio
of the generated droplets. The disadvantage of this method
is that the size of the generated droplets is not controllable
precisely because of affecting the pressure of the flow on the
valve performance. There is a heat-transfer-based method in
which a heater has been placed in one of the branches of the
symmetric T junction [22]. By heating the fluid of the branch,
the viscosity and hydrodynamic resistance of the fluid reduce
and the larger droplet enters into it. The disadvantage of this
method is that for producing a small volume ratio, the heater
temperature should be high and it is possible that the nature of
the continuity or the droplet changes. Also the fluids may be
vaporized, especially in the locations with low pressure. For
example, in Ref. [22], it has been stated that for high capillary
numbers, the temperature should reach 40 °C for generating the
appropriate volume ratios, which is not acceptable especially
for biologic applications. There are some other methods for
breaking an initial droplet into unequal-sized droplets such as
droplet breakup in the turbulent flow [23–25], using a cylinder
inside a tube that the droplet is transferred through [26],
passing the droplet from microfluidic cross flows [27], droplet
breakup in a simple shear flow [28–31], arrival of two droplets
to a main branch of a symmetric T junction with a small
time difference [32], T junctions with unequal length branches
[33–35], using two convergent-divergent consecutive symmet-
ric T junctions [36], droplet motion in a domain with gravity
or body force [37–39], and heat-transfer-based methods [40].
These methods have disadvantages similar to those already
mentioned.

In this study, we consider a two-dimensional (2D) T
junction with one valve in each of the branches for producing
unequal-sized droplets [41]. The valves are, in fact, adjustable
orifice plates and, after manufacturing the system, one can
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adjust the opening degree of the orifices. Therefore, the
adjustable orifice can act as a valve because it can tune the
opening degree of the channel up to an arbitrary amount.
So we refer to the adjustable orifice plate as a valve. The
application and structure of the adjustable orifice valves are
investigated in various research papers [42–44]. This method
does not have the disadvantages of the other available methods
and, after manufacturing the system, one can adjust the volume
ratio simply. For investigating the droplet breakup process,
an analytical theory and numerical simulation, based on a
volume of fluid (VOF) algorithm, are used. The results of the
simulations were verified using two benchmarks [45,46] and
very good agreement was observed. Numerical simulation is
conducted for validating the analytical results and very good
agreement has been found between the results. In the analytical
theory, first we calculate the pressure drop of the continuous
fluid through the valves. Afterward, we use this relation to
derive a relation for the calculation of the volume ratio of
the generated droplets after breakup. Then we obtain accurate
relations for droplet length and pressure drop of the system.
These relations have very good agreement with our numerical
results. We show that when the droplet is deforming in the
center of the junction, the length growth rate of the droplet
that enters the branch with the more open valve is more than
that of the droplet that enters the other branch. Also we show
that the pressure drop of the system is independent of time
and reduces with increase of the valve ratio, as by increasing
the valve ratio the system approaches to the geometry of a
symmetric T junction.

In the subject of droplet motion in 3D rectangular cross-
section channels, the results of the 2D solution are not
representative of the 3D solution due to the presence of the
gutter regions in the corners of the channel cross section. The
gutter regions affect the pressure drop of the system [47]. But
for the case of the T junction with the valve, the main sources of
the pressure drop are valves and straight tubes. Therefore, the
effect of the gutter region becomes small and the 2D results
can qualitatively represent the 3D solution [41]. Therefore,
we expect that our results will carry over qualitatively to the
behavior of 3D systems.

II. THE SYSTEM GEOMETRY

Figure 1 illustrates the geometry of the considered system.
When a long droplet passes through this system, it breaks up
into unequal parts. There is a valve in each of the branches
and the opening degree of the valves adjusts the volume ratio
of the generated droplets. Droplet length is long enough to fill
the entire branch and z1 and z2 do not vanish until the end of
the process. The distance between the valves and the system
outlets is equal to 3w, where w is the channel width.

We define some parameters of the problem. Valve ratio is the
ratio of the opening degree of valve 1 to valve 2 (λ = s1/s2).
Volume ratio is the ratio of the smaller droplet to the larger
droplet after breakup (τ = V1/V2). The capillary number is
defined as Ca = μcUin/σ , with μc as the dynamic viscosity
of continuous fluid, Uin as the fluid velocity in the inlet of the
system, and σ as the surface tension between two fluids. The
capillary number represents the ratio of the inertial forces to
the surface tension forces. The width of the inlet channel and
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FIG. 1. (Color online) A schematic representation of the system
with the related parameters. The droplet tips (for example, point F ) do
not reach the valves until the end of the breakup process. Subscriptions
1 and 2 represent right and left branches, respectively. z is the contact
length between the upper surface of the droplet and the wall. L and
w are the length and width of the branches, respectively. r and O are
the radius and center of the curvature of the droplet upper surface,
respectively. s is the opening degree of the valve. θ1 represents the
angle between the y axis and the line O1A where the points A and B

are the first and the end points of the contact line between the upper
surface of the droplet and the wall (θ2 is similar). L1 and L2 are the
droplet lengths. Points F and E are the droplet tip and intersection
of the y axis and the droplet upper surface, respectively.

branches (w) is supposed to be equal to 20 × 10−6m. Linitial

is the droplet length when it is in the inlet channel that is 6w.
Lin is the length of the inlet channel that is equal to 9w. The
capillary number is supposed to be 0.01. L is the branch length
that is 15.5w.

III. ANALYTICAL THEORY

A. Transformation of coordinate system

In this section, we present an analytical theory for investi-
gating the long-droplet breakup in a T junction with a valve.
The valve of the T junction may be considered as a plate with
a gap within it (Fig. 1). For the analytical investigation of
long-droplet breakup, we should first calculate the pressure
drop of the continuous fluid through the valves. For this
purpose, we use new coordinates χ and ξ (elliptic cylindrical
coordinates) and calculate the pressure drop through a venturi,
as depicted in Fig. 3. Finally, we set the curvature radius of
the venturi walls to zero to obtain a relation for the pressure
drop through a plate with a gap. Then we use this relation
and calculate the volume ratio of the generated droplets after
breakup. Finally, using the relations for the pressure drop and
volume ratio, we derive relations for determining the droplet
length and pressure drop of the system.

We want to calculate the pressure drop of fluid through the
venturi tube. For this purpose, first we define new coordinates
χ and ξ as follows:

x = c cosh ξ cos χ, y = c sinh ξ sin χ, (1)

where c is a constant. For constant values of ξ from Eq. (1),
we have

y2

c2sinh2ξ
+ x2

c2cosh2ξ
= 1. (2)
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FIG. 2. χ and ξ coordinates relative to x and y coordinates.

Therefore, ξ = const curves are concentric ellipses, as
depicted in Fig. 2. Similarly, it can be shown that χ = const
curves are confocal hyperbolas.

As can be concluded from Fig. 2, the range of variables is
0 � χ < 2π and 0 � ξ < ∞. For investigating the flow in a
venturi, it is assumed that we have a tube with the walls as
χ = const lines. Now, in order to remove the trigonometric
and hyperbolic functions in the subsequent expressions, we
apply the following change of variables:

	 = cosh ξ , ζ = cos χ. (3)

By substituting Eq. (3) in Eq. (1), we have

x = c	ζ, y = c
√

	 2 − 1
√

1 − ζ 2. (4)

Through using these variables, ζ = const lines are confocal
hyperbolas and 	 = const lines are concentric ellipses.
Therefore, the geometry of our problem (venturi) becomes
as depicted in Fig. 3.

B. Deriving the pressure drop through the valve

The flow in the venturi is incompressible, laminar, and
steady state. Therefore, the governing equations of the problem
are Navier-Stokes and continuity as follows:

μ∇2 �V = �∇P, �∇ · �V = 0. (5)

Using the vectors’ properties, one has [48]

∇2 �V = �∇( �∇ · �V ) − �∇ × ( �∇ × �V ), (6)

where the term �∇ · �V is zero (according to continuity). By
substituting Eq. (6) to Eq. (5) and taking a curl from both sides
of it, we have (note that the curl of term �∇ × �∇P is zero)

�∇ × [ �∇ × ( �∇ × �V )] = 0. (7)

FIG. 3. Flow in the venturi tube. The walls are ζ = const lines.

Equation (7) and the continuity are governing equations
of the venturi problem (Fig. 3). For converting a Cartesian
coordinate to a curvilinear one, the inner and exterior products
change according to the tensor notation (Levi-Civita) as
follows [49]:

�∇ · �� = H
∂

∂κk

(
hk

H
�k

)

( �∇ × ��)k = H êk

hk

εijk

∂

∂κi

(
�j

hj

)
, (8)

where H = h1h2h3 and �� is a vector variable. κ1, κ2, and κ3

are curvilinear coordinate axes. ê1, ê2, and ê3 are unit vectors
in the direction of κ1, κ2, and κ3. h1, h2, and h3 are scale factors
of the coordinate system that are computed from the following
relation [49]:

1

h2
i

=
(

∂x

∂κi

)2

+
(

∂y

∂κi

)2

+
(

∂z

∂κi

)2

. (9)

The value of hi is calculated using Eqs. (4) and (9). By
substituting hi in Eq. (8), the continuity equation will be
represented as

∂

∂	

(
c
√

	 2 − ζ 2√
1 − ζ 2

V	

)
+ ∂

∂ζ

(
c
√

	 2 − ζ 2

√
	 2 − 1

Vζ

)
= 0.

(10)

If we define the stream function as the following relations,
the continuity equation [Eq. (10)] is satisfied:

V	 =
√

1 − ζ 2

c
√

	 2 − ζ 2

∂ψ

∂ζ
, Vζ = −

√
	 2 − 1

c
√

	 2 − ζ 2

∂ψ

∂	
. (11)

According to Fig. 3, we assume that the streamlines
are confocal hyperbolas. In other words, the streamlines
are ζ = const lines. Therefore, the stream function depends
only on ζ or ψ = ψ(ζ ). Now with three consecutive times
using Eq. (8), the Navier-Stokes equation [Eq. (7)] can be
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rewritten as

�∇ × [ �∇ × ( �∇ × �V )] =
[

0,0,
1

c4(	 2 − ζ 2)4

8∑
i=1

�i

]
,

�1 = [−4	 4 + (6 − 4ζ 2)	 2 + 2ζ 2] ×
[
ζ

∂ψ

∂ζ
− (1 − ζ 2)

∂2ψ

∂ζ 2

]
,

�2 = (	 2 − ζ 2)2

[
ζ

∂ψ

∂ζ
+ 3ζ 2 ∂2ψ

∂ζ 2
− ζ (1 − ζ 2)

∂3ψ

∂ζ 3

]
,

�3 = (	 2 − ζ 2)

[
2ζ 3 ∂ψ

∂ζ
− 2ζ 2(1 − ζ 2)

∂2ψ

∂ζ 2

]
, �4 = 	 4(ζ 2 − 1)

[
4
∂2ψ

∂ζ 2
+ 5ζ

∂3ψ

∂ζ 3
− (1 − ζ 2)

∂4ψ

∂ζ 4

]
,

�5 = 	 2(ζ 2 − 1)

[
(−6ζ 3 − 4ζ )

∂3ψ

∂ζ 3
+ 2ζ 2(1 − ζ 2)

∂4ψ

∂ζ 4

]
,

�6 = 	 2(ζ 2 − 1)

[
6ζ

∂ψ

∂ζ
+ (6ζ 2 − 2)

∂2ψ

∂ζ 2

]
, �7 = (ζ 2 − 1)

[
2ζ 3 ∂ψ

∂ζ
+ (−2ζ 4 − 6ζ 2)

∂2ψ

∂ζ 2

]
,

�8 = (ζ 2 − 1)

[
(ζ 5 + 4ζ 3)

∂3ψ

∂ζ 3
− ζ 4(1 − ζ 2)

∂4ψ

∂ζ 4

]
. (12)

In order to satisfy the Navier-Stokes equation, we should
have

∑8
i=1 �i = 0. By simplifying Eq. (12), one obtains

8∑
i=1

�i = 	 4� (ζ ) + 	 2� (ζ ) + � (ζ ) = 0, (13)

where �(ζ ), �(ζ ), and �(ζ ) are functions of ζ and derivatives
of the stream function with respect to ζ . We should have
�(ζ ) = �(ζ ) = �(ζ ) = 0 to satisfy Eq. (13). Through these,
three equations are obtained and two of them are independent
as follows:

ζ 4(1 − ζ 2)2 ∂4ψ

∂ζ 4
+ (2ζ 7 + 2ζ 5 − 4ζ 3)

∂3ψ

∂ζ 3

+ (−ζ 6 + 4ζ 2)
∂2ψ

∂ζ 2
+ ζ 5 ∂ψ

∂ζ
= 0, (14)

ζ 4(1 − ζ 2)2 ∂4ψ

∂ζ 4
+ (4ζ 7 − 2ζ 5 − 2ζ 3)

∂3ψ

∂ζ 3

+ (ζ 6 + 2ζ 2)
∂2ψ

∂ζ 2
− ζ 5 ∂ψ

∂ζ
= 0. (15)

By subtracting Eq. (15) from Eq. (14), we have

ζ 3 ∂ψ

∂ζ
+ (−ζ 4 + 1)

∂2ψ

∂ζ 2
+ (−ζ 5 + 2ζ 3 − ζ )

∂3ψ

∂ζ 3
= 0.

(16)

For solving Eq. (16) and finding ψ(ζ ), three boundary
conditions are required. The velocity on the wall is zero.
Therefore, from Eq. (11), we have

∂ψ

∂ζ
= 0 for ζ = ζ0, (17)

where ζ = ζ0 corresponds to the tube wall. The selection
of streamline with zero value is arbitrary [50]. Thus, the
streamline that corresponds to the tube axis is supposed to be

zero. The tube axis corresponds to χ = π/2 and, as a result,
to ζ = 0. Therefore, we have

ψ = 0 for ζ = 0 . (18)

The difference between the two streamlines is equal to the
volumetric flow rate between them. Therefore, the difference
of the values of the right wall streamline and the tube axis
streamline is equal to the half of the tube volumetric flow rate
(note that the venturi tube is symmetric). Thus, we get

ψ (ζ0) − ψ (0) = q

2
ψ(0)=0−−−−→ ψ (ζ0) = q

2
. (19)

In Fig. 2, for 0 < χ < π/2, we have venturies with various
curvatures. If we consider χ = 0 and χ = π , the venturi tube is
converted to a plate with a gap in it. According to Eq. (3), χ = 0
and χ = π correspond to ζ = 1 and ζ = −1, respectively.
Therefore, if in the boundary conditions [Eq. (17) to Eq. (19)]
we consider ζ0 = ±1, the tube venturi problem converts to the
problem of flow moving through a plate with a gap in it.

Now, we should calculate the width of the gap. As already
stated, 0 � ξ < ∞. According to Eq. (3), we have 1 � 	 <

∞. By substituting ζ0 = ±1 to Eq. (4), we have y = 0,
x � −c, and x � c. Therefore, the gap width is equal to 2c.
According to Eq. (5), we have μ∇2 �V = �∇P . On the other
hand, ∇2 �V = (∇2V	 ,∇2Vζ ) and �∇P = (h	

∂P
∂	

,hζ
∂P
∂ζ

). Thus,
by substituting V	 and Vζ from Eq. (11) to Eq. (5), one can
obtain

μ∇2

( √
1 − ζ 2

c
√

	 2 − ζ 2

∂ψ

∂ζ

)
= h	

∂P

∂	
, (20)

μ∇2

(
−

√
	 2 − 1

c
√

	 2 − ζ 2

∂ψ

∂	

)
= hζ

∂P

∂ζ
. (21)

The stream function (ψ) depends only on ζ . Therefore,
Eq. (21) is reduced to ∂P/∂ζ = 0. In converting the coordinate
system, the Laplace operator according to the tensor notation
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[49] is given as

∇2φ = H
∂

∂κk

(
h2

k

H

∂ϕ

∂κk

)
, (22)

where φ is a scalar variable. Using Eq. (22) in Eq. (20) and
some calculations and simplifications, we obtain

∂P

∂	
= μ

c2

−(	 2 + 2ζ 2)
√

	 2 − 1 + (	 2 + ζ 2)
√

1 − ζ 2

(	 2 − ζ 2)2.5

∂ψ

∂ζ

+ μ

c2

−3ζ	 2 + ζ 3 + 2ζ√
	 2 − 1(	 2 − ζ 2)1.5

∂2ψ

∂ζ 2

+ μ

c2

1 − ζ 2

√
	 2 − 1

√
	 2 − ζ 2

∂3ψ

∂ζ 3
. (23)

As represented in Fig. 2 at the location of the throat of
the venturi, we have ξ = 0 [which corresponds to 	 = 1
according to Eq. (3)]. Also, at the infinity (ξ → ∞), we
have 	 → ∞. On the other hand, because of the symmetry,
the pressure drop from 	 → −∞ to the throat is equal
to the pressure drop from the throat to 	 → ∞. Therefore,
the pressure drop of the flow through the plate with the gap
may be calculated using the following relation:

�P = 2
∫ ∞

1

∂P

∂	
d	. (24)

According to Eq. (23), ∂P/∂	 is a function of 	 and
ζ . On the other hand, in Eq. (24), the integral is only with
respect to 	 . Thus, we can substitute a specific value for ζ in
Eq. (24). We set ζ = 0 [which corresponds to the venturi tube
axis according to Eq. (3)] in Eq. (23) and substitute the result
into Eq. (24). These lead to

�P = 2
μ

c2

∫ ∞

1

(
−	 2

√
	 2 − 1 + 	 2

	 5

∂ψ

∂ζ

+ 1

	
√

	 2 − 1

∂3ψ

∂ζ 3

)
d	

= 2
μ

c2

[(
−π

4
+ 1

2

)
∂ψ

∂ζ
+ π

2

∂3ψ

∂ζ 3

]
. (25)

Now, we solve Eq. (16) with its three boundary conditions
[Eq. (17) to Eq. (19)] using a numerical algorithm. Therefore,
the unknown parameters of Eq. (24) are obtained as follows:(

∂ψ

∂ζ

)
ζ=0

= 0.6532q,

(
∂3ψ

∂ζ 3

)
ζ=0

= 0.696q, (26)

where q is the volumetric flow rate of the venturi tube. We
name the gap width s. As stated previously, the gap width is 2c

and, as a result, c = s/2 . By substituting c = s/2 and Eq. (26)
to Eq. (25), the pressure drop through the plate with a gap with
the width s becomes

�P = 10.2372
μq

s2
, (27)

where q and μ are volumetric flow rate and viscosity of the
fluid that passes through the gap. In the topic of droplet breakup
in an asymmetric T junction, one can suppose that the volume
ratio of two generated droplets is equal to the ratio of the flow

rate of the continuous fluid that passes through the branches
[18].

C. Calculating the volume ratio, droplet length,
and pressure drop

In the T junction with the valve (Fig. 1), the pressure drop
of each of the branches is the sum of the pressure drop of the
straight tube (calculated using the Darcy-Weisbach relation
32μLq

w3 ) and the pressure drop of the valve. The valve is as a
plate with a gap (Fig. 1). Thus, one can calculate its pressure
drop using Eq. (27). On the other hand, the pressure in the
outlet of each of the branches is equal to the ambient pressure.
Thus, the pressure drops of the two branches (from the center
of the junction to the branch outlet) are equal as follows:

10.2372
μq1

s2
1

+ 32μL1q1

w3
= 10.2372

μq2

s2
2

+ 32μL2q2

w3
.

(28)

We define three dimensionless variable as α = L/w, β =
s/w, and λ = β1/β2. As previously expressed, λ is the valve
ratio and has an important role in the T junction with valve
performance. By simplifying Eq. (28), one can calculate the
volume ratio as β2 = 0

τ = V1

V2
= q1

q2
= λ2 + 3.1259αβ2

1

1 + 3.1259αβ2
1

, (29)

where V1 and V2 are the volume of droplets in branches 1
and 2, respectively. We can check Eq. (29) in some particular
situations. If valve 1 (valve 2) is closed, namely, β1 = 0 (β =
0), and valve 2 (valve 1) is open (the opening degree is not
important), then the droplet does not break and goes to branch
2 (branch 1) and the volume ratio becomes zero (infinity).
Equation (29) gives exactly the same results, namely, for β1 =
0 (β2 = 0) the volume ratio becomes zero (infinity). If the
opening degrees of two valves are equal, we have a symmetric
T junction and the volume ratio is 1. Equation (29) gives
exactly the same result, namely, for β1 = β2, the volume ratio
becomes 1.

We assume the front surfaces of the droplets are circular
during the breakup process (Fig. 1). Our numerical results
and previous studies [45] confirm this assumption. According
to the asymmetry of the breakup process, the curvature radii
of the two parts of the droplets that are in the branches
are different. Now we investigate analytically the droplet
deformation process during the breakup. We consider the
moment that the droplet is in the state of Fig. 7(c) as the
initial time (t = 0). After time t , the volume of the continuous
fluid that enters branch 1 is equal to the volume of the OAE
section in Fig. 1 and is equal to the following relation:

VOAE = 1
2 r2

1

(
θ1 − 1

2 sin 2θ1
)
. (30)

On the other hand, the volume of the continuous fluid that
enters branch 1 after time t is equal to q1t and, according to
Eq. (29), is equal to τ

1+τ
qt (q1 is the volumetric flow rate of

the continuous fluid of branch 1). By substituting this relation
to Eq. (30), we obtain

τ

1 + τ
q = 1

2
r2

1

(
θ1 − 1

2
sin 2θ1

)
. (31)
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Through a similar procedure for branch 2, one has

1

1 + τ
q = 1

2
r2

2

(
θ2 − 1

2
sin 2θ2

)
. (32)

According to Eq. (29), τ = V1/V2. Thus, V1 = τ
1+τ

Vtotal

where Vtotal is the volume of the whole droplet that is equal to
(Linitial − w)w + πw2

4 with Linitial as the droplet length before
arriving to the center of the junction. It is assumed that the
droplet front is circular. It is clear that the droplet front radius
is half the channel width (w/2). Thus, we get

V1 = τ

1 + τ

[
(Linitial − w) w + π

w2

4

]
. (33)

At the end of the breakup process, the droplet breaks at point
E (see Fig. 1) because the droplet has its minimum thickness
in this point. Therefore, the volume of the droplet that enters
branch 1 after the breakup (V1) is

V1 = 1
2 r2

1 sin θ1 cos θ1+w r1 sin θ1 − 1
2θ1r

2
1 + z1w + 1

8πw2.

(34)

By substituting Eq. (33) to Eq. (34), we have

z1 = 1

2w
r2

1

(
θ1 − 1

2
sin 2θ1

)
− r1 sin θ1

+ τ

1 + τ

[
(Linitial − w) + π

w

4

]
− 1

8
πw. (35)

If we substitute the value of (θ1 − 1
2 sin 2θ1) from Eq. (31)

to Eq. (35) and also use the relation q/w = Uin, after some
simplifications we obtain

z1 = τ

1 + τ

[
Uint + Linitial +

(
π

4
− 1

)
w

]

−r1 sin θ1 − πw

8
. (36)

Similarly for branch 2, we can achieve the following
relation:

z2 = 1

1 + τ

[
Uint + Linitial +

(
π

4
− 1

)
w

]

−r2 sin θ2 − πw

8
. (37)

Now we want to calculate the droplet length during the
deformation in the center of the junction. The length of the
small droplet (L1) and the length of the large droplet (L2) are
depicted in Fig. 1. The droplet length in branch 1 is

L1 = r1 sin θ1 + z1 + w

2
. (38)

By substituting r1 sin θ1 + z1 from Eq. (36) to Eq. (38), one
obtains

L1

w
= τ

1 + τ

[
Uint

w
+ Linitial

w
+ π

4
− 1

]
+ 1

2
− π

8
. (39)

Similarly, for the length of the droplet that enters branch 2,
we have

L2

w
= 1

1 + τ

[
Uint

w
+ Linitial

w
+ π

4
− 1

]
+ 1

2
− π

8
. (40)

Also we define the whole droplet length as Lwhole = L1+L2
2 .

FIG. 4. (Color online) Pressure distribution during the breakup
process. As is evident, the pressure inside the droplet is almost
uniform.

When the droplet deforms in the center of the junction,
the pressure drop of the system is the sum of these cases: (1)
pressure drop in the inlet channel (from the inlet of the system
to center of junction) that can be calculated using the Darcy-
Weisbach relation; (2) pressure difference between the inside
and the outside of the droplet in the center of the junction, that
is, the difference of the fluid pressure between slightly above
and slightly below point E (see Fig. 1) which is equal to σ/r

where r is the curvature radius of the interface; (3) With a good
approximation, the fluid pressure inside the droplet is uniform.
Both our numerical results (Fig. 4) and previous studies [45]
confirm this point. Therefore, there is no pressure drop inside
the droplet; (4) pressure difference inside and outside of the
droplet in the droplet tip location, namely, the difference of
the fluid pressure between slightly left and slightly right of
point F (see Fig. 1) which is equal to 2σ/w; (5) pressure
drop of fluid in the straight tube after droplet tip (point F

to the end of the branch in Fig. 1) that can be calculated
using the Darcy-Weisbach relation. The length of the tube in
this case is equal to the difference of the branch length (L in
Fig. 1) and the droplet length during deformation [Eq. (39)];
(6) pressure drop due to the valve that calculates using Eq. (29)
(10.2372μq/s2). The location of the valve does not affect the
pressure drop because it is far enough from the droplet tip and
the branch outlet.

Our numerical results and other investigations [45] confirm
that the pressure drop of case (2) is negligible in comparison
with that of case (4). Therefore, the pressure drop of the system
may be calculated by the following relation:

�P = 32μUinLin

w2
+ 32μτUin(L − L1)

w2(1 + τ )

+ 2σ

w
+ 10.2372μτUin

s2
1 (1 + τ )

, (41)

where μ is the continuous fluid viscosity, Uin is the inlet
velocity of the system, Lin is the length of the inlet channel,
L1 is the droplet length in branch 1 that is calculated from
Eq. (39), L is the length of the branch (Fig. 1), τ is the volume
ratio that is derived using Eq. (29), and s1 is the opening degree
of the valve of branch 1.

IV. NUMERICAL SIMULATION

For simulating the two phase flow, a VOF algorithm is
employed. Also for simulation of the system, other numerical
methods such as the lattice Boltzmann method can be
employed [51–53]. The flow is assumed to be incompressible
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number of nodes 7344 2962 13815298

FIG. 5. (Color online) Grid independency results.

and the governing equations are Navier-Stokes and continuity
as follows:

∂ui

∂xi

= 0, (42)

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= −∂P

∂xi

+ Fi + μ
∂2ui

∂x2
j

, (43)

where ui is the velocity vector and ρ and μ are density
and viscosity of the fluid, respectively, and are calculated as
follows:

ρ = ρcφ + ρd (1 − φ) , (44)

μ = μcφ + μd (1 − φ) , (45)

where the subscripts c and d refer to the continuous (that
carries the droplets) and the dispersed (droplet) phases and
φ is the volume fraction of the continuous phase in each of
the computational cells and we have 0 � φ � 1. The exact
location of the interface is where we have φ = 0.5, which
is calculated using a piecewise linear interface reconstruction
method. φ is calculated using the following relation:

∂φ

∂t
+ ui

∂φ

∂xi

= 0. (46)

The momentum equation is discretized using a second-
order upwind method. Pressure velocity coupling is performed
using a SIMPLEC algorithm. The convergence criterion is the
residuals that are calculated using the following equation to be
less than 0.0007:

RX =
∑N

P=1

∣∣∑
nb anbXnb + � − aP XP

∣∣∑N
P=1 aP XP

, (47)

where X is a general variable in the cell P , N is the number
of all computational cells, aP is the center coefficient (cell P ),
anb is the coefficient of the neighboring cells of the cell P, and
� is the constant part of the source term (S = Sc + SP X) and
of the boundary conditions.

Grid independency is performed using the simulation of
the droplet breakup problem. At the moment that the droplet
deforms in the center of junction, the droplet profile is
compared in various grid sizes. The results of the comparison
are shown in Fig. 5. As seen in Fig. 5, for the grids with more
than 5298 nodes, the results are grid independent.

In a symmetric T junction, for the lengths of the droplet
before arriving at the center of the junction that are smaller
than a specific value (critical length), the droplet does not
break. Leshansky and Pismen [45] have derived a relation
for droplet critical length in a symmetric T junction as a
function of the capillary number (l/w = 1.3 Ca−0.21). For
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FIG. 6. (Color online) Droplet volume ratio as a function of the
valve ratio. Analytical results [Eq. (29)] have very good agreement
with the numerical results. In the valve ratios smaller than 0.65,
the droplet does not break. The numerical simulation is done for
Ca = 0.01 and the initial length of the droplet is equal to 6w.

checking the accuracy of our numerical results, their problem
[45] was simulated and the results were compared with their
analytical relation and very good agreement was observed [41].
Also, Bretherton [46] has reported the droplet velocity for a
moving droplet through a circular tube and derived as U =
Ū [1 + 1.29(μcU/σ )2/3] with U as the droplet velocity and σ ,
μc, and Ū as the surface tension between two fluids, viscosity,
and average velocity of continuous fluid, respectively. For
verifying the accuracy of our simulation, we also compared
our numerical results with the relation of Bretherton and very
good agreement was achieved [41].

V. RESULTS AND DISCUSSION

In this section, the results of the analytical analysis
are presented and compared with the numerical solution.
Operating conditions have important effects on the droplet
performance [54]. Thus, we investigate the effect of important
parameters such as valve ratio, inlet velocity of the system,
and initial length of the droplet on the breakup performance of
the droplet in the T junction with the valve.

Figure 6 compares the analytical [Eq. (29)] and numerical
results for the volume ratio as a function of the valve ratio
and very good agreement is evident. The numerical results
show that there are two regions in Fig. 6. Region 1 is the
breakup region and includes the valve ratios larger than 0.65
and region 2 is the nonbreakup region and includes the valve
ratios smaller than 0.65. As seen, the analytical theory cannot
predict the boundary of the breakup and nonbreakup regions.
For prediction of this boundary, a more sophisticated approach
is required to analyze the surface tension and inertial forces
when the droplet is deforming in the center of the junction. An
example of the droplet motion in regions 1 and 2 is depicted
in Fig. 6. With respect to Fig. 6, the volume ratio increases by
increasing the valve ratio.

A sample of the droplet breakup process is illustrated in
Fig. 7. As can be seen in Fig. 7(f), after droplet breakup,
two large vortexes are generated in the continuous fluid in the
center of the junction. Vortex generation is the result of the
fast motion of the fronts of the new droplets after breakup.
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FIG. 7. (Color online) A sample of the long-droplet breakup
process. The streamlines are depicted in the figure.

Figure 8 illustrates the analytical [Eqs. (39) and (40)] and
numerical results of the droplet length as a function of time
at the valve ratios 0.7, 0.8, and 0.9 and very good agreement
exists. The numerical results of Fig. 8 are related to a T junction
with channel width w = 20 × 10−6m, droplet initial length
6w, and inlet velocity of the system 0.04 m/s. As is evident
in Fig. 8, the droplet length increases linearly with time. The
slope of the droplet length curves represents the continuous
fluid velocity of branches 1 and 2 [Eqs. (39) and (40)]. On
the other hand, the continuous fluid velocity of the branches
that were calculated using the analytical and numerical results
have a small difference. For this reason, a small difference
exists between the analytical and numerical results in some
cases of Fig. 8. As already stated, for the valve ratios smaller
than 0.65, the droplet does not break and is situated in the
nonbreakup region (Fig. 6). Therefore, for the case λ = 0.7,

the droplet behavior is very close to the nonbreakup mode. In
this case, the part of the droplet that exists in branch 1 tends
to return to branch 2 due to the high continuous fluid velocity
of branch 2 and the surface tension effects. Therefore, during
the breakup process, the growth rate of the droplet length in
branch 1 reduces. Because of this reason, for λ = 0.7 of Fig. 8,
the slope of the L1/w curve reduces after a while.

Also, by calculating the different valve ratio diagrams, one
can conclude that by decreasing (increasing) the valve ratio,
the droplet length of branch 1 decreases (increases) and the
droplet length of branch 2 increases (decreases) because a
smaller (larger) droplet enters branch 1. Also the whole length
of the droplet (Lwhole) does not depend on the valve ratio. The
droplet length defines until breakup moment. After breakup
of the droplet, we do not need the droplet length parameter
because the initial droplet is broken and the process is finished
and we should exit two generated droplets from the system.

Figure 9 illustrates the analytical [Eqs. (39) and (40)] and
numerical results of the droplet length as a function of time in
various initial droplet lengths (Linitial) and inlet velocities of the
system (Uin). For a specific droplet initial length, by increasing
(decreasing) the inlet velocity, the increase rate of the L1, L2,
and Lwhole increase (decrease) because the speed of the droplets
in channels 1 and 2 increases (decreases). Also, by increase
(decrease) of the droplet initial length, L1, L2, and Lwhole

increase (decrease). The results illustrate that during the time
a constant difference exists between two curves with different
droplet initial lengths. Therefore, to decrease the droplet length
and reduce the pressure drop and system manufacturing costs,
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FIG. 9. (Color online) Analytical [Eqs. (39) and (40)] and numer-
ical results of the droplet length as a function of time at inlet velocities
0.04 and 0.08 and initial lengths 6 and 9. The droplet length has been
scaled with the channel width (w).
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pressure drop is calculated as the pressure difference between the inlet
of the system and one of the two outlets. As is seen, by increasing
the symmetry of the geometry, the pressure drop reduces and the
minimum pressure drop relates to the symmetric T junction.

the droplet initial length and inlet velocity of the system should
be reduced as much as possible.

Figure 10 depicts the analytical [Eq. (41)] and numerical
results of the system pressure drop as a function of time in
the valve ratios 0.7, 0.75, 0.8, 0.85, 0.9, 0.95. and 1.0. The
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FIG. 11. (Color online) Analytical [Eq. (41)] and numerical re-
sults of the system pressure drop in various droplet initial lengths (6w

and 9w) and system inlet velocities (0.04 m/s and 0.08 m/s). As can
be seen, the pressure drop in all of the cases does not change by an
increase of the time.
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pressure drop is calculated from the system inlet to the outlet
of the branches. There is a very good agreement between the
analytical and the numerical results. The numerical results are
related to a T junction with the same characteristics of the T
junction that is mentioned in Fig. 8 with Lin = 9w, L = 16w,

μ = 0.00125 Pa s, and σ = 0.005 N/m. Figure 10 illustrates
that the pressure drop has a very low dependence on the time.
Also, by increasing the valve ratio and tending the system to a
symmetric T junction, the pressure drop reduces. Therefore, to
reduce the pressure drop, the valve ratio should be increased
so that the system becomes more symmetric.

Figure 11 depicts the analytical [Eq. (41)] and numerical
solution of the pressure drop as a function of the time in various
droplet initial lengths and system inlet velocities. As is evident
in Fig. 11, the system pressure drop has a large dependency on
the system inlet velocity and by an increase (decrease) of the
inlet velocity, the pressure drop increases (decreases). This is
due to the fact that the system inlet velocity has a significant
effect on the pressure drop of the valves and tubes. Also, the
droplet initial length has a negligible effect on the pressure drop
because the fluid pressure inside the droplet is uniform, as al-
ready stated. Therefore, to reduce the system pressure drop, the
system inlet velocity should be reduced as much as possible.

VI. CONCLUSION

In this paper, we investigated T junctions with valves for
producing unequal-sized droplets. We developed a compre-

hensive analytical theory for the system. Also the geometry
was simulated using a VOF algorithm and a comparison
was performed between numerical and analytical results
and very good agreement was observed. The accuracy of
numerical results was confirmed by comparing the results with
two analytical benchmarks. We derived accurate analytical
relations for calculating the droplet volume ratio, droplet
length (L1, L2, and Lwhole), and pressure drop of the system.
We observed that if the valve ratio becomes less than a specific
value (0.65), the system enters the nonbreakup region. Both
the analytical theory and the numerical results showed that
by decreasing (increasing) the valve ratio, the droplet length
of branch 1 decreases (increases) and the droplet length of
branch 2 increases (decreases), and the whole length of the
droplet remains constant. The results showed that the system
pressure drop does not depend on the time and decreases by
increasing the valve ratio, namely, leading the geometry to
a symmetric T junction. Both the analytical theory and the
numerical results showed that the droplet length in branches 1
and 2 and the whole droplet length increase linearly with time.
Also, it was shown that the growth rate of L2 is greater than
that of L1 and, by decreasing (increasing) the valve ratio, the
growth rate of L1 decreases (increases) and the growth rate
of L2 increases (decreases). As already stated, although the
results of this study belong to 2D systems, based on previous
studies [41,55], similar qualitative results can be expected for
3D systems.
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