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Abstract

The effect of interfacial resistance on the effective conductivity of a multi-phase composite material was studied. The
composite under study is composed of a matrix surrounding different types of circular cylinders arranged in rectangular order.
It was assumed that the interfacial resistance is concentrated on the surface of the cylinders. For any direction of calculating
the effective conductivity of the system, a condition was found in which the effect of cylinders of one type can be neglected.
This condition may be estimated /< k — 1, whereR andk are the non-dimensional interfacial resistance and the relative
conductivity of the neglected cylinders, respectively. The ddsek — 1 applies when the same relation exists between the
interfacial resistance and conductivity of all types of cylinders.
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Multi-phase systems, which consist of inclusions of Since the problem of calculating dielectric constant is
different shapes and properties embedded in a matrix, mathematically identical to that of calculating thermal
can be found in awide range of practical processes andor electrical conductivity [6,7], similar results can be
are of considerable technological importance. Start- expected.
ing with the work of Maxwell [1] and Rayleigh [2], Most studies have assumed that the interface is
who considered the problem of calculating the effec- ideal, but the interfacial resistance may occur due
tive conductivity of two-phase systems composed of to a variety of phenomena [8], such as the presence
spheres and cylinders, McPhedran later extended theof a thin gap with a third material between the
discussion to three-phase composites having the CsClinclusions and the matrix [9] and disparity in the
structures [3]. More recently, Whites et al. [4,5], in physical properties [10] (Kapitza resistance). Taking
the context of the dielectric constant, have developed this effect into account is very important, since the
a formulation for the efficient numerical calculation effective conductivity may change significantly, and
of the effective property of multi-phase composites. a system with conducting inclusions may behave like

one that has non-conducting inclusions.
Chiew [8] showed that for composite materials with
~* Corresponding author. a random array of uniform spherical inclusions, there
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whereBéﬂi1 are unknownsSén are the lattice sums
[1] over cylinders of type, §;; represents the Kro-
necker delta (1 for = j, otherwise 0) and,, ,,
which can be referred to as multipolar polarizabilities,

@ are of the form

; _l—ki—l—Ri(Zn—l) (3)
21Tk + Ri(2n—1)°

By applying the Fourier law, the effective conduc-
tivity of the system can be derived as follows:

<

Fig. 1. The structure of the three-phase composite under study.

not sense the presence of the inclusions. Studies into

1, p2
the behavior of composites that consist of periodic f, —1 — 2 (By + By) 4
arrays of uniform spheres [11,12] and random and bEext

periodic arrays of uniform cylinders [13,14] revealed or more generally, for the case Mtypes of cylinders
that for all these cases a critical situation arises if in the unit cell ask, = 1 — 2712 'y 1/(bEext) The
the non- dlmenSIOnal InterfaCIal I’eSIStance betWeen the Va|ues OfBl and BZ can be obta|ned numenca”y by

inclusions and the matrix is equal to the relative solving the algebra|c system of equations given in (2),
conductivity of the inclusions minus one. however, coarsely truncating (2), we may explicitly
Here, we extend the discussion to multi-phase com- gerive these values. If we perform a triangular trun-
posite materials. In order to simplify the presenta- cation of the second order of (2) and use the resultants
tion, let us consider a three-phase system that con- Bl and32 in (4), we can obtain an analytical relation

sists of a matrix and two types of circular cylindri-  for the effective conductivity, which can be applied to
cal inclusions that are arranged in rectangular order |gy-yolume fractions, i.e.,

with periodicities equal to a unity in the-direction

and b in the x-direction, as depicted in Fig. 1. Let 2 2fi

us assume that a uniform field of magnituklg: has ke=1- Z (hiro—s, — EiEa—5. )] (ho—s) — E2_g.)
been applied along the-axis in the negative direc- i=1 TR e 2 ’2(5)
tion. At the surface of any cylinder of typei = 1, 2), with

we may consider a dimensionless interfacial resis- L

;asnfcoﬁlé\}vi] ,R;, and express the boundary conditions A= y{ teifi— Czyéfi4 _ C3y32—5i2ﬁf23 e (6)

§i=cafi —os(rifi+va 2 fifS ), (")

where f; denotes the volume fraction of cylinders
of type i. The constants for the cage= /3 for
wherea and k represent the radius and the relative deriving the effective conductivity in the-(parallel)
conductivity of cylinders, respectivelyf’ shows the and y-(perpendicular) directions are listed in Table 1,
temperature function ana refers to the matrix. Us-  calculating highly accurate values for the lattice sums
ing the Rayleigh method for the purpose of solving the using integral representation technique [16].

Laplace equation through the system provides a sys-  Fig. 2 shows the results for the effective conduc-
tem of algebraic equations in which théh equation tivity in the presence of the interfacial resistance. The

oT; 0T,
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Table 1
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The calculated values forq, ..., cg used in the analytical for-

mula (5) for determining the effective conductivity in the parallel

and perpendicular directions for the case +/3

Parallel Perpendicular
c1 0.187018134 1812981866
c2 1.310523128 110523128
c3 1.310523128 1B10523128
ca 1.812981866 (187018134
c5 —1.310523128 —1.310523128
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Fig. 2. The contours of the effective conductivity with respect to the
interfacial resistance of the cylinderg, = 0.4, fo =0.2,k1 = 101,
ko = 101 andb = +/3. As can be seen for the cases in which the
interfacial resistances are very large, the effective conductivity of
the system is less than the conductivity of the phasesk(sed).4).

= 0, the system is subject to situations in which
the effect of the inclusions can be neglectéd= 1
in Fig. 2). Of these states, the caBp= B2 = 0 is of
particular interest. This case occurs whgn=k; — 1
(i =1,2),and as a result based on Eq. (3) the dipole
polarizabilities(yll, yf) are zero. Obtaining a value of
zero for the dipole polarizabilities means that the state
of the system resembles that of a system of perfect in-
terfaces which is made up of cylinders the conductivity
of which is equal to a unity. Therefore, we may expect
that the effective conductivity would be independent
of the volume fractions and the direction of the calcu-
lation of the effective conductivity.

While the effect of both types of cylinders can be
exactly neglected wheR; = k; —1 (i = 1,2), in
general the effect of the inclusions of typgi = 1
or 2) cannot be neglected when onky = k; — 1.

In other words, systems with; = 1, R; = 0 (two-
phase system) antd, R; = k; — 1 (three-phase sys-
tem) are not equivalent wheRo_s,, # ko_5, — 1.
Although for both casesB! is zero and the effec-
tive conductivity can be calculated simply by using
ke=1-— Zan_‘S"z/(bEext) but for the imperfect in-
terface case, the termBérhl (n > 1) are not zero
and are present in the procedure of the calculation of
Bf_‘s"z, as is evident in Eq. (2). For the perfect inter-
face case, all the terms @"énfl (n > 1) are zero and

do not affect the value oBf"S"z. This means that the
field distributions inside the matrix for the two- and
three-phase systems may be dissimilar. The degree of
discrepancy can only be numerically determined and
depends on the geometrical considerations, resistance
and conductivity of the inclusions. Fig. 3 shows a com-

This is because under these conditions the cylinders act as cylinders parison between the effective conductivity of the two

the conductivity of which is less than that of the matrix.

volume fractions aref; = 0.4 and f> = 0.2, the con-
ductivities of the cylinders were assumed toie=
101, k2 = 101, and the periodicity in the parallel di-
rection isb = +/3. The effective conductivity was de-
rived numerically by solving Eq. (2) and then applying
Eq. (4). 100 unknowns aB | (i = 1,2) were con-

systems for a series of given data. As can been seen,
the results for the three-phase system underestimate
the conductivity of the two-phase system. The reason
can be understood when considering that for the three-
phase casgzz"n_1 > 0 (n > 1), while for the two-phase
one they are zero. Increasinf increases the error,
since the higher-order terms play an important role
in the response of the system. In the dilute limit, the

sidered in the process of the solution. As can be seen,SYStems can be used equivalently. This is also evident

the effective conductivity of the system can be highly
affected, and based on the valuesmif and R, the
system may yield a conductivity outside the limit of
the conductivity of the phases. Providing trﬁ% +

‘from Eq. (5), as ignoring the higher orders for the case
Vl =0 givesk, =1—2f>_5,/(1+ cly ~9%i2) which

is the conductivity of the system, which neglects the
effect of the type-inclusions.
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Fig. 3. The effective conductivity of the two- and three-phase
systems. For the three-phase systems 101,k» = 101, R1 = 10,

Ry = kp — 1 =100 andb = +/3. The two-phase system consists of
the matrix and type-one cylinders with the same properties as those
given in the three-phase case.

Fig. 4. The calculated value foRo, in which the effect of
the type-two cylinders can be neglectefl. = 0.45, f> = 0.45,
kq =101,kp = 101 andb = /3.

considered in this study was composed of circular

By reducingR; from the valuek; — 1, we may cylinders_ in a periodic arrangement,. but When t.he
obtain a situation in which the three-phase system results given in Refs. [11-13] are considered, a similar
exactly gives the effective conductivity of the two- ©Outcome can be expected for the case of random
phase one. The expectation of finding such a situation arrangements as_wgll as for that of spherical inclusions
stems from the fact that cylinders the conductivity (randomand periodic).
of which is greater than that of the matrix, boost
the conductivity of the system. Fig. 4 reports such
an interfacial resistance for type-two cylinders as Acknowledgements
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