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Abstract

The effect of interfacial resistance on the effective conductivity of a multi-phase composite material was studi
composite under study is composed of a matrix surrounding different types of circular cylinders arranged in rectangu
It was assumed that the interfacial resistance is concentrated on the surface of the cylinders. For any direction of c
the effective conductivity of the system, a condition was found in which the effect of cylinders of one type can be ne
This condition may be estimated byR � k − 1, whereR andk are the non-dimensional interfacial resistance and the rel
conductivity of the neglected cylinders, respectively. The caseR = k − 1 applies when the same relation exists between
interfacial resistance and conductivity of all types of cylinders.
 2003 Elsevier Science B.V. All rights reserved.
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Multi-phase systems, which consist of inclusions
different shapes and properties embedded in a ma
can be found in a wide range of practical processes
are of considerable technological importance. St
ing with the work of Maxwell [1] and Rayleigh [2]
who considered the problem of calculating the eff
tive conductivity of two-phase systems composed
spheres and cylinders, McPhedran later extended
discussion to three-phase composites having the C
structures [3]. More recently, Whites et al. [4,5],
the context of the dielectric constant, have develo
a formulation for the efficient numerical calculatio
of the effective property of multi-phase composit
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Since the problem of calculating dielectric constan
mathematically identical to that of calculating therm
or electrical conductivity [6,7], similar results can
expected.

Most studies have assumed that the interfac
ideal, but the interfacial resistance may occur d
to a variety of phenomena [8], such as the prese
of a thin gap with a third material between t
inclusions and the matrix [9] and disparity in th
physical properties [10] (Kapitza resistance). Tak
this effect into account is very important, since t
effective conductivity may change significantly, a
a system with conducting inclusions may behave
one that has non-conducting inclusions.

Chiew [8] showed that for composite materials w
a random array of uniform spherical inclusions, th
may exist a critical situation in which the system do
hts reserved.
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Fig. 1. The structure of the three-phase composite under stud

not sense the presence of the inclusions. Studies
the behavior of composites that consist of perio
arrays of uniform spheres [11,12] and random a
periodic arrays of uniform cylinders [13,14] reveal
that for all these cases a critical situation arises
the non-dimensional interfacial resistance between
inclusions and the matrix is equal to the relat
conductivity of the inclusions minus one.

Here, we extend the discussion to multi-phase co
posite materials. In order to simplify the presen
tion, let us consider a three-phase system that c
sists of a matrix and two types of circular cylind
cal inclusions that are arranged in rectangular or
with periodicities equal to a unity in they-direction
and b in the x-direction, as depicted in Fig. 1. Le
us assume that a uniform field of magnitudeEext has
been applied along thex-axis in the negative direc
tion. At the surface of any cylinder of typei (i = 1,2),
we may consider a dimensionless interfacial re
tance [15],Ri , and express the boundary conditio
as follows:

(1)
ki

Riai
(Ti − Tm)= −ki ∂Ti

∂r
= −∂Tm

∂r
, r = ai,

wherea and k represent the radius and the relat
conductivity of cylinders, respectively.T shows the
temperature function andm refers to the matrix. Us
ing the Rayleigh method for the purpose of solving
Laplace equation through the system provides a
tem of algebraic equations in which thenth equation
(n= 1, . . . ,∞) of the set reads

Bi2n−1

γ i2n−1a
4n−2
i

+
∞∑
m=1

(
2n+ 2m− 3

2n− 1

)

(2)

× (
S1

2n+2m−2B
i
2m−1 +S2

2n+2m−2B
2−δi2
2m−1

)=Eextδn1,

whereBi2n−1 are unknowns,Si2n are the lattice sum
[1] over cylinders of typei, δij represents the Kro
necker delta (1 fori = j , otherwise 0) andγ i2n−1,
which can be referred to as multipolar polarizabiliti
are of the form

(3)γ i2n−1 = 1− ki +Ri(2n− 1)

1+ ki +Ri(2n− 1)
.

By applying the Fourier law, the effective condu
tivity of the system can be derived as follows:

(4)ke = 1− 2π(B1
1 +B2

1)

bEext

or more generally, for the case ofN types of cylinders
in the unit cell aske = 1 − 2π

∑N
i=1B

i
1/(bEext). The

values ofB1
1 andB2

1 can be obtained numerically b
solving the algebraic system of equations given in
however, coarsely truncating (2), we may explici
derive these values. If we perform a triangular tru
cation of the second order of (2) and use the result
B1

1 andB2
1 in (4), we can obtain an analytical relatio

for the effective conductivity, which can be applied
low-volume fractions, i.e.,

(5)

ke = 1−
2∑
i=1

2fi
(λiλ2−δi2 − ξiξ2−δi2)/(λ2−δi2 − ξ2−δi2)

with

(6)λi = 1

γ i1

+ c1fi − c2γ i3f 4
i − c3γ 2−δi2

3 fif
3
2−δi2,

(7)ξi = c4fi − c5
(
γ i3f

4
i + γ 2−δi2

3 fif
3
2−δi2

)
,

where fi denotes the volume fraction of cylinde
of type i. The constants for the caseb = √

3 for
deriving the effective conductivity in thex-(parallel)
andy-(perpendicular) directions are listed in Table
calculating highly accurate values for the lattice su
using integral representation technique [16].

Fig. 2 shows the results for the effective cond
tivity in the presence of the interfacial resistance. T
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Table 1
The calculated values forc1, . . . , c5 used in the analytical for
mula (5) for determining the effective conductivity in the paral
and perpendicular directions for the caseb= √

3

Parallel Perpendicula

c1 0.187018134 1.812981866
c2 1.310523128 1.310523128
c3 1.310523128 1.310523128
c4 1.812981866 0.187018134
c5 −1.310523128 −1.310523128

Fig. 2. The contours of the effective conductivity with respect to
interfacial resistance of the cylinders.f1 = 0.4, f2 = 0.2, k1 = 101,
k2 = 101 andb = √

3. As can be seen for the cases in which
interfacial resistances are very large, the effective conductivity
the system is less than the conductivity of the phases (seeke = 0.4).
This is because under these conditions the cylinders act as cylin
the conductivity of which is less than that of the matrix.

volume fractions aref1 = 0.4 andf2 = 0.2, the con-
ductivities of the cylinders were assumed to bek1 =
101, k2 = 101, and the periodicity in the parallel d
rection isb = √

3. The effective conductivity was de
rived numerically by solving Eq. (2) and then applyi
Eq. (4). 100 unknowns ofBi2n−1 (i = 1,2) were con-
sidered in the process of the solution. As can be s
the effective conductivity of the system can be hig
affected, and based on the values ofR1 andR2, the
system may yield a conductivity outside the limit
the conductivity of the phases. Providing thatB1

1 +
B2
1 = 0, the system is subject to situations in whi

the effect of the inclusions can be neglected (ke = 1
in Fig. 2). Of these states, the caseB1

1 = B2
1 = 0 is of

particular interest. This case occurs whenRi = ki − 1
(i = 1,2), and as a result based on Eq. (3) the dip
polarizabilities(γ 1

1 , γ
2
1 ) are zero. Obtaining a value o

zero for the dipole polarizabilities means that the s
of the system resembles that of a system of perfec
terfaces which is made up of cylinders the conductiv
of which is equal to a unity. Therefore, we may exp
that the effective conductivity would be independe
of the volume fractions and the direction of the calc
lation of the effective conductivity.

While the effect of both types of cylinders can
exactly neglected whenRi = ki − 1 (i = 1,2), in
general the effect of the inclusions of typei (i = 1
or 2) cannot be neglected when onlyRi = ki − 1.
In other words, systems withki = 1, Ri = 0 (two-
phase system) andki , Ri = ki − 1 (three-phase sys
tem) are not equivalent whenR2−δi2 �= k2−δi2 − 1.
Although for both cases,Bi1 is zero and the effec
tive conductivity can be calculated simply by usi
ke = 1 − 2πB2−δi2

1 /(bEext) but for the imperfect in-
terface case, the termsBi2n−1 (n > 1) are not zero
and are present in the procedure of the calculatio
B

2−δi2
1 , as is evident in Eq. (2). For the perfect inte

face case, all the terms ofBi2n−1 (n > 1) are zero and

do not affect the value ofB2−δi2
1 . This means that th

field distributions inside the matrix for the two- an
three-phase systems may be dissimilar. The degre
discrepancy can only be numerically determined
depends on the geometrical considerations, resist
and conductivity of the inclusions. Fig. 3 shows a co
parison between the effective conductivity of the t
systems for a series of given data. As can been s
the results for the three-phase system underestim
the conductivity of the two-phase system. The rea
can be understood when considering that for the th
phase caseγ i2n−1> 0 (n > 1), while for the two-phase
one they are zero. Increasingfi increases the erro
since the higher-order terms play an important r
in the response of the system. In the dilute limit,
systems can be used equivalently. This is also evi
from Eq. (5), as ignoring the higher orders for the c
γ i1 = 0 giveske = 1 − 2f2−δi2/(1 + c1γ 2−δi2

1 ), which
is the conductivity of the system, which neglects
effect of the type-i inclusions.
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Fig. 3. The effective conductivity of the two- and three-pha
systems. For the three-phase system,k1 = 101,k2 = 101,R1 = 10,
R2 = k2 − 1 = 100 andb = √

3. The two-phase system consists
the matrix and type-one cylinders with the same properties as t
given in the three-phase case.

By reducingRi from the valueki − 1, we may
obtain a situation in which the three-phase sys
exactly gives the effective conductivity of the tw
phase one. The expectation of finding such a situa
stems from the fact that cylinders the conductiv
of which is greater than that of the matrix, boo
the conductivity of the system. Fig. 4 reports su
an interfacial resistance for type-two cylinders
a function of the interfacial resistance of type-o
cylinders for another series of given data. As can
seen, only whenR1 = k1 − 1, we getR2 = k2 − 1.

For the case ofN types of cylinders in the uni
cell, by extending Eqs. (2) and (4), it can be sho
that whenRi = ki − 1 (i = 1, . . . ,N), the effect
of all types of cylinders can be neglected and
system simply behaves like a homogeneous sys
with the conductivity of the matrix. In other cases, t
resistance, in which the effect of type-i cylinders in the
direction of the calculation the effective conductiv
can be neglected, may be estimated byRi < ki − 1.

In summary, the effective conductivity of a mult
phase composite material that is made up of a peri
structure in the presence of the interfacial resista
was studied. The situations in which the effect of o
or all types of cylinders can be neglected due to
interfacial resistance were explained. The struc
Fig. 4. The calculated value forR2, in which the effect of
the type-two cylinders can be neglected.f1 = 0.45, f2 = 0.45,
k1 = 101,k2 = 101 andb = √

3.

considered in this study was composed of circu
cylinders in a periodic arrangement, but when
results given in Refs. [11–13] are considered, a sim
outcome can be expected for the case of rand
arrangements as well as for that of spherical inclusi
(random and periodic).
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