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Abstract. A multi-component lattice Boltzmann scheme is used to investigate
the dynamics of a wettability driven droplet within a microchannel. The driving
force for the motion is created by a stepwise change in the wettability of the
channel walls. Moreover, an analytical solution is developed for evaluation of the
dynamics of the droplet inside the channel. The effects of various parameters
such as the height of the channel, the wetting pattern of the channel walls, the
viscosity and the density ratio on the dynamics are studied. Also, the effect of
grooves of different sizes on the channel surfaces on the dynamics of the droplet is
investigated for both hydrophilic and hydrophobic surfaces. Finally, the effect of
an obstacle in the channel on the motion of the droplet is studied. The numerical
results are compared with the analytical solutions and close agreement between
the results is found.
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1. Introduction

Research concerning the transport of droplets inside microchannels is relevant for various
applications. For example, droplets can be used for feeding micromotors, in lab-on-a-chip
instruments and for sampling the materials in biological applications [1, 2]. Advances in
micromanufacturing and nanomanufacturing have created the possibility of using more
efficient methods to transport droplets.

In conventional methods such as applying a pressure gradient, the force required
to transport the droplets substantially increases at small scales, as in these systems
the surface to volume ratio is very large and the Reynolds and capillary numbers are
small [3]. However, a change in the wettability of the channel walls can be used to drive
droplets inside the channels [3, 4]. It is well known that if a droplet is positioned on
the boundary of two parts of a chemical step, since the equilibrium contact angle of the
droplet on the parts is not equal, a net surface force is created that is able to drive
the droplet [5]–[8]. In this manner it is possible to produce a continuous motion inside
the channel by providing a chemical gradient [5, 6, 8, 9]. There are various experimental
techniques for providing a wettability change on a surface. These methods include surface
coating [10], irradiation [11], electrochemical operations [12] and applying surfactants [13].
A chemical step is a pattern that because of its simplicity of production and its application
in various systems has been given attention [14]. A chemical step can easily be produced
by covering a part of a wettable surface with a non-wettable material [14].
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Figure 1. A schematic representation of the problem. A 2D droplet (fluid 1) with
length L1 under chemical steps on the top and bottom walls is moving within a
channel with length L. The contact angle of the droplet is equal to θ1 (bottom
left), θ2 (bottom right), θ3 (top right) and θ4 (top left).

The dynamics of droplets on chemically or topographically structured substrates
has been investigated via various numerical techniques [3, 9]. The lattice Boltzmann
method (LBM) has also been used to study droplets on the structured substrates [14,
16, 17, 34]. The motivation for applying LBM for such problems stems from the fact
that the LBM because of its inherent kinetic nature can efficiently handle complex
interfaces and geometries. Moreover, there is no need to consider any assumption for the
relation between the contact angle and the contact line velocity because coalescence of the
contact line is naturally treated by this method. The dynamics of droplets on chemical
surfaces with different forms of wettability patterns has been studied via the lattice
Boltzmann method in [18]. In the study the effect of frequency of wettability changes,
and positions and conditions of the droplets have been determined and discussed [18].
Droplet coalescence driven by wettability gradients is also investigated in [19] and the
velocity field and mechanism of the droplet motion are illustrated. Studying the effect of
a constant volumetric force on a droplet situated in a channel with a chemical surface
has been an effort in this direction. In addition, the effects of the wettability gradient and
roughness gradient have been investigated numerically via the lattice Boltzmann method
and experimentally [34].

As already stated, wetting on the surfaces can have substantial effects on the dynamics
of the droplets at the microscale and nanoscale. In addition, topographic heterogeneities on
the surfaces can considerably affect the dynamics. For single-phase systems it is shown that
the flow rate is influenced considerably by the number, size, and shape of the grooves [20].
Also the presence of grooves can appreciably improve mixing in microdevices [21]. For
two-phase systems there are various numerical researches via LBM that consider the effect
of topographical patterns on the droplet spreading [16, 17, 22]. The motion of the contact
line on topographic substrates is investigated in [23]. The results indicate that the dynamic
contact angles change periodically between two maximum and minimum values and the
velocity is a function of the surface topology. The behavior and dynamics of droplets under
a volumetric force on different heterogeneous surfaces have been investigated in [24, 25].

In the present study we use the lattice Boltzmann method and thoroughly study
the dynamics of 2D droplets inside microchannels. The droplets are driven by an abrupt
wettability change (a chemical step) on the surfaces of the channels. As depicted in figure 1
we consider the cases in which the top and bottom walls have different contact angles. We
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also present an analytical solution for the problem. The effect of the viscosity ratio on the
dynamics, the acceleration process and its dependence on the density ratio of the fluids,
and the estimation of the travel time of the droplets will be investigated. Also in the present
study the effect of topographic heterogeneities in the form of grooves on the velocity and
the drag force exerted on the droplets will be inspected for both the hydrophilic and
hydrophobic surfaces. In addition, the dynamics of droplets in the presence of an obstacle
will be studied.

2. The numerical method

In this section the Shan–Chen multi-component lattice Boltzmann method is introduced
briefly [26, 27]. For any component k the lattice Boltzmann equation, which contains two
steps of collision and streaming, is given as

fka (x+ ea∆t, t+ ∆t) = fka (x, t)− ∆t

τk
[fka (x, t)− fk(eq)

a (x, t)], (1)

where the distribution function fka (x, t) is a scalar quantity which describes the probability
of finding a fluid particle at location x in the direction a and at the time t for the
kth component. Therefore it has a real and non-negative value. ∆t represents the time
increment. In the right-hand side of the equation, τk is the relaxation time of the kth
component in lattice units which is related to the kinematic viscosity as follows:

νk = c2
s(τ − 0.5) (2)

where c2
s = 1/3. In addition, fk(eq)

a (x, t) in the right-hand side is the equilibrium
distribution function and is obtained from the following relation:

fk(eq)
a = waρa

[
1 +

ea · ueq
k

c2
s

+
(ea · ueq

k )2

2c4
s

− ueq
2

k

2c2
s

]
(3)

where ρk =
∑

af
k
a is the macroscopic density for the kth component, and the ea represent

the discrete velocities and for a D2Q9 lattice are given by

ea =


(0, 0) a = 0(

cos
(a− 1)π

2
, sin

(a− 1)π

2

)
a = 1− 4

√
2

(
cos

[
(a− 5)π

2
+
π

4

]
, sin

[
(a− 5)π

2
+
π

4

])
a = 5− 8.

(4)

In equation (3) the wa are the weight coefficients associated with the lattice and for a
D2Q9 lattice have the following values:

wa =


4/9 a = 0

1/9 a = 1, 2, 3, 4

1/36 a = 5, 6, 7, 8.

(5)
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Also in equation (3) the equilibrium velocity of the kth component ueq
k can be calculated

from

ueq
k = u′ +

τkFk

ρk
, (6)

where u′ is a common velocity that is added to the equilibrium velocity of each part and
is given by

u′ =

(∑
k

ρkuk
τk

)/(∑
k

ρk
τk

)
, (7)

with uk the macroscopic velocity (ρkuk =
∑

aeaf
k
a ). In equation (6) Fk is the total force

exerted on the kth component which includes both the fluid–fluid cohesion (F c
k ) and the

fluid–solid adhesion F ads
k , i.e.,

Fk = F c
k + F ads

k . (8)

The total fluid–fluid interaction force at any position x is given by [28]

F c
k (x) = −Gcρk(x, t)

∑
a

waρk̄(x + ea∆t, t)ea, (9)

where Gc is a parameter that controls the adhesion force and k̄ is the other component.
The force exerted by the wall surface is given by [28]

F ads
k (x, t) = −Gads,kρk(x, t)

∑
a

was(x + ea∆t)ea, (10)

where Gads,k represents the strength of interaction between the fluid and the solid and s
is an indicator function which is equal to 1 and 0 for solids and fluids, respectively. On
this basis, by adjusting the parameters it is possible to model different contact angles
(see [29]). The pressure of the total fluid is equal to p = (ρ1 + ρ2)/3 + Gcρ1ρ2/3 [29, 31].
Using Chapman–Enskog expansion [32] the following continuity and momentum equations
can be obtained for the fluid mixture as a single fluid [33]:

∂ρ

∂t
+∇ · (ρu) = 0, (11)

ρ

[
∂ρ

∂t
+ (u ·∇)u

]
= −∇p+∇ [µ(∇ · u + u ·∇)] + ρg, (12)

where ρ =
∑

kρk is the density of the fluid mixture and the velocity of the fluid mixture
is given by ρu =

∑
kρkuk + 1

2

∑
kFk. The dynamic viscosity is given by µ =

∑
kµk.

3. The analytical solution

Considering the importance of the investigations on wettability driven droplets in
microchannels, finding an analytical solution would be very helpful. Also given the
limitations of the original Shan–Chen multi-component model, which is not able to
simulate two fluids with high density and viscosity ratio, it is necessary to determine
the density and viscous effects of the gas phase on the dynamics [33]. In figure 1 the
overall schematic representation of the problem is shown. A channel with height H and
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length L is considered. The fluid 1 with length L1 is placed at the start of the channel.
A bounce-back boundary condition is applied to the top and bottom walls. A periodic
boundary condition is also applied to the left and right sides of the channel. In order to
consider the effects of both fluids the momentum equation for both fluids will be given
as [33]

d(mgug +mlul)

dt
= Fdriv + Fvisc. (13)

Due to the periodicity of the boundaries on the sides of the channel the total mass of
the system is conserved. Also with the incompressibility assumption the right side of
equation (13) will be simplified as follows:

Fdriv + Fvisc = γ(cos θ2 − cos θ1) + γ(cos θ3 − cos θ4)

− 2

(
µlLl

∂u

∂y

∣∣∣∣y=0 − µg(L− Ll)
∂u

∂y

∣∣∣∣
y=0

)
, (14)

where γ represents the surface tension. Assuming Poiseuille flow, namely, u(y) = 6ūy(H−
y)/H2 for both fluids, where ū is the average velocity, equation (13) is reduced to the
following differential equation:

[ρlLl + ρg(L− Ll)]u̇+
12

H2
[ρlνlLl + ρgνg(L− Ll)]u =

γ(∆ cos θ21 −∆ cos θ34)

H
, (15)

where νl and νg are kinematic viscosities of the liquid (fluid 1) and the gas (fluid 2). Ll

stands for the droplet length. By solving the differential equation (15), the velocities and
positions of the droplet during the motion can be obtained. We will examine the validity
of the parabolic profile assumption in the subsequent sections. To solve this equation two
initial conditions are required. We assume that

x(0) = 0 and u(0) = 0. (16)

It can be shown that the solution of the equation (15) can be given by the following
expressions:

xl(t) =
γH(∆ cos θ21 + ∆ cos θ34)

12[ρlνlLl + ρgνg(L− Ll)]
ts(e

−t/ts + t/ts − 1), (17)

u(t) =
γH(∆ cos θ21 + ∆ cos θ34)

12[ρlνlLl + ρgνg(L− Ll)]
(−e−t/ts + 1), (18)

where ts = H2a/(12b) with a and b given by

a = ρlLl + ρg(L− Ll) (19)

b = ρlνlLl + ρgνg(L− Ll) (20)

∆ cos θ21 = cos θ2 − cos θ1 (21)

∆ cos θ34 = cos θ3 − cos θ4. (22)

Equations (17) and (18) suggest that the dynamics of the droplet depends more on the
viscosities than on the densities (the densities appear in the exponential term). As can be
seen, the density ratio of the fluids only appears in a part related to the acceleration of
the droplet (exponential terms in equations (17) and (18)). Such a behavior can also be
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Figure 2. Pressure difference between inside and outside the droplet versus the
inverse of the droplet radius, used to calculate the surface tension and for checking
the Laplace equation (∆p = γ/R). ρl = ρg = 2 and µl = µg = 1/6 and Gc = 0.9.

observed in capillary rising phenomena [33]. Considering equation (17) equal to Ll/2, the
total time of the droplet motion from the step can be calculated.

4. Results and discussion

Before considering different cases for the investigation it would be helpful to check the
accuracy and reliability of the method. Calculation of the surface tension and the contact
angle is very important in studying and analyzing droplets in different flows. In order
to calculate the surface tension and verify the Laplace equation (∆p = γ/R), in our
simulations a droplet in a 100× 100 domain is considered. A periodic boundary condition
is applied to all the boundaries [26, 28]. The simulations were carried out for different
radii of the droplet. The results of the simulations for the droplet with ρl = ρg = 2 and
µl = µg = 1/6 and Gc = 0.9 are depicted in figure 2. The slope calculated from the diagram
of figure 2 is equal to 0.1786 which is in complete agreement with the results reported
in [29]. We also calculated the surface tension via a different method. For a plane interface
it is shown that the surface tension can be given by [30]

γ =

∫
pyy − pxx dy (23)

where the subscripts x and y refer to the transversal and the normal to the interface and
the pressure tensor is given by

pij = c2
s

[
ρ1 + ρ2 +Gcρ1ρ2 + c2

s

Gc

2
ρ1∆ρ2 + c2

s

Gc

2
ρ2∆ρ1 + c2

s

Gc

2
(∇ρ1 · ∇ρ2)

]
δij

− c4
sGc∇ρ1∇ρ2 +Kτ

ij (24)
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Figure 3. A comparison between the contact angles derived from equation (23),
the Laplace equation (∆p = (2γ cos θ)/H) and the density contours. The channel
dimension is equal to 400× 60. ρl = ρg = 2 and µl = µg = 1/6 and Gc = 0.9.

with Kτ
ij given as

Kτ
ij = c4

s

ρ1ρ2

ρ
(τ − 0.5)2

(
∂iρ1

ρ1

− ∂iρ2

ρ2

)(
∂jρ1

ρ1

− ∂jρ2

ρ2

)
. (25)

The value calculated for the surface tension from this method is equal to 0.1757 which is
very close to that derived from the above derived value.

Calculation of the equilibrium contact angle of the droplets in the Shan–Chen model
is another way of checking the accuracy of the simulation results. The geometry consists
of a 400 × 60 domain as depicted in figure 1. A droplet with an initial configuration
in the form of a rectangle is considered inside the channel. The fluid properties such as
the density and viscosity are the same as for the previous case (calculating the surface
tension). Recently a relation for evaluating the contact angle in the Shan–Chen model
was proposed which can yield acceptable results [29]. This relation is suggested for the
cases where the viscosities of the fluids are equal. However, this relation can still predict
the contact angle for the cases with a change in the viscosity reasonably well [35]. This
relation is given as [29]

cos θ1 =
Gads,2 −Gads,1

Gc((ρ1,m − ρ2,d)/2)
, (26)

where the subscripts m and d stand for the main and dissolved densities, respectively. It
should be noted that in all the simulations the coefficient of interaction of each component
with the walls (both the top and bottom walls) is selected as G2 = −G1 because in
this case the results of the simulation are more consistent with equation (26) [29]. In
figure 3 the calculated contact angles for the droplet inside the channel from the density
contour, the Laplace equation and equation (26) are compared. It is evident from the
figure that the results obtained from the density contour and the Laplace equation are in
excellent agreement. Also for the case studied the results show a very close compliance
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with equation (26). In [29] a study for a three-dimensional droplet in channels has been
made. The interested readers can refer to [29, 36], for study of the accuracy and range of
application of equation (26).

In the present study all the contact angle have been calculated from the Laplace law
(∆p = (2γ cos θ)/H) and measuring the density contours near the walls. Equation (26) is
used only for estimating the contact angle.

4.1. The chemical step case with θ1 = θ4 and θ2 = θ3

In this section we study the dynamics of 2D droplets inside the channels under a chemical
step. We will try to compare the numerical results for different conditions, including
various heights of the channel, various viscosity ratios and different contact angles, with
the analytical results (equations (17) and (18)). We first consider a droplet in position
x = 119. After 15 000 time steps the equilibrium contact angles becomes equal to θ1. Then
the equilibrium contact angle of the right side changes to θ2 but there is no change in the
interactions of the channel walls on the left side of the channel (G2 remains unchanged for
the left side of the walls). In the following we use G2,r and G2,l to refer to the interaction
coefficients of the right and the left sides of the chemical step, respectively. Also t = 0
in the diagrams refers to the equilibrium situation (15 000 time steps). Considering the
physics of the problem, if we use the equilibrium velocity of the droplet ue to define the
Reynolds number (Re = ρueH/µ) and capillary number (Ca = µue/γ), the range of the
Reynolds number will be between 0.1 and 2.0, which indicates that the inertial terms have
less effect than viscous terms. In addition, the capillary number changes between 0.01 and
0.02, which is the ratio of viscous terms to the surface tension forces.

4.1.1. The effect of channel height. The channel height is a parameter whose effect on
the dynamics can be very important. It should be noted that for 2D droplets, on changing
the channel height the total driving force does not change and remains constant. This
means that on increasing the height the driving force per unit volume of the droplets
decreases [14].

In figure 4 the results for the displacement and center of mass velocity of the droplet
are shown for different heights (40 and 60) and have been compared with the analytical
predictions, i.e., from equations (17) and (18). In the simulations the density and the
viscosity of the fluids were supposed to be equal (ρl = ρg = 2) and (µl = µg = 1/6). It
should be noted that in both the cases studied, with height 40 and 60, the coefficients
related to interactions between the two components with walls remains fixed and only
the height changes. Initially for all the channel surfaces G = 0.2. After the equilibrium
time for regions of the channel with x > 119, suddenly the value of G2,r changes and we
have G2,r = 0.3 and G2,l = 0.2. These results show that on increasing the channel height
and keeping all the other parameters constant, the dynamics is enhanced and the velocity
of the droplet increases. The analytical solution can predict this behavior well and, as
depicted in figure 4, the numerical results are in close agreement with the analytical
solution. As already reported, the equilibrium contact angle within the channel changes
upon increasing the height and the capillary number [33, 37].
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Figure 4. The center of mass velocity of the droplet for two different heights
(40, 60) and a comparison of the results with those from the analytical solution.
The positions of the center of mass of the droplet versus time are shown in the
inset. For h = 40 the dynamic contact angles are equal to θ1 = θ4 = 59.1◦ and
θ2 = θ3 = 47.1◦ and for h = 60 we have θ1 = 58.3◦ and θ2 = 48.4◦. Gc = 90 in all
the calculations. Note that the calculated contact angles are the dynamic contact
angles.

Figure 5. A comparison between the velocity profile obtained from the simulation
and the parabolic profile assumed in the analytical section. H = 40 and the other
parameters are equal to those considered for figure 4.

In figure 5 we have checked the validity of the parabolic profile assumption considered
in deriving the analytical relation. As can be seen, for all the three sections (x = 60, 140
and 250) the parabolic profile assumption is well borne out. However, our results indicate
that on increasing the velocity the deviation grows.
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Figure 6. The center of mass velocity of the droplet as a function of time for
different wettabilities and a comparison with analytical solutions. The positions of
the center of mass are shown in the inset. Throughout the calculation G2,r = 0.4,
but G2,l takes the following values: 0.1, 0.2 and 0.3.

4.1.2. The effect of surface wettability and the contact angle. In this section the effect
of wettability and the angle of contact between the parts of the chemical step for various
cases are studied. As equations (17) and (18) indicate, the velocity and displacement of
the center of mass of the droplet are proportional to the difference of the cosines of the
step contact angles. Thus, changes in the contact angles can substantially modify the
dynamics. The results shown in figure 6 clearly reveal the effect of the contact angles size
on the displacement of the center of mass of the droplet as a function of time. In all the
calculations ρl = ρg = 2, µl = µg = 1/6 and G2,r = 0.4, but for these samples the dynamic
contact angles are equal to: for the first sample G2,l = 0.3, θ1 = 27.92◦ and θ2 = 40.44◦;
for the second sample G2,l = 0.2, θ1 = 33.41◦ and θ2 = 55.3◦; and for the third sample
G2,l = 0.1, θ1 = 38.4◦ and θ2 = 68.3◦. As can be concluded from figure 6 the maximum
error (3.6%) in predicting the velocity is for the case with G2,l = 0.1. This could be due to
the deviation of the behavior of the system from those assumed for deriving the analytical
solution at large velocities.

4.1.3. The effect of viscosity. It is well known that at the microscale and nanoscale the
Reynolds number is low. This means that viscous forces play an important role in the
problem. Therefore, it is necessary to study the effect of the viscosities of both the fluids
(fluid 1 and fluid 2) on the dynamics. In this section, similar to section 4.1.2, the results
for the dynamics of the droplet are presented for the limiting case of the density and
the viscosity (same density and viscosity). Then the viscosity of the first fluid (the main
fluid) is considered for double and three times the initial value. It should be noted that
one of the problems of the multi-component Shan–Chen method is that the density and
viscosity ratio are not independent and on changing the density the viscosity changes [35].
Therefore, it is not possible to accurately adjust the viscosity ratio. Due to this limitation,
in the simulation τ2 = 1 but τ1 changes, taking the values 1, 1.5 and 2. On this basis,

doi:10.1088/1742-5468/2012/10/P10005 11

http://dx.doi.org/10.1088/1742-5468/2012/10/P10005


J.S
tat.M

ech.(2012)
P

10005

The dynamics of wettability driven droplets in smooth and corrugated microchannels

Figure 7. The center of mass velocity of the droplet as a function of time for
different viscosities and comparisons with analytical solutions. The positions
of the center of mass of the droplet are given in the inset. Throughout the
calculation, Gc = 0.9 and τ2 = 1, but τ1 takes the following values: 1, 1.5 and
2. M also takes the following values: 1, 2.3 and 3.8.

the viscosity ratios for the cases considered are equal to M = µ1/µ2 = 1, 2.3 and 3.8,
respectively. In the simulation, G2,l = 0.2 and G2,r = 0.4. Also the relaxation times and
densities for the second case are τ1 = 1.5, τ2 = 1, ρg = 1.86 and ρl = 2.13, and for the
third case we have τ1 = 2, τ2 = 1, ρg = 2.31 and ρg = 1.796. The velocity and center of
mass of the droplet for these three cases are depicted in figure 7. As the diagrams show,
on increasing the viscosity of the droplet, the velocity and the dynamics of the droplet
reduce. In addition, the analytical solution can predict the velocity and the displacement
of the droplet well. As is evident, at large viscosities the deviation between the analytical
and the numerical results increases (third case). This can be attributed to a finite slip
resulting from the bounce-back boundary condition at such viscosities [34]. It is worth
noting that an increase in error on increasing the viscosity for some analytical relations
has been previously reported [35].

4.2. The chemical step case with θ2 6= θ3 6= θ4 and θ1 = θ4

The work done for studying the motion of droplets on chemical steps has mostly
concentrated on situations where the conditions are equal perpendicular to the channel
axis and wettability changes only horizontally along the channel, namely, θ1 = θ4 and
θ2 = θ3 [14]. For a thorough study we rather consider a more general case and suppose
that the contact angles on the right sides of the top and bottom walls are different,
namely, θ2 6= θ3. To investigate the contact angle effect, all the parameters were kept
constant and only the parameter G2,r for the top wall is changed, and its effect on
the center of mass velocity of the droplet is studied. In the calculations, ρl = ρg = 2,
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Figure 8. The center of mass velocity of a droplet as a function of time and
a comparison with the analytical solutions for an asymmetric condition of the
contact angles on the top and bottom walls. G2,l,b = G2,l,t = 0.2 and G2,r,b = 0.4.
G2,l,t is changed to obtain different values for θ3.

Figure 9. The center of mass velocity of the droplet as a function of its position.
G2,l,b = G2,l,t = 0.2 and G2,r,b = 0.4. G2,r,t is changed to provide different values
for θ3.

µl = µg = 1/6, G2,l,b = G2,l,t = 0.2 and G2,r,b = 0.4, where the subscripts t and b stand
for the top and bottom walls, respectively. G2,r,t takes different values, creating different
contact angles (different θ3). Taking into account the capability of the analytical solution
it is straightforward to compare the numerical results with the analytical outcomes. In
figure 8 a comparison between the numerical and the analytical results has been performed
for the center of mass velocity of the droplet as a function of the time. In figure 9 the
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Figure 10. A schematic representation of the situation for the droplet within the
channel with grooved surfaces. θ1 = θ4, θ2 = θ3. In all the cases τ2 = 1 but τ2

takes the values 0.1, 1.5, 2.0. The grooves have the same height h and width wp.
The distance between the grooves is equal to w.

center of mass velocities versus center of mass positions are shown. As can be concluded
from the results of figures 8 and 9 and also from the analytical solution, on increasing the
wettability of the right wall, the velocity of the droplet increases.

4.3. The effect of grooves

The effect of grooves on the dynamics of droplets within the channels and also in capillary
filling has recently been given attention [16, 17, 22, 23, 38]. In [24, 25], body force driven
droplets were considered and the effect of surface grooves and the wetting on the dynamics
were investigated via LBM. In this section we consider the effects of the grooves on
wettability driven droplets. Figure 10 illustrates the geometrical parameters involved in
the problem for studying the effect of grooves. As depicted, for both the top and bottom
walls a chemical step is applied and the bottom wall is grooved. We study the effect of
height h, distance between the grooves w and width of the grooves wp on the dynamics.
The total numbers of grid points considered in the problem are 300× 50 in the horizontal
and vertical directions, respectively.

4.3.1. The chemical step on both the channel walls (θ1 = θ4 and θ2 = θ3). We first
consider cases where the top and bottom walls are hydrophilic. The contact angles are
considered to be θ1 = θ4 = 33.37◦ and θ2 = θ3 = 55.57◦. Initially the groove widths wp
are kept fixed equal to 8 and the effects of h and w are studied. Then the effect of wp is
investigated. Three grooves with (h×w) equal to (4× 4), (4× 8) and 8× 4 are the three
samples that we have considered.

Figure 11 shows that on increasing the distance between the grooves from four to eight
lattice units, the maximum velocity approximately remains the same but the minimum
velocity is reduced more when the distance is larger. This can be associated with the larger
distance that the droplet should move to fill the grooves. Also on increasing the height,
the velocity of the droplet decreases. This indicates an increase of the drag with height
because the fluid should occupy larger space and, as a result, its velocity decreases. Similar
behavior has also been observed for droplets under a volumetric force [25]. It should be
noted that the first peak in figure 11 is the result of a chemical step on the smooth surface
which is shown in figure 10. Now the effect of wp will be studied. In figure 12 the velocity
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Figure 11. Velocity changes of the center of mass of the droplet on grooved and
hydrophilic surfaces and the effect of the height and the distance between the
grooves on the dynamics. ρl = ρg = 2 and µl = µg = 1/6 and Gc = 0.9.

Figure 12. Velocity changes of the center of mass of the droplet on hydrophilic
surfaces and the effect of the width of the grooves on the dynamics. ρl = ρg = 2
and µl = µg = 1/6 and Gc = 0.9.

of the droplet as a function of the position of the center of mass of the droplet is given
for different values of wp. The height and the distance between the grooves are equal
to 4. From the results of figure 12 it can be seen that on increasing the distance of the
grooves the velocity of the droplets increases and tends to the equilibrium velocity over
a smooth surface. This is an expected result, as on increasing the distance the droplets
have more time to reach their previous dynamic contact angle. However, for grooves with
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Figure 13. Velocity changes of the center of mass of the droplet on hydrophobic
surfaces and the effect of the height and the distance between the grooves on the
dynamics. ρl = ρg = 2 and µl = µg = 1/6 and Gc = 0.9.

less distance the droplets are not able to retrieve their profile and quickly enter the next
groove, and this reduces the velocity.

Now we assume that the top and bottom walls are hydrophobic. The contact angles
are θ1 = θ4 = 123.8◦ and θ2 = θ3 = 145.59◦. Like in the previous part we will consider the
effect of the distance between the grooves. Figure 13 shows that on increasing the distance
from four to eight lattice units the maximum velocity smoothly reduces. This behavior
contrasts with the behavior observed for hydrophilic surfaces. Also increasing the height
does not change the maximum velocity appreciably. In hydrophilic surfaces the front edge
of the droplet can touch the bottom of the grooves but in hydrophobic surfaces the front
edge jumps from one groove to another groove and does not touch the bottom of the
groove.

Now we consider the effect of groove width on the dynamics. Four different widths (4,
8, 12 and 16) are considered in the study and the height and distance between the grooves
are supposed to be constant, equal to 4. The results are presented versus center of mass
of the droplet in figure 14. It can be seen that for a hydrophobic surface, on increasing
the width, the velocity of the droplet reaches its initial value.

A relation that can be used to estimate the contact angle on chemical substrates is
the Cassie relation that is given as [39]

cos θc = (1− r) cos θ0 − r, (27)

where θc is the contact angle on chemical substrates, θ0 represents the contact angle on
homogeneous substrates and r = w/(w + wp). It is seen that on increasing wp, r reduces
and the contact angle tends to that of a smooth surface. This can explain the velocity
increasing and reaching that of a smooth surface when wp increases.

In summary, it can be concluded that for hydrophilic surfaces, changing the distance
between the grooves does not change the dynamics appreciably and the velocity of the
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Figure 14. Velocity changes of the center of mass of the droplet on hydrophobic
surfaces and the effect of the width of the grooves on the dynamics. ρl = ρg = 2,
µl = µg = 1/6 and Gc = 0.9.

droplet after each groove reaches its initial value. However, for hydrophobic surfaces, on
increasing the distance the velocity decreases. Increasing the height of the grooves weakens
the dynamics for hydrophilic surfaces but for hydrophobic surfaces the dynamics does not
change appreciably.

4.3.2. The chemical step on the top wall (θ1 = θ2). In all the simulations done so far,
chemical step heterogeneity is applied for both the top and the bottom walls. Here we
suppose that the chemical step is applied on the top wall only. The interaction coefficients
for the right and the left parts of the top wall are G2,r,t = 0.55 (θ3 ≈ 10◦) and G2,l,t = −0.1
(θ4 ≈ 102◦). Three situations for the bottom wall were considered, namely, θ1 = θ2 = 59.2◦,
θ1 = θ2 = 90◦ and θ1 = θ2 = 111.3◦. As illustrated in figure 15, in all the cases the droplet
is pinned on the bottom wall and does not move further, while on the top wall, the droplet
is stretched. This behavior continuous throughout the simulation until the droplet on the
top wall reaches the end of the side of the simulation domain.

4.4. The effect of obstacles on the dynamics (θ1 = θ4, θ2 = θ3)

Obstacles are considered in the channels for different purposes including breakup of a
droplet into two smaller droplet. In this section we investigate the effect of an obstacle on
the dynamics. As depicted in figure 16, a rectangular obstacle with width h0 and length
L0 is placed in the middle of the channel. In the simulation all the contact angles of the
obstacle were supposed to be 90◦. The parameters involved in the problem are ρl = ρg = 2,
µl = µg = 1/6, G2,l = 0.1 and G2,r = 0.4. It is more appropriate to define a non-dimensional
parameter h̄ = h0/H and present the results on the basis of this parameter. Figure 17
depicts the displacement of the center of mass of the droplet as a function of time. For
both the top and bottom walls the chemical step is considered. L0 was supposed to be
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Figure 15. The droplet situation within the channel for three different cases and
for different times (t = 6000, 12 000 and 24 000). θ1 and θ2 (θ1 = θ2) take values
of 59.2◦, 90◦ and 111.3◦ for the three cases. The step gradient is only applied on
the top surface.

Figure 16. A schematic representation of the droplet within a channel with an
obstacle. θ1 = θ4 and θ2 = θ3. The rectangular obstacle has length equal to L0

and height equal to h0. The height of the channel is equal to H.

constant, equal to 40, but h̄ was changed from 0.2 to 0.7. As depicted in figure 17, on
increasing h̄ the dynamics weakens. An examination of figure 17 reveals that in almost
all of the cases, after a certain time the slope of the curves becomes slower. This change
of the slope occurs when the droplet breaks up into two parts and this increases the
total solid–fluid surface, and as a result the drag force exerted on the droplet. Figure 18
displays the situation for the droplet before, during and after breakup of the droplets. A
comparison between the results of figures 17 and 18 confirms this fact that the change in
the slope occurs exactly when the droplet breaks up into the parts.

5. Conclusion

We studied the dynamics of droplets inside microchannels under surface forces created
by the chemical steps on the channel walls. A multi-component Shan–Chen lattice
Boltzmann method was used for this purpose. The effects of parameters such as the
channel height, viscosity and density ratio on the results were investigated for smooth
and grooved substrates. Also, an analytical solution was developed for droplets under
chemical heterogeneities in the channels with smooth surfaces. The solution considers a
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Figure 17. Changes of the center of mass of the droplet for different values of h̄
as a function of time. ρl = ρg = 2, µl = µg = 1/6. The coefficients for the top and
bottom walls are equal to G2,r = 0.4 and G2,l = 0.1.

Figure 18. The situation for the droplet inside the channel with the obstacle
before, during and after the change of the displacement slope (see figure 17) for
different heights of the obstacle. In cases a, b and c, h̄ is equal to 0.4, 0.5 and 0.6,
respectively.

general condition, namely, asymmetry of the contact angles on the top and bottom walls,
the viscosity of the gas as the second fluid and the effect of the channel height.

As can be concluded from equations (17) and (18), on increasing the height the
dynamics is enhanced. It should be noted that on increasing the height, the driving
force per unit volume of the droplets decreases [14], but on increasing the height, the
total driving force does not change and the dynamics is affected by other parameters
such as the velocity gradient near the walls (which is a function of the channel height:
∂u/∂y|y=0 = 6ū/H). Then using the Shan–Chen lattice Boltzmann method, the effects of
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height, viscosity ratio and wettability pattern on different cases were studied and were
compared with the analytical solution. Close agreement between the results was observed.

Due to the importance of grooved surfaces we then considered channels with grooves
with different sizes on hydrophilic and hydrophobic surfaces. It was found that on
increasing the height of the grooves, the drag increases, similar to the case with a constant
volumetric force. However, increasing the distance between the grooves (w) does not
affect the maximum velocity. The dynamics of droplets on hydrophobic surface was also
investigated. In contrast to the case for hydrophilic surfaces, on increasing the distance
between the grooves the dynamics weakens. The effect of the width of the grooves on
the dynamics was studied for both the hydrophilic and hydrophobic surfaces. If the
heterogeneity is applied only on the top surface, the droplets are pinned on the grooves and
cannot move further regardless of whether the bottom wall is hydrophilic or hydrophobic.

Finally we studied the dynamics of the droplets in the channels in the presence of an
obstacle. The effect of the geometry on the displacement of the droplet was investigated
and discussed. The results indicate that on applying a chemical step and making local
changes in the contact angles, the droplets can be transported even in the presence of an
obstacle.
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