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Abstract
We report different morphologies of nanodroplets over various topographical features of the
supporting substrates. The effects of different parameters such as the profile of the disjoining
pressure, droplet size and the geometrical parameters are studied and discussed. Also, the
effects of a coating layer on the surface of the substrate are determined. It is demonstrated that
the nanodroplets at some positions are not stable and gradually move to more stable positions
so that the system has less energy. For grooves this results in a series of morphology diagrams
of the nanodroplets over the grooves as a function of the grooves’ width and the liquid volume.

(Some figures may appear in colour only in the online journal)

1. Introduction

The wetting behaviour of a liquid on a solid substrate is
determined by the difference between the cohesive interactions
holding the liquid together and the adhesive interactions
between the liquid and the solid [1]. This is well known, and
has found a variety of uses in different areas including in the
chemical industry, automobile manufacturing, glass, food and
soil science. It also plays a fundamental role in life science,
for instance in the rise of sap in plants, adhesion of parasites
on wet surfaces and wetting of the eye [2].

Generically, most solid surfaces are topographically
(or chemically) heterogeneous. These disorders can have
substantial effects on the wetting behaviour of these surfaces
[3, 4]. Micro- and nanofluidics is another strong driving
force for research on the dynamics of fluids on structured
substrates. The wetting of the solid surfaces can be utilized
to determine precisely defined routes based on the wetting
gradients [5]. Similarly, we can use topographical surfaces
for guiding liquids in micro- and nanofluidic devices [6–8].
Therefore, wetting phenomena on topographically structured
substrates have been the subject of various research efforts
using both the experimental and theoretical approaches [9].
However, despite various research performed on the topic,
the studies are predominantly limited to either microscales
or two-dimensional studies [10–16]. In [10–13] morphology
of a liquid droplet clinging to a step edge, blob and channel
which correspond to localized and delocalized morphological
wetting states at the microscales has been studied. For the

nanoscales phenomena the terms considered in the Young–
Laplace relation are not sufficient to describe the behaviour
of the system [17]. In [14, 15] the effects of different
parameters on the final shape of nanodroplets over two-
dimensional steps without considering the lateral dimension
effects have been investigated numerically. Also, in [16] the
morphology diagram for fluid dots in cylindrical holes for
different holes, aspect ratios and filling degrees were obtained
and the results were compared with the experimental outcomes.
Good agreement between the results were found.

It is obvious that, for most of the cases, in order to have a
thorough understanding of the behaviour of droplets on those
scales a three-dimensional study is necessary. Therefore, in
this study we solve mesoscopic hydrodynamic equations to
study the morphology of the nanodroplets over topographically
structured substrates. The effects of the intermolecular
interactions can be considered in terms of the disjoining
pressure (DJP) [18], � = −∂�(H)/∂H , where the so-
called effective interface potential �(H) is the cost in free
energy per unit area to maintain a wetting film of prescribed
mean thickness H [6]. In contrast to homogeneous substrates
where � is independent of the lateral coordinates, parallel
to the substrate surface, on topographically inhomogeneous
substrates the DJP depends on the lateral coordinates. Since
the lateral variation of the DJP can change the behaviour
of droplets over topographically structured substrates, even
qualitatively, we consider these lateral changes of the DJP in
our study to determine morphology of the droplets [15]. We
discuss the morphology of nanodroplets for three paradigmatic
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Figure 1. The distribution of the DJP over topographical features. The parameters of the DJP (B, C) in parts (a),(b),(c),(d),(e) and (f ) are
(2.667,0), (2.667,−2.5),(2.667,0), (2.667,0) and (1,−2.5), respectively. The lengths (x, y, z) and the DJP are measured in units of b and σ/b.

geometries. First, we start with a three-dimensional step,
which is relatively a simple topography. Afterwards,
we increase the complexity and investigate morphology of
droplets on grooves and the behaviour of the system are
specified for small liquid volume. Finally, the situation of
the nanodroplets on three-dimensional edges and wedges will
be studied. We assume that the fluids are Newtonian and
nonvolatile, namely, the total volume of the fluid (in the film
and the droplet) is considered fixed. We also suppose that
the substrate is completely smooth and uniform in flat parts,
namely, there is no roughness and chemical heterogeneity in
these parts. Although this is not unrealistic [19], through
this assumption we avoid many complexities in our study
such as the hysteresis. We employ the sharp-kink model that
assumes a step-like profile for the density [20]. The surface
tension may depend on the curvature. Such complexities have
been considered in terms of the DJP by correctly modelling
the intermolecular interactions [21]. Since the type of the
intermolecular interactions may be different the dependence on
the curvature is not universal [21]. The densities of the liquid
and the gas phases are considered to be equal to 1000 kg m−3

and 1 kg m−3, respectively. Also, the dynamic viscosities of
the liquid and the gas phases are supposed to be 1e − 6 (Pa s)
and 1.48e − 5 (Pa s), respectively. Changing these properties
may clearly affect the dynamics of the system but since we are
interested only in the final morphologies, considering different
values for these properties will not change the results. The gas–
liquid interface surface tension is assumed to be 0.07 N m−1.
Changing this value will change both the dynamics and the
equilibrium morphologies. However, since our results are
presented based on dimensionless parameters and the surface
tension effects are compared with the intermolecular forces,

one can change the strength of the intermolecular forces instead
of changing the surface tension. We also assume a no-
slip boundary condition at the solid surface and neglect the
influence of the thermal fluctuations [22]. The slip boundary
condition can change the dynamics and is relevant at the
nanoscales but considering no-slip boundary condition, again,
does not change the results.

2. Methodology

The considered approach for studying the morphologies is
essentially composed of two parts. The first part involves
calculation of the DJP and the second part concerns the
simulation of the flow field and deriving the equilibrium
configuration of the gas–liquid interface.

2.1. Models of the heterogeneity

In the following, we describe the applied method for
calculating the DJP over three-dimensional topographic edges,
wedges and steps, as shown in figure 1. Considering that the
fluid particles, as well as the fluid and the substrate particles, are
taken to interact with each other via pair potentials Vαβ , where
α and β refer to the phases, and also assuming additivity of the
intermolecular interactions, the DJP is expressed as [14, 15]

� =
∫

�s

ω(r) d3r, (1)

where �s is the volume of the solid(s) and r is the interatomic
distance. ω(r), which corresponds to the local interaction
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energy difference per unit volume squared between the solid
and the vapour phase, is defined as [23]

ω(ρ) = ρ2
l Vll(r) − ρlρsVsl(r) − ρlρvVlv(r)

+ ρvρsVvs(r) (2)

where the subscripts correspond to liquid (l), substrate (s) and
vapour (v) (or another phase which is positioned above the
liquid phase) and ρ is the particle number densities for each
phase. By neglecting the vapour phase and considering a
coating layer (c) on top of the substrates (s), one can show
that the DJP of the system is given by

� =
∫

�s

[ρl
2Vll(r − r′) − ρlρsVsl(r − r′)] d3r. (3)

In order to facilitate the calculation of the DJP for the
three-dimensional topographical features we decompose them
into contributions from the components. The contribution from
the quarter spaces forming the body (�b) can be calculated
either analytically or numerically. Since many substrates in
the experiments, for modifying the wetting properties of the
substrate, are coated, we assume that the surfaces are coated
with a thin layer of a different material. The contributions
from the thin coating layer (�c) can be considered similar
to the main structure. Considering Lennard–Jones type pair
potentials Vαβ(r) = Mαβ/r12 − Nαβ/r6 and substituting it in
equation (3) leads to

�b,c =
∫

�s

[

Mb,c

|r − r′|12
− 
Nb,c

|r − r′|6
]

d3r, (4)

where Mαβ and Nαβ are material parameters, also 
Mb(c) =
ρl

2Mll −ρlρs(c)Mls(lc) and 
Nb(c) = ρl
2Nll −ρlρs(c)Nls(lc). �s

is the volume of the body and the thin coating layer in the
topographies. The first term dominates close to the surface of
the edge and the second term dominates at large distances from
the substrate.

In order to present the results in a dimensionless form,
we write the lengths in units of b = [2|
Mb|/(15|
Nb|)]1/6,
which for 
Mb > 0 and 
Nb > 0 is the equilibrium wetting
film thickness y0 on the uncoated flat substrate [14, 15]. The
DJP is scaled by σ/b where σ is the liquid-vapour surface
tension. By considering these quantities and combining the
contributions of the building blocks and also the thin coating
layer with thickness d the DJP can be written as

�∗ = C

[ ∫
�∗

bζ

(
45

π |r∗ − r∗′ |12
− 6

π |r∗ − r∗′ |6
)

d3r∗

+ B

∫
�

∗χ
c

(
2

π |r∗ − r∗′ |6
)

d3r∗
]
, (5)

where the asterisk symbol indicates that the relevant quantities
are dimensionless. The subscript ζ refers to the type of the
structure (edge, wedge, etc) and the superscript χ considers
the sides which are coated. Hereinafter to avoid a clumsy
notation we remove the star symbol. In this equation
C = [πb(|
Mb|/45)−1/2(|
Nb|/6)3/2]/σ determines the
strength of the DJP relative to the surface tension and B =
[π
Nd]/[2b4(|
Mb|/45)−1/2(|
Nb|/6)3/2] determines the

strength of the coating layer. In equation (5) we have neglected
the effects of the higher order terms in the coating layer [14].
For an equilibrium wetting with b �= 0, 
Mb � 0 is necessary
but 
Nb can be either positive or negative. Corresponding to

Nb sign we refer to the DJP as the minus and the plus cases.

For the three-dimensional edge and wedge we solve the
first and second terms of equation (5) numerically and then
combine their contributions. Because of the semi-infinite
intervals involved in the integrations (�be = {r ∈ R|x � 0 ∧
y � 0∧z � 0}) we use the Gauss–Laguerre quadrature method
for calculating these integrals. For the three-dimensional step
the procedure is similar to other geometries, but in this case
integrals of equation (5) can be calculated analytically. Since
detailed descriptions for calculating the DJP are given in [15],
we just mention the final expression for a coated step or a two-
dimensional coated edge (�ce = {r ∈ R|x � 0 ∧ y � 0}). In
dimensionless form the DJP is given as

�ce(x, y) = �be(x + b, y + b) + �u
c (x, y) + �r

c(x, y) (6)

where �u
c(x, y) and �r

c(x, y) refer to the DJP contributions
from the coating layers placed on the upper side (u) and the
right part (r) of the edge. Due to the symmetry of the geometry,
the DJP of upper side of the edge �u

c (x, y) is equal to �r
c(y, x)

in the right side of the edge. �u
c and �be are given as:

�u
c (x, y) = b

256y10(x2 + y2)9/2
[128(x2 + y2)9/2

− 315xy8 − 840x3y6 − 1008x5y4 − 576x7y2 − 128x9]

+
b

4y4(x2 + y2)3/2
[−2(x2 + y2)3/2 + 3xy2 + 2x3], (7)

�be(x, y) = 1

256x9y9(x2 + y2)7/2
[−280x6y6(x4 + y4)

− 448x2y2(x12 + y12) − 128(x16 + y16) − 35x8y8

+ 128(x9 + y9)(x2 + y2)7/2 − 560x4y4(x8 + y8)]

+
1

4x3y3(x2] + y2)1/2
[2(x3 + y3)(x2 + y2)1/2

− 2(x4 + y4) − x2y2]. (8)

Using the superposition and combining the DJP for two
quarters, the final form of the DJP for the three-dimensional
step is

�(x, y) = �ce(x, y + h) + �ce(−x, y) − 2�r
c(x, y) (9)

where h is height of the step. In a similar way, by adding all
the contributions, the DJP in a groove with a rectangular cross
section can be given as

�(x, y) = �Be(x, y + h) + �Be(−x, y) − 2�r
Ce(x, y)

− �Be(−x + w, y) + �Be(−(x + w), y + h)

− 2�r
Ce(−(x + w), y), (10)

where w represents the width and h is the height of channel.
The distribution of the resulted DJP is depicted in figure 1.

We derive the DJP in a flat substrate far from
heterogeneities which can be derived by considering h = 0
in equation (9) as

�ch(y) = C

[(
1

y9
∓ 1

y3

)
+

B

y4

]
. (11)
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Figure 2. (a) A typical profile of the DJP for both the plus(dashed lines) and the minus(full lines) case over a flat homogeneous substrate
corresponding to (B = −2) and in units of C; The right vertical axis belongs to the dashed line and the left axis is for fulled line. Part (b)
displays zero values of the DJP for different values of B for both the minus (full line) and the plus (dashed and dotted–dashed lines) cases.
Full and dotted–dashed lines represent stable wetting films and dashed line shows an unstable situation.

Figure 3. Allowable values of θeq for the plus (θ+) and the minus
(θ−) cases. According to the figure, θeq should be in the range of
0◦ � θeq � 180◦.

Values of B and C can be adjusted for arbitrary contact angles
from

cos θ = 1 +
∫ ∞

y0

�ch(y) dy, (12)

where the size of y0, which is the wetting film thickness for
zero DJP, is derived from

1

y9
0

∓ 1

y3
0

+
B

y4
0

= 0. (13)

Figure 2 shows the typical profile of the DJP for both the
minus and the plus cases. Also, figure 3 displays the allowable
values of B and C.

2.2. Governing equations and the numerical method

From one perspective, two main approaches for calculating
free surface flow problems can be identified. In the first

Figure 4. A comparison between the final shape of a droplet
positioned on a step with h = 5, obtained from the present
numerical algorithm and the boundary integral method [15]. The
area of the droplet is equal to 250 and the DJP profile belong to the
plus case with the parameters B = −2.5 and C = 6, corresponding
to θeq = 114.7◦.

approach one uses a dynamic mesh and the boundaries of
the grid form the gas–liquid and other interfaces but in the
second method the interface is moved through a fixed grid. In
this study, we apply a volume of fluid (VOF) based routine
which is basically a fixed-grid method. The VOF method is
based on solving the Navier–Stokes equations together with an
equation for the volume fraction function α value of which is
unity at any point occupied by fluid and is zero otherwise.
It should be noted that for deriving the morphologies it is
not necessary to solve the hydrodynamic equations and an
approach to determine the configuration of the system for
which the energy of the system is minimum is adequate [16].
However, since the behaviour of the system is ultimately
determined by study of the dynamics and in the future studies
our goal is to consider the dynamics, in order to apply a
unique method for both the investigations, we also study the
stationary situations via solving the hydrodynamic equations.
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Figure 5. Droplets positioned on the top and the bottom sides of the step move toward the edge and the wedge regions, respectively, for the
minus case of the DJP. The selected planes (z = 0, x = y) are used in the following figures.

Figure 6. The effect of the DJP profile (B, C) on the configuration of the droplets positioned on the bottom side of the step. The values of B
and C are I (B = 0, C = 1.5), II (B = 0, C = 3) and III (B = 0, C = 3.5). The height of the step is equal to h = 5 and for all the cases the
volume of the liquid is the same. The parts (a) and (b) display z = 0 and x = y planes (see part (b) of figure 5).

The interface is reconstructed from the α field. Particularly, a
unit value of α would correspond to a cell full of fluid, while a
zero value would indicate that the cell contains no fluid. Cells
with α values between zero and one (0 < α < 1) contain the
free surface [24].

α =



1 if there is a liquid cell ,

0 < α < 1 if there is a two-phase cell,
0 if there is a gas cell.

First, we solve the momentum and the continuity equations for
an incompressible Newtonian fluid for entire computational
domain, given by

∇ · U = 0, (14)

∂(ρ(α)U)

∂t
+ ∇ · (ρ(α)U ⊗ U) − ∇ · (µ(α)∇U)

= −∇P + ρ(α)g + Fs. (15)

where U represents the velocity vector, P is the pressure,
t stands for the time, ρ is the fluid density, µ denotes the fluid
viscosity, g is the gravitational acceleration and Fs stands for
the normal forces acting on the liquid surface.

The physical properties of the fluid are calculated based
on the volume fraction of the two fluids in one cell. The density
ρ(α) and the dynamic viscosity µ(α) can be written as

ρ(α) = αρl + (1 − α)ρg, (16)

µ(α) = αµl + (1 − α)µg. (17)

The normal forces acting on the liquid surface (Fs) is given by
the sum of the Laplace pressure and the DJP:

Fs = (σκ(x) + �)n, (18)

where κ(x) = ∇ · n and n = ∇α/|∇α| are the curvature
of the interface and the unit vector normal to the interface,
respectively. Since the fluid type remains constant along
particle paths and using the continuity equation, α is passively
advected by

∂α

∂t
+ ∇ · (Uα) = 0. (19)

Based on the updated void fraction field, the fluid properties
(equations (16) and (17)) and the normal force (equation (18))
are calculated and the interface is reconstructed. Although
equations are written for convection of phase fraction, there
can be always the possibility of getting false diffusion [25]. A
possible remedy used in OpenFOAM is introducing an extra
term called artificial compression to the equation of phase
fraction convection. Physically its role is exerting a pressure
on the interface to keep it from dispersing and get a sharp
interface. In this manner, the transport equation becomes [26]

∂α

∂t
+ ∇ · (αU) + ∇ · (α(1 − α)Ur ) = 0, (20)

where Ur = min[CrU , max(|U |)](∇α/|∇α|) is a liquid
velocity relative to gas velocity and is normal to the interface

5
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Figure 7. By decreasing volume of the droplets the right-hand side contact lines move toward the wedge more than the left-hand side ones.
The volumes are VI = 3200 nm3,VII = 2500 nm3,VIII = 1800 nm3 and VIV = 1000 nm3. In all the cases the DJP corresponds to the minus
case with B = 0 and C = 3.8. The parts (a) and (b) display z = 0 and x = y planes (see part (b) of figure 5).

Figure 8. The effect of the step height on the dynamics of nanodroplets positioned on the top and the bottom sides of a step. In the part (a)
dashed–dotted and dashed lines correspond to h = 5 and h = 20, respectively. All the profiles are shifted to the frame of the case with
h = 5. Also in the part (b) the heights are hI = 6, hII = 11 and hIII = 20. In all the case the DJP parameters are B = 0 and C = 3.8.

that applies the artificial compression on the surface. For
the constant Cr that adjust compression, value in [1, 4] is
recommended so that ensure a sharp interface and limit α

to values between 0 and 1 [27]. Multidimensional universal
limiter with explicit solution (MULES) is used for solving
equation (20). Based on the the term α(1 − α)Ur , the region
under the influence of compression velocity has phase fraction
values other than 0 and 1.

The governing equations were discretized by the finite
volume method (FVM) with a collocated grid arrangement
and the InterFoam solver of the OpenFOAM CFD package was
employed to solve the equations. The solver was extended to
include the effect of the DJP force. Detailed descriptions of the
InterFoam can be found in [28]. The domain was modelled and
meshed with the blockMesh OpenFOAM utility. A cubic box
as a simulation domain was considered. For the gas interface
(atmosphere) an open boundary condition was considered and
for the sides a simple zero gradient wall boundary conditions
was applied for all the variables. For visualization of results
the interface was considered to be the places where α = 0.5.
The solution procedure is summarized in the following [29]:

• Generate mesh and set the boundary conditions for all the
fields.

Figure 9. The stationary shapes of the droplets for the plus cases.
The disjoining pressure values correspond to I (B = −4, C = 1.3),
II (B = −6, C = 0.4) and III (B = −10, C = 0.2).
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Figure 10. (a), (b) The simulation results for the morphology of droplets positioned on a groove for the minus case of the DJP. (a) The
droplet is pinned at the edge of the groove. (b) The droplet is broken down into two droplets, which settle in the corners. The disjoining
pressure parameters in the both cases are B = 0 and C = 3.8. (c) Different morphologies that can be found in a typical groove by changing
the liquid volume. For definitions see the text.

• Read the material properties and the DJP.
• Adjust time step according to the courant number.
• Solve α equation (equation (20)).
• Calculate local density ρ and the dynamic viscosity µ

from equations (16) and (17).
• Solve momentum equation (equation (15)) with PISO

algorithm and Rhie and Chow interpolation.

The numerical algorithm was verified by comparing the
results with those of the boundary integral method [15]. In
the case shown in figure 4 the step height is equal to 5 and the
DJP profile is the plus case with the parameters B = −2.5 and
C = 6, corresponding to θeq = 114.7◦. Also, the area of the
droplet is equal to 250. As can be seen the results are in very
good agreement with boundary integral outcomes.

3. Results and discussion

In the following we discuss the equilibrium wetting
morphologies that can be found in the considered topographies,
namely, in the edges, the wedges, the steps and the grooves. In
all the considered cases, except the cases where we study the
effects of the DJP, the applied DJP corresponds to the minus
case with B = 0 and C = 3.8, which yields θeq = 115◦.
By changing the control parameters such as the DJP, the liquid
volume and the type of the topography, different configurations
can be found. In the steps, the droplets that are positioned on
the top side of the step incline to move towards the edge and get
pinned as depicted in figure 5. Also, the droplets very near to
the wedge area of the step move inside the wedge area. In both
the cases the droplets cannot move to another side of the edge
and for displacing the droplets an external force is required to
overcome the energy barrier. The effects of the factors such

as the type of the DJP, geometries and volume of the droplets
located near the step are illustrated in the typical planes shown
in figure 5.

As explained, wetting at the nanoscale is different
from that understood at the micro- or larger scales.
Equations (8) and (13) indicate that the equilibrium contact
angle can be adjusted by dimensionless parameter B and C in
the DJP expression. Figure 6 shows that varying parameter
C affects the final shape of the droplets and increasing this
parameter from C = 1.5 to C = 3.5 in the minus case with
B = 0, which correspond to y0 = 1, results in further motion
of the right side contact line towards the wedge area while the
left contact line does not experience any considerable change.
Similarly, when the volume of the droplets increase, as shown
in figure 7, in contrast to the contact line near the edge of
step, which does not experience remarkable changes, the other
contact line exhibits appreciable changes.

The geometrical parameters are other factors that affect the
morphology of the droplets and the height is the only geometric
parameter for the step where based on its size the stationary
shape of droplets changes. Figure 8 illustrates that any increase
in the height of the step results in further motion of the contact
line of the droplets toward the edge, if the droplet is placed on
the top side of the step. If the droplets are positioned on the
bottom side of the step, they move further to the wedge area
of the step.

All the cases investigated so far belong to the minus case
of the DJP. Changing the type of the DJP from the minus to
the plus one can change the morphology, as shown in figure 9.
As is evident from figure 9 thin-film thicknesses for different
values of B change. For example, for the DJP corresponding
to I (B = −4, C = 1.3), II (B = −6, C = 0.4) and III
(B = −10, C = 0.2), the film thicknesses are y0 = 0.629,

7
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y0 = 0.67 and y0 = 0.79, respectively. For the droplets on the
top side of the step the situation is appreciably different. For
the minus case the droplets find their stationary profiles near
the edges or the tip area, while for the plus case the droplets
on the top sides are formed on the positions very far from the
edges or the tip, namely, the places where the droplets do not
feel any change in the DJP (d� = 0).

Different morphologies which can be controlled by the
DJP, volume and geometries can emerge in the grooves and all
these morphologies for small volume of the liquids are shown
in figure 10. In the absence of the wedge (height equal to zero)
one can see two morphologies: droplet for strong values of
the DJP and partial wetting for weak values. When a small
volume of a liquid is positioned in a groove, it is divided into
two portions and depending on the DJP can form a droplet
in the corner (CD) or with a minus curvature is settled in
the wedge area (WD). By increasing volume of the liquid
other morphologies, namely, DNP (droplet non-pinned), DP
(droplet pinned), WP (wedge pinned), CNDP (corner droplet
non-pinned), wedge non-pinned (WNP) will appear as shown
in figure 10. Very large droplets get pinned at the edges of
the groove. Changing the size of the channel yields different
morphologies. Figure 11 displays the morphology diagram
for two widths of the channel. As can be observed from the
diagram by decreasing width of the channel, which results in
increasing volume ratio of the liquid to the empty space of the
channel, droplet breaking is reduced and the phase diagram
switches to the right. On the other hand, the ratio of the liquid
volume to the empty space of the channel in constant disjoining
pressure specifies the type of morphology. For more complex
geometries in this research, stable or metastable regions over
the edge and wedge are found. Droplets residing near these
hetergeneities of solid substrates exhibit a disjoining pressure
dynamics which is obvious from the DJP. By increasing the
complexity of the geometry the number of morphologies
that can be observed will increase. Similar to the previous
topographical elements, in any other geometry the droplets get
pinned at the edges and settle in the wedges. Figure 12 shows
different regions of the edges at which droplets may rest. As
shown in this figure the droplets situated in one side of the edge
incline to be at that side and gets pinned at the edges of that side.
Also, according to figure 12, if a droplet is positioned in front
of the edge symmetrically, it can move to the left or the right
side of the edge. The most unstable situation of the droplets
is when the droplets are at the tip of the edge as depicted in
part (c) of the figure. In this situation the droplet will move
towards the top side of the edge and will remain adjacent to the
tip for the minus form of the DJP. For the plus form of the DJP
the same behaviour is observed but the droplet moves away
from the tip region. However, for the wedges, the droplets
positioned in front of the wedge start to move into the wedge
area and after some relaxations stay there.

4. Conclusion

In summary, we calculated the distribution of the inter-
molecular forces or the disjoining pressure over several basic
nanostructures considering Lennard–Jones type pair potential

Figure 11. Morphology diagram in the groove for the width 12.5
(a) and 6 (b). All the results are obtained for the minuse case of the
disjoining pressure with B = 0 and C = 3.8. For definitions see the
text.

interactions between the atoms. The DJP for the step can be
calculated analytically but for the three-dimensional edges and
wedges the procedure was conducted numerically. For any of
these structures the DJP can take various forms depending on
the materials of the substrate, the liquid and the coating layer on
the substrate. Two major forms, namely the plus and the minus
forms were identified. Different dimensionless parameters that
can be adjusted to obtain an equilibrium contact angle were
introduced.

Using the derived disjoining pressure and based on the
VOF hydrodynamic calculations, the local minimum energy
regions were determined and a variety of morphologies,
according to these states, were specified. The effects of
different parameters such as the geometrical parameters,
volume of the liquid and type of the disjoining pressure on
the morphologies were reported.

For a step it was found that when the droplets are
positioned on the top side of the step they remain near the
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Figure 12. The final positions and shapes of droplets that initially situated in different positions. Direction of arrows shows the direction of
droplets motion. (a) A droplet that is initially situated symmetrically in front of an edge. (b) The droplet of part (a) has moved to the right
side. (c) A droplet which is positioned at the tip of the edge. (d) The droplet in part (c) has moved to top side. (e) The final situation of a
droplet positioned near the wedge region. (e) The final state of a droplet the is positioned near the tip area. The results belong to the minus
form of the DJP.

edges for the minus case of the DJP and are formed at positions
very far from the edges for the plus case of the DJP. Also, the
droplets near the wedge settle in the wedge area for both the
DJP cases. For an edge it was found that the droplets are not
stable at the tip and move to the sides and depending on the
type of the DJP the droplets will stay near or far from the tip
area. If a droplet is considered in front of an edge it is moved
to one side.

It is revealed that for a groove the liquid volume can
have substantial effect on the observed morphology. For small
volumes the observed shapes are the corner droplets (CD) and
the wedge droplets (WD). By gradually increasing the volume
of the droplets, other configurations such as the wedge non-
pinned liquids (WNP), corner droplets non-pinned (CDNP),
wedge pinned liquid, droplet pinned and droplet non-pinned
gradually appear.

Our results can be useful in understanding the behaviour
of systems containing nanodroplets. For example, most
of the giant fields produce hydrocarbons from carbonate
reservoirs. The studies have revealed the importance of
taking into account nanoscale pores in studying or modelling
carbonates [30]. As already stated, the results can also be

used in handling, controlling and guiding liquids in emerging
nanofluidic devices.
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