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Abstract
A lubrication model is used to study the dynamics of nanoscale droplets on wettability gradient
surfaces. The effects of the gradient size, size of the nanodroplets and the slip on the dynamics
have been studied. Our results indicate that the position of the center of mass of the droplets can
be well described in terms of a third-order polynomial function of the time of the motion for all
the cases considered. By increasing the size of the droplets the dynamics increases. It is also
shown that the slip can considerably enhance the dynamics. The results have been compared
with the results obtained using theoretical models and molecular dynamics simulations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A droplet residing on the boundary of two adjacent parts of
a substrate with different wettabilities will move to the more
wettable part. This is a well-known phenomenon [1–3] that
has been extensively studied because of its importance in a
variety of processes and applications ranging from biological
systems [4, 5] and ink jet printing to the commercial lab-on-
a-chip [6, 7]. The difference between the equilibrium contact
angles of the droplet on the two parts gives rise to an interfacial
driving force [2, 3] which displaces the droplet. The ensuing
motion is confronted by viscous forces which balance the
driving force and dissipate the energy [3]. Such a motion is
not continuous as, by moving the droplet to the more wettable
surface, the driving force diminishes and consequently the
droplet stops. A non-stop motion can be achieved by providing
a continuous wettability gradient [2, 3, 8]. There exist
various experimental techniques which allow one to construct a
chemically patterned surface including surface coating [9] and
irradiating with a beam [10].

Despite much research performed to understand the
dynamics of the droplets on wettability gradient sur-
faces [1–3, 8, 11–14] only recently have investigations at the
nanoscale been given any attention [15]. It is obvious that
understanding basic fluidic issues occurring at those scales is
a prerequisite for optimal design of nanofluidic devices. Very
recent theoretical studies on nanodroplets near and on top of a
chemical step have revealed novel features for these systems.

Nanodroplets at some distances from the boundary of the two
parts of a chemical heterogeneity can exhibit dynamics [16].
A size-dependent motion of nanodroplets on top of a chemical
step has also been reported [17]. In [15] the dynamics of the
nanodroplets on wetting gradient surfaces has been studied
using molecular dynamics (MD) simulations. It has been
found that the position of the droplets can be represented by a
power law function of time of the motion. The maximum and
minimum contact angles considered in [15] are roughly 90◦
and 20◦, respectively, and the average gradient size is around
3.2◦ nm−1. It is not immediately clear what would be the
situation if different maximum and minimum contact angles
(for example, small contact angles) were considered, namely
whether the positions of the droplets can still be represented by
a power law function of time or not. Also, an investigation is
required to study the effect of the gradient size, the slip and the
type of material (solid–liquid–gas) on the dynamics.

In the present study we focus on the dynamics of
nanodroplets which span chemical gradient heterogeneities
in the limit of small contact angles. As illustrated in
figure 1 we consider a partially wetting, nonvolatile and
incompressible liquid film composed of a nanodroplet on
top of a precursor wetting layer on a impermeable solid
substrate with a wettability gradient and study the dynamics
of the nanodroplets. The presence of the precursor wetting
layer is justified by the entropy gained by the system [18].
The system is supposed to be translationally invariant along
the z direction. For numerical reasons, we restrict our
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Figure 1. Motion of a nanodroplet with the height from the wetting
film a = 15 on a solid substrate towards the more wettable parts. The
total length of the system is equal to 400 (−150 � x � 250) and the
droplet is initially positioned at x = 0. The substrate is designed
such that the equilibrium contact angle decreases linearly from left to
right as θeq(x) = (−0.04x + 15)◦. The lengths are scaled by b (see
the main text for definitions).

analysis to two-dimensional (2D) droplets, corresponding
to three-dimensional (3D) liquid ridges (or rivulets) which
are translationally invariant in the direction parallel to the
step. Such liquid ridges have been experimentally studied,
for example, in [19]. We first study the dynamics of the
nanodroplets as a function of time for no-slip cases to check
whether the results are in agreement with theoretical and MD
results. The effect of the gradient size and the size of the
droplets will be studied in this part. Then we develop the
results to the cases with slip. We also extend the previous
theoretical models to include the slip effect and compare the
lubrication results with the theoretical outcomes.

2. Governing equations and the boundary conditions

At the small Reynolds numbers limit, where viscous forces are
much larger than inertial forces the behavior of a Newtonian
and incompressible liquid can be simply described by the
following equations:

∇ · U = 0 (1)

μ∇2U = ∇ P (2)

where U(u, v) represents the velocity vector and μ denotes the
dynamic viscosity of the liquid. Considering a unidirectional
flow [20] and assuming slip at the substrate and no shear at the
fluid–gas interface h, i.e.

y = 0 → u = β
∂u

∂y
(3)

y = h → ∂u

∂y
= 0 (4)

where β stands for the slip length, one obtains

u = −∂ P

∂x

1

2μ
[2h(β + y) − y2] (5)

P = −σκ − � (6)

where σ is the surface tension and κ represents the curvature:

κ =
∂2h
∂x2

[1 + ( ∂h
∂x )2]2/3

(7)

which can be approximated for small contact angles by
κ ≈ ∂2h/∂x2 = �h, where � is the Laplace operator.
(Note that curvature is considered negative if the center of
curvature is directed towards the droplet.) � expresses the
disjoining pressure (DJP) � = −∂	/∂y, where the effective
interface potential 	 is the cost of free energy to maintain a
homogeneous wetting film of prescribed thickness y [16, 17].
For the flow rate one has

Q(x, t) =
∫ h(x,t)

0
u(x, t) dy = −

(
∂ P

∂x

)
1

3μ
[3βh2 +h3] (8)

with t being time. Considering that ∂h/∂ t = −∂ Q/∂x one
can finally obtain

∂h

∂ t
= −∇[m(h)∇(σκ + �)] (9)

where the mobility factor m(h) is given by

m(h) = 1

3μ
(h3 + 3βh2). (10)

For the no-slip case (β = 0) the mobility becomes
m(h) = h3/(3μ) and for the slip-dominated case [21, 22],
namely very large values of β , the mobility will be
m(h) = bh2/(μ). The problem may be converted into
non-dimensional form by scaling lengths with b, which is
the equilibrium wetting film thickness on a homogeneous flat
substrate, velocity with Ãb/μ, where Ã is an intermolecular
parameter derived from the material parameters representing
pair potentials (see [16, 17]), and pressure with σ/b. As a result
the governing equations can be reformulated as

∂h∗

∂ t∗ = −∇[m∗(h∗)∇(κ∗ + �∗)] (11)

where the mobility factor m(h) is given by

m∗(h∗) = 1

3C̃
(h∗3 + 3βh∗2) (12)

with C̃ = Ãb/σ . In this study, C̃ has been considered to be 1.
Also, in order to simplify the presentation in the following, we
drop the asterisks. For the DJP we consider a profile of the type
suggested in [16, 17]. In dimensionless form the DJP may be
represented as

�(x, y) = C(x)

(
1

y9
∓ 1

y3
+ B(x)

y4

)
(13)

where C and B determine the strength and shape of the DJP,
respectively. The sign of the second term can be negative or
positive. We refer to these two cases as the minus (−) and
the plus (+) cases. The profiles of the disjoining pressure are
shown in figure 2. The admissible value ranges of C and B
which provide partial wetting are also given in figure 3.

3. Force calculation

Before performing any simulation, the force calcula-
tion [16, 17] may provide a useful insight into the dynamics
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Figure 2. The typical profile of the DJP for the minus (a) and the plus (b) case and the corresponding zeros for cases (c) and (d). As is evident
from part (d) there are two zeros (shown by a solid red line and green dashed line) for the plus case for a given value of B.

Figure 3. The value ranges of B and C for which the system exhibits a partial wetting (PW) situation, i.e. 0◦ < θ < 180◦ for the minus (a)
and the plus (b) case.

of the system. This can considerably decrease the number
of test calculations for thoroughly studying the dynamics of
the system. Such a method consists of placing the droplet
with an equilibrium contact angle equal to that of the droplet
center position at different positions along the substrate and
calculating the lateral DJP-induced force on the droplet. The

force is calculated from the following relation:

f =
∫

∂S
�(x, y)n ds (14)

where ∂S is the droplet liquid–gas interface and n represents
the outward-pointing unit normal vector. By assuming the
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Figure 4. (a) The considered profile for the droplet for calculating the DJP-induced force on the droplets along the substrate. (b) The
DJP-induced force on a droplet with a = 15 calculated by the exact method (equation (14)), the approximate method (equation (15)) and the
macroscopic model (equation (16)). The contact angle changes linearly as θeq(x) = (−0.04x + 15)◦ and the calculations have been done for
the minus case with m = 0. f is measured in units of σ .

Figure 5. (a) The effect of the droplet size a on the calculated force. (b) The effect of the wettability gradient size on the force on a droplet
with a = 15. The contact angle changes linearly as θeq(x) = (−0.04x + 15)◦ and the calculations have been done for the minus case with
m = 0. f is measured in units of σ .

droplet profile to be a rectangle the above force calculation can
be approximated as

f ≈
∫ a+h0

h0

�(x, y) dy|B −
∫ a+h0

h0

�(x, y) dy|A (15)

where h0 represents the thickness of the wetting film, A and B
are the receding and advancing contact positions of the droplet
and the wetting film, respectively, (see figure 1) and a is the
height of the droplet from the wetting film. Also, based on the
macroscopic models the force on the droplet is given as

f = cos θBeq − cos θAeq . (16)

Figure 4 compares the calculated DJP forces and the forces
determined by the approximate and macroscopic models for
droplets with height a = 15 on a substrate with wettability
gradient of the form θeq(x) = (−0.04x +15)◦. The total length
of the system is equal to 400 (−150 � x � 250). For all the
cases the forces decrease along the substrate. The effect of
the droplet size and the size of the gradient on the calculated

force are shown in figure 5. By decreasing the droplet size the
height and base width of the droplet decrease and, as a result,
the calculated force decreases. The effect of the DJP profile
on the calculated force is shown in figure 6. Even though the
droplets have the same size the lateral forces on the droplets
are not equal. This may create different dynamics, as will be
verified by numerical simulations.

4. Numerical algorithm

A standard central difference was used for the space derivatives
and the time derivative was approximated by a forward
difference. The equations were solved using a fourth-order
Runge–Kutta method [23]. The size of the time step (�t)
and the number of points were checked to ensure that results
are not dependent on the time step size and number of node
points. A total number of 200–300 points were considered in
the simulations and �t was 5×10−5 to 10−3 based on the cases
chosen.
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Figure 6. The effect of B on the lateral DJP force exerted on a droplet with a = 15 for the minus (a) and the plus (b) case.

For the initial droplet profile, a parabola [24, 25] was
considered. However, since a simple parabola has a sharp
corner at the base and this may introduce some difficulty in
the numerical procedure for initial time steps, the profile at the
contact line, where the core of the droplet and the wetting layer
are matched slightly, was smoothed. The smoothed profile is
described by

h(x) = h0 + a

[
1 −

(
x − xb

a/ tan(θOeq/2)

)2](|x−xO |n+1)

(17)

where a gives the centerline height of the droplet, xO represents
the x component of the base center position and θOeq is the
equilibrium contact angle at xO. n is considered to be 10 in
this study but the results of the study are independent of this
value as the center of the droplets was placed at x = 0 and
the droplets were allowed to relax and reach their equilibrium
profile. In this step, the profile of the DJP is that of a simple
homogeneous substrate. Any asymmetry may induce a lateral
motion; the geometry and the arrangement of the nodes must
be symmetric with respect to the z axis. After the relaxation
step the geometry of the system was extended in the direction
of motion and the DJP of the chemical gradient was applied
such that a linear change in the equilibrium contact angle over
the substrate as θeq(x) = (−0.04x + 15)◦ was provided.
This can be achieved in different ways using equation (13),
namely either by changing the parameter C and considering
B constant, or changing the parameter B and considering C
constant, or finally changing both C and B . We only consider
the cases with one parameter as a constant. Between these two
cases the first one, i.e. B constant, is much simpler as the
film thickness h0 does not depend on C and its value can be
calculated from equation (13) by considering �(x, y) = 0, i.e.

1

y9
0

∓ 1

y3
0

+ B(x)

y4
0

= 0. (18)

The results are given in figure 2. The relaxation step in this
case can be simply modeled by considering C as

C = cos θeq(0) − 1∫ ∞
h0 �(0, y) dy

. (19)

However, in the second case the film thickness changes with
B (see figure 2) and to find its value one should solve the
following equation for the minus and the plus case:

3y3
0(x)

cos θeq(x) − 1

C
± y0(x)

2
+ 5

8y5
0(x)

= 0. (20)

The results are depicted in figure 7(a). From the value of y0

and the contact angle one can calculate B from the following
equation for the minus and the plus case:

B(x) = y3
0 (x)

[
cos θeq(x) − 1

C
− 1

8y8
0(x)

± 1

2y2
0(x)

]
. (21)

The values of B are also given in figure 7(b). To provide the
equilibrium shape before starting the simulation the value of
C was calculated for any point such that the contact angle
remains the same for all the points over the substrate. With
known values of B and y0 and the contact angle the strength
factor C is calculated for the minus and the plus case using the
following equation:

C(x) = cos θeq(x) − 1
1

8y0(x)8 ∓ 1
2y0(x)2 + B(x)

3y0(x)3

. (22)

The calculated values of C are shown in figure 8.
To study the dynamics of the droplets the position of the

center of mass of the droplets (xd, yd) was calculated during
the simulation as

xd(t) =
∫

d

x(t) dV∫

d

dV
yd(t) =

∫

d

y(t) dV∫

d

dV
. (23)

5. Results

In order to check the accuracy and reliability of the method, the
results were compared with those of the accurate biharmonic
boundary integral method (BBIM) [16, 17]. Figure 9 compares
the results of these methods for a droplet with a = 15 on a
surface with a gradient of the form θeq(x) = (−0.04x + 15)◦.
As can be seen the results of the lubrication model are in very
close agreement with those of BBIM.
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Figure 7. The thickness of the wetting layer along the substrate (a) and the values of B for the case with only C constant for the minus (−)
and the plus (+) case. The equilibrium contact angle changes linearly as θeq(x) = (−0.04x + 15)◦.

Figure 8. The values of C such that with B values the equilibrium
contact angle would be equal to 15◦ for the minus (−) and the plus
(+) case.

Figure 10 shows the results of the simulation for
various size droplets on a substrate with a gradient of type
θeq(x) = (−0.04x + 15)◦ for the minus case (m = 0).
The lateral position of the droplets during the motion xd(t)
is also depicted in figure 11. Increasing the droplet size
strengthens the driving force (see figure 5) and this enhances
the dynamics. For large contact angles, i.e. beyond the
lubrication approximation, MD simulation [15] has shown
that the lateral motion of the droplets can be represented in
terms of a power law of time of the motion. However, the
results of this study suggest that for small contact angles a
third-order polynomial can better describe the lateral motion.
This is in agreement with the results of Brochard [3] based
on a theoretical model for small contact angles. Although
the results can be roughly approximated by a power law, the
exponent is n ≈ 0.9 which is obviously different from n ≈
0.45 obtained using MD simulation [15]. For different size
droplets the coefficients of the polynomial are given in table 1.

The effect of slip on the dynamics is depicted in figure 12.
The slip can substantially enhance the dynamics. For different

Figure 9. A comparison between the results of the biharmonic
boundary integral method (BEM) [16, 17] and the lubrication model.
The droplet size is a = 15 and the simulation has been done for the
minus case (m = 0). The contact angle changes linearly as
θeq(x) = (−0.04x + 15)◦.

Table 1. The coefficients of the third-order polynomial
α1t + α2t2 + α3t3 used to fit the data xd(t) for different size droplets
and values of slip.

a β α1 α2 α3

5 0 4.0795 × 10−4 −2.2057 × 10−10 5.315 × 10−17

10 0 5.4246 × 10−4 −3.4213 × 10−10 −3.1628 × 10−17

15 0 6.0795 × 10−4 2.2847 × 10−10 −2.4670 × 10−15

15 0.5 8.5203 × 10−4 −1.1603 × 10−9 8.1484 × 10−16

15 1.0 9.8603 × 10−4 −1.5353 × 10−9 1.2873 × 10−15

15 2.5 1.3547 × 10−3 −2.7848 × 10−9 3.1497 × 10−15

15 5.0 1.9352 × 10−3 −5.4151 × 10−9 8.0700 × 10−15

15 10 3.005 × 10−3 −1.2857 × 10−8 2.6343 × 10−14

15 100 2.31 × 10−2 −6.65 × 10−7 7.6475 × 10−12

15 1000 2.2310 × 10−1 −6.0785 × 10−5 5.9632 × 10−9

values of β the coefficients of the polynomial are also given in
table 1.

The effect of the wettability gradient size on the dynamics
is shown in figure 13 for a droplet with a = 15 for the minus

6
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Figure 10. Time evolution of the profile of the droplets during the motion towards the more wettable parts for a droplet with a = 15 (a) and
a = 5 (b). The gradient considered is equal to θeq(x) = (−0.04x +15)◦ and the simulations have been performed for the minus case (m = 0).

Figure 11. The lateral position of the center of mass for various size
droplets xd(t) as a function of time. The wettability gradient is equal
to θeq(x) = (−0.04x + 15)◦ and the simulations have been
performed for the minus case (m = 0).

case. Decreasing the gradient size reduces the DJP-induced
force (see figure 5) and this slows down the motion of the
droplets.

The effect of the profile of the disjoining pressure is shown
in figure 14 for a droplet with a = 15 for two different types of
the DJP, namely m = 0 for the minus case and m = −2.5 for
the plus case. For the plus case the droplet exhibits stronger
dynamics. The difference increases for a smaller droplet
a = 5. This can be explained by inspecting the calculated
force on the droplets shown in figure 6. The lateral induced
DJP force for the plus case is larger in spite of the fact that
the equilibrium contact angles are equal. The tail of the DJP
profile is positive for the plus case while for the minus case this
part is negative. This means that∫ ∞

h+
0

[−�+(x, y)] dy =
∫ ∞

h−
0

[−�−(x, y)] dy

⇒
∫ a+h+

0

h+
0

[−�+(x, y)] dy >

∫ a+h−
0

h−
0

[−�−(x, y)] dy. (24)

Figure 15(a) compares the lateral motion of a droplet with
a = 15 for two cases of constant B and varying B . The
gradients are equal to θeq(x) = (−0.04x + 15)◦ for both cases
but, similar to the previous case, the velocities are not equal.
The reason can again be explained in terms of the force exerted
on the droplets as depicted in figure 15(b).

Figure 12. ((a) and (b)) The effect of slip on the lateral position of a droplet with a = 15 as a function of time. By increasing the slip
coefficient the dynamics is enhanced. The gradient considered is equal to θeq(x) = (−0.04x + 15)◦.
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Figure 13. The effect of the wettability gradient size on the
dynamics of the nanodroplets. The solid line corresponds to a
wettability gradient of the form θeq(x) = (−0.04x + 15)◦ and the
dashed line corresponds to a wettability gradient of the form
θeq(x) = (−0.02x + 15)◦.

6. The energy calculation

The total free energy of the system, Et, is determined by
summing the work done on the system via intermolecular (E�)
and surface tension (Eσ ) forces which in dimensionless form
can be give as [25]

Et = E� + Eσ =
∫ [

U(x, h) +
√

1 +
(

dh

dx

)2]
dx (25)

with � = −dU/dy. Figure 16 shows the profiles of the energy
for a droplet with a = 15 for the minus case (m = 0) during
the relaxation step and the motion towards the more wettable
part. In the relaxation step, Eσ decreases because of flattening
the droplet and consequent reduction in the surface area. In
contrast, the surface of the droplet experiences larger disjoining
pressure and, as a result, E� increases. The reduction in Eσ is
larger than the increase in E� and, as a result, the total energy
of the system reduces. During the lateral motion the droplet
experiences a secondary relaxation and, similar to the first step,

Eσ decreases. However, since the droplet moves to the parts
with weaker DJP, in contrast to the first step, E� decreases. As
a result the total energy of the system decreases.

7. Comparison with macroscopic analysis

Extending a method proposed in [3] (see the appendix) it can be
shown that the velocity of the slipping droplets on wettability
gradient surfaces can be given by

V = �θ2
Oeq

(1 + β)

3μ ln(�/xmin)

dθeq

dx
(26)

where � represents one-half the base length of the droplet and
xmin is a molecular size. The velocity can be scaled by Ãb/μ

and in dimensionless form one has

V = �θ2
Oeq

(1 + β)

3C ln(xO/xmin)

dθeq

dx
. (27)

Figure 17 compares the velocity of the nanodroplets for
the minus case (m = 0) with those predicted by macroscopic
theory. � has been chosen to be 250 and 120 for droplets with
a = 15 and a = 5, respectively. Although the rate of the
velocity change is approximately the same, the macroscopic
theory underestimates the velocity of the droplets. Figure 18
shows the advancing and the receding contact line positions
of the droplets along the substrate. Contrasting macroscopic
theory, the profile of the droplet is not symmetric and the
advancing contact line moves faster than the receding one.

8. Conclusion

The dynamics of nanodroplets on wetting gradient surfaces
was studied within the lubrication approximation, namely for
small contact angles. Parameters such as the droplet size,
gradient size and slip effect were investigated. It was found
that for all the wetting gradient surfaces for the no-slip cases
the position of the center of mass of the droplets is a third-order
polynomial function of time of the motion. The coefficients
for various cases were calculated and reported. These results

Figure 14. The effect of the profile of the DJP (the minus and the plus case) on the dynamics of the droplets for a droplet with a = 15 (a) and
a = 5 (b). For the minus case m = 0 and for the plus case m = −2.5. The gradient considered is θeq(x) = (−0.04x + 15)◦.

8
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Figure 15. (a) The effect of the profile of the DJP on the dynamics of the droplets for a droplet with a = 15. For the minus case (m = 0)
B = 0 is constant and the contact angle changes as θeq(x) = (−0.04x + 15)◦. For the plus case B varies along the substrate such that the
contact angle changes, similar to the minus case, as θeq(x) = (−0.04x + 15)◦. (b) The corresponding calculated DJP-induced forces on the
droplets. f is measured in units of σ .

Figure 16. The energy changes of the system of figure 1 during the relaxation step (a) and motion towards the more wettable parts (b). The
calculations have been done for the minus case (m = 0) for a droplet with a = 15. The total length of the system is equal to 400 and the
wettability gradient changes according to θeq(x) = (−0.04x + 15)◦.

Figure 17. The velocity of the nanodroplets as a function of their
position along the substrate for different size droplets. The results of
the numerical simulation have been compared with those obtained
using the theoretical model (∗). The wettability changes according to
θeq(x) = (−0.04x + 15)◦ and the considered DJP profile belongs to
the minus case with m = 0.

are in agreement with theoretical results already reported for
macroscopic droplets [3]. Taking 1 nm and 0.05 N m−1 as
typical values of b and σ , respectively, for the parameters
used in figure 9, one obtains as the time scale μ/ Ã values
of the order of 10–8μ Pa−1 and the total distance traveled
of about 100 nm. For μ between 1000 and 10 000 Pa s
(polystyrene at different temperatures), the droplet velocities
in our simulations range roughly from 100 to 10 nm s−1.
Our study revealed that the velocity of the droplets increases
with the size of the droplets. This is also in agreement with
the theoretical and experimental results of [13, 14]. Our
investigation showed that the dynamics of the nanodroplets
may deviate from those predicted by equilibrium contact angle
analysis. Differences between the profile of the DJP on two
substrates with the same gradient of equilibrium contact angle
may create different dynamics for the nanodroplets. This is a
feature first reported in [17] for chemical steps and its effects
on the dynamics of nanodroplets for chemical gradient cases
were explained in the present study. It was also found that
the slip can substantially modify the dynamics. The position
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Figure 18. The advancing and receding contact line positions of the
droplet with the wetting layer as a function of the droplet position
(xd(t)) during the motion for a droplet with a = 15 for the minus
case (m = 0). The substrate wettability changes as
θ(x) = (−0.04x + 15)◦.

of the center of the droplets can still be well represented in
terms of a third degree polynomial. The previous theoretical
model for dynamics of the droplets for small contact angles [3]
was extended to include the slip effect. It was shown that
the numerical results for the slip cases are in agreement with
the theoretical results. Recent MD simulations [15] for large
contact angles, namely beyond the lubrication limit considered
in this study, have shown that the positions of the center of mass
of the droplets can be described by a power law of the time of
the motion. A comparison between our results and MD results
of [15] suggests that different regimes may exist based on
the maximum and minimum contact angles considered in this
study. To further clarify the situation a thorough investigation
for large contact angles is necessary and is suggested.

Appendix

The velocity of droplets on a surface with uniform gradient
of the spreading coefficient has been derived in [3]. Here we
simply extend the procedure to include the slip effect. The
force acting at the receding contact line A (see figure 1) is given
by the following [3]:

FA = σsl + σ cos θAd − σsg = σ(cos θAd − cos θAeq) (A.1)

where the subscript d stands for the dynamic contact angle.
By considering the velocity profile inside the droplet as
equation (5) one can derive

u(y) = 3V
−y2 + 2h(y + β)

2h2(1 + β)
(A.2)

where the mean velocity V is defined as V = ∫ h
0 u(y)dy/h.

The viscous dissipation forces can also be derived by

integrating the viscous stresses ζ(x) over the droplet base
interface which yields

ζ(x) = μ
∂u

∂y

∣∣∣∣
y=0

= 3μV

h(1 + β)
(A.3)

FVA =
∫ O

A
ζ(x) dx = 3μV

1 + β

∫ O

A

dx

h
(A.4)

where O is the center of the droplet. Considering h = (x −
xA)θAd one has

FVA = 3μV

1 + β

∫ xO

xmin

dx

(x − xA)θAd

(A.5)

where xmin is a molecular size and is considered here to remove
the singularity at the contact line. After calculating the integral
we obtain

FVA = 3μ
VA

(1 + β)θAd

ln
xO

xmin
. (A.6)

For the advancing contact line (B) a similar procedure yields

FB = σ(cos θBeq − cos θBd) (A.7)

FVB =
∫ xO

xB

3μ
V

(x − xB)θBd

dx = 3μ
VB

(1 + β)θBd

ln
xO

xmin
.

(A.8)
Assuming VA = VB = V and θAd = θBd = θd we can get

FVA + FVB = 6μ
V

(1 + β)θd
ln

xO

xmin
. (A.9)

Also considering the balance of the driving and the viscous
forces, i.e. FA = FVA and FB = FVB one has cos θd =
1
2 (cos θAeq + cos θBeq). Using a Taylor series of cos θ for small
contact angles (cos θ = 1 − θ2/2) we have

θ2
d = 1

2 (θ
2
Aeq

+ θ2
Beq

) 
 θ2
Oeq

. (A.10)

We also have

FA + FB = σ(cos θBeq − cos θAeq) = σ

2
(θ2

Aeq
− θ2

Beq
). (A.11)

Writing FA + FB = FVA + FVB , the procedure gives the velocity
as

V = θOeq(1 + β)

12μ ln
(θAeq + θBeq)(θAeq − θBeq). (A.12)

Since θAeq −θBeq = 2� dθeq/dx , where � represents one-half the
base length of the droplet and θAeq + θBeq 
 2θOeq , we finally
obtain

V = �θ2
Oeq

(1 + β)

3μ ln(�/xmin)

dθeq

dx
. (A.13)
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