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Abstract
Mesoscopic hydrodynamic equations are solved to investigate the dynamics of nanodroplets
positioned near a topographic step of the supporting substrate. Our results show that the
dynamics depends on the characteristic length scales of the system given by the height of the
step and the size of the nanodroplets as well as on the constituting substances of both the
nanodroplets and the substrate. The lateral motion of nanodroplets far from the step can be
described well in terms of a power law of the distance from the step. In general the direction of
motion depends on the details of the effective laterally varying intermolecular forces. But for
nanodroplets positioned far from the step it is solely given by the sign of the Hamaker constant
of the system. Moreover, our study reveals that the steps always act as a barrier for transporting
liquid droplets from one side of the step to the other.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Understanding the wetting behavior of liquids on solid
substrates [1, 2] is a prerequisite for making use of a
myriad of biological and technological applications such as
eye irrigation, cell adhesion, tertiary oil recovery, coating,
lubrication, paper industry, micro-mechanical devices and
the production of integrated circuits. Generically, the solid
surfaces in the above-mentioned examples are not ideal in the
sense that they are neither smooth nor homogeneous. Most
surfaces are topographically or chemically heterogeneous.
Such heterogeneities may substantially change the wetting
behavior of these surfaces [3], which is not necessarily
detrimental with respect to the envisaged applications. Certain
topographically structured surfaces are superhydrophobic or
superhydrophilic. In the first case droplets roll off these
substrates (instead of flowing), such that these surfaces are self-
cleaning [4–11]. In the second case the surface topography
leads to a complete spreading of droplets [12–14]. Tailored
topographic surface structures can induce particular dewetting
processes which in turn can be exploited to pattern substrates
on the micron scale [15, 16].
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Microfluidics is another strong driving force for research
on the dynamics of fluids on structured substrates. Shrinking
standard laboratory set-ups into a lab-on-a-chip promises huge
cost reductions and speed-up [17, 18]. Open microfluidic
systems, i.e. with free liquid–vapor or liquid–liquid interfaces,
may provide various advantages such as reduced friction, better
accessibility of the reactants and reduced risk of clogging
by solute particles [19–22]. In open microfluidic devices
fluids are guided along chemical channels [3, 23, 24] or in
grooves [25], which can be chemically patterned in order to
provide additional functionality [22].

Wetting phenomena on topographically structured sub-
strates have attracted substantial research efforts [25–35] with,
however, the main focus on equilibrium phenomena. In view
of the aforementioned applications, dynamical aspects are
of particular interest. In spite of this demand, theoretical
work on the dynamics of liquid films and droplets on
topographically structured substrates has started only recently.
In most of these studies the dynamics of the fluids is
assumed to be well described by macroscopic hydrodynamic
equations, which are solved either directly [36], by a lattice
Boltzmann method [37, 38], or in the thin film (lubrication)
regime [39–42]. The applicability of this latter method is
limited because the inherent long-wavelength approximation
does not keep track of many relevant microscopic features [43].

On the nanoscale, macroscopic hydrodynamic equations
turn out to be inadequate for describing the dynamics of
fluids. Overcoming this deficit is the focus of a new research
area called nanofluidics [44, 45]. Wetting phenomena in
particular reveal these deviations; for a recent review of
these issues see [46]. However, hydrodynamic equations
can be augmented to include hydrodynamic slip, the finite
range of intermolecular interactions and thermal fluctuations.
The resulting mesoscopic hydrodynamic equations have been
rather successful in analyzing, for example, the dynamics of
dewetting on homogeneous substrates [47, 48]. The presence
of intermolecular interactions can be summarized into the so-
called disjoining pressure (DJP), � = −∂�/∂y, where the
effective interface potential � is the cost of free energy to
maintain a homogeneous wetting film of prescribed thickness
y. On a homogeneous substrate � is independent of lateral
coordinates parallel to the substrate surface and the equilibrium
wetting film thickness y0 minimizes �(y). However,
on chemically or topographically inhomogeneous substrates
(structured, rough or dirty) the generalized disjoining pressure
does depend in addition on these lateral coordinates. In
most studies, the lateral variations of the disjoining pressure
have been modeled rather crudely, i.e. the substrate is
assumed to be locally homogeneous and lateral interferences of
heterogeneities are neglected: e.g. a step is typically modeled
by an abrupt change of the disjoining pressure [49–53].

Recently we have demonstrated that the actually smooth
variation of the lateral action of surface heterogeneities
can change the behavior of droplets in the vicinity of
chemical steps [54, 55] or topographical features (edges and
wedges) [56] even qualitatively. In the present study we extend
these results to the case of an isolated straight topographic
step in an otherwise homogeneous substrate (as shown in
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Figure 1. Nanodroplets positioned near a topographic step of height
h (on the top side and bottom side of the step) are exposed to the
vertically and laterally varying disjoining pressure�, the contour
plot of which is shown. The topographic step and the drops are taken
to be translationally invariant along the z axis (i.e. orthogonal to the
image plane). In (a) the substrate is chosen to correspond to the
minus case with (B = 0, C = 1) and in (b) the substrate
corresponds to the plus case (B = −2.5, C = 1) (see
equation (22) for definitions). Lengths (x , y, h) and the disjoining
pressure� are measured in units of b and γ /b, respectively (see the
main text for definitions).

figure 1) and we recover the previously studied case of isolated
wedges and edges in the limit of infinite step height h.
We should emphasize that our investigation provides only
a first but nonetheless essential step towards understanding
the dynamics of droplets on arbitrarily structured substrates.
Although more refined than previously used models the
present one is still rather simple. We only consider additive
Lennard-Jones-type intermolecular interactions, i.e. we do
not take into account electrostatic interactions which would
be very important for polar fluids. We assume the fluid
to be Newtonian, non-volatile and incompressible (which
is compatible with the frequently used so-called sharp-kink
approximation of classical equilibrium density functional
theory see, e.g., [57]). We also assume a no-slip boundary
condition at the solid surface [58] and neglect the influence of
thermal fluctuations [59]. For numerical reasons we restrict our
investigation to two-dimensional (2D) droplets, corresponding
to three-dimensional (3D) liquid ridges (or rivulets) which are
translationally invariant in the direction parallel to the step;
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Figure 2. Typical (B = −2) DJP (in units of C) of a flat homogeneous substrate for (a) the minus and (b) the plus case (see equation (22)).
The corresponding zeros y0 of the DJP for different values of B are given in (c) and (d) for the minus and the plus case, respectively. In
(c) and (d) full lines indicate stable wetting films and dashed lines unstable films.

Figure 3. The value ranges of B and C for which the system exhibits a partial wetting (PW) situation, i.e. 0◦ < θeq < 180◦ for the minus
(a) and the plus (b) case.

nonetheless we expect our results to hold qualitatively also for
3D droplets.

2. Summary

We study the dynamics of non-volatile and Newtonian
nanodroplets (corresponding to three-dimensional ridges
which are translationally invariant in one lateral direction)
on topographically stepped surfaces within the framework of
mesoscopic hydrodynamics, i.e. by solving the augmented
Stokes equation presented in section 3 with the numerical
method described in the appendix. We consider in
particular the effects due to the long range of Lennard-Jones-
type intermolecular interactions which enter the theoretical
description in terms of the disjoining pressure (DJP) as
illustrated in figure 1. We assume the substrate to be

chemically homogeneous in the lateral directions and the
surface to be covered by a thin layer of a different material.
As detailed in section 4 this leads to two adjustable parameters
B and C which enter into the DJP and characterize the wetting
properties of the substrate, i.e. the equilibrium contact angle θeq

and the wetting film thickness y0 (see figure 2). As shown in
figure 3 both for positive and for negative Hamaker constants
one can find a one-parameter family of pairs (B,C) leading to
the same θeq on a flat substrate (i.e. without a step). As shown
in figure 4 nanodroplets on substrates with the same θeq but
with different values of B and C assume shapes which differ
mainly in the vicinity of the three-phase contact line with the
apex region is almost unaffected by the substrate potential.

The results of the numerical solution of the mesoscopic
hydrodynamic equations are presented in section 5. In
contrast to macroscopic expectations based on a capillary
model (i.e. taking into account only interface energies and
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Figure 4. Top panel: droplet prepared in its initial configuration.
Bottom panel: the equilibrium configuration of a nanodroplet with
a = 15 on a flat homogeneous substrate for various values of B and
C for the minus and the plus case. (B, C) for the minus case are I
(−1, 7.7583) with y0 = 0.88, II (0, 2.6667) with y0 = 1 and III (1,
1.2703) with y0 = 1.3, and for the plus case I (−2.5, 4.2327) with
y0 = 0.91 and II (−4, 0.9265) with y0 = 0.79. The values of B and
C are chosen such that in all cases θeq = 90◦.

neglecting the long range of the intermolecular interactions),
topographic steps do influence droplets in their vicinity: on
substrates with a positive Hamaker constant (figures 9 and 15),
droplets move in an uphill direction while on substrates with
a negative Hamaker constant (figures 5 and 11) the droplets
move in the opposite direction. As expected, the forces on the
droplets and their resulting velocity increase with step height,
but also with the absolute value of the Hamaker constant. This
is the case if the contact angle is varied (see, e.g., figures 7
and 12) and even if the contact angle is fixed by varying
the Hamaker constant and the properties of the coating layer
together (see figures 8, 10, 13 and 16).

The speed of the droplets increases with their size as
demonstrated in figure 14. As detailed in section 6.2, the
influence of the step on a droplet can be phrased in terms
of an effective wettability gradient, i.e. a spatially varying
equilibrium contact angle. The driving force on droplets on
such substrates increases linearly with the droplet size because
the difference in equilibrium contact angle at the two contact
lines of the liquid ridges increases roughly linearly with the
distance from the steps.

The velocity of droplets driven away from the step
decreases rapidly with the distance from the step as shown
in section 6. But droplets moving towards the step (either
on the top side or on the bottom side of the step) stop
with their leading contact line close to the step edge or
wedge, respectively. Therefore they do not cross the step
(see figures 5–8, 15 and 16). Accordingly, edges, wedges
and steps act as barriers for migrating droplets (which is also
true macroscopically) because droplets sitting right at the tip
of an edge are in an free-energetically unfavorable state (see
figure 17) while droplets located in the corner of a wedge are
in a state corresponding to a local minimum of the free energy
(see figure 20). Therefore, an external force is required to

push droplets over edges (see figure 18) or to pull them out of
wedges (see figure 20). In both cases, the total (i.e. integrated
over the droplet volume) force required to accomplish this
increases slightly with the droplet volume, but less than
linearly. This means that, if the force is applied via a body force
density acting per unit volume (e.g. gravity), larger droplets
experience a larger force and therefore overcome steps more
easily. In addition, the lateral action of intermolecular forces
can also pin droplets at edges and near wedges. However,
droplets which initially span a topographic step always end up
filling the wedge at the step base, either with the upper contact
line pinned at the step edge or, if the droplet volume is too
small, with the upper contact line on the vertical part of the
step, as shown in figure 19.

A deeper understanding of the dynamics of droplets
in the vicinity of edges and wedges can be reached by
analyzing the forces acting on the droplet surface, i.e. the
disjoining pressure and surface tension (see equations (6)
and (7), respectively). As demonstrated in figure 6, if the
droplets move under the influence of the topographic step
only, the main contribution to the driving force stems from
the disjoining pressure. As shown in figures 21 and 23, the
numerically observed features of the dynamics of droplets
can be understood in terms of the disjoining-pressure-induced
force density on the droplets calculated for droplets of simple
parabolic shapes used as initial conditions for the numerical
solution of the hydrodynamic equations. As shown in figure 22
the actual relaxed droplet shape is different but the calculated
forces depend only weakly on the deviation of the actual
shape from its parabolic approximation. In the limit of large
distances from the step the force can be calculated analytically
(see section 6.2): far from the step the total force per unit
ridge length F� = f� Ad (with the cross-sectional area Ad)
essentially depends on the ratio of the step height h and
the distance from the step x̄ as well as on the ratio of the
apex height ym and x̄ . The corresponding asymptotic results
are summarized in figure 24. In all cases the force density
varies according to a power law x̄−ζ with ζ ∈ {3, 4, 5}.
For finite-sized droplet and steps of finite height we obtain
the fastest decay and for almost macroscopic droplets in the
vicinity of finite-sized steps as well as for nanodroplets near
isolated edges and wedges we get ζ = 4. While our present
analysis cannot be applied to the case of an almost macroscopic
droplet in a wedge, for large drops (ym/x̄ → ∞) next to
an isolated edge we get the weakest decay with ζ = 3. In
any case, the total force per unit length F� is proportional to
the Hamaker constant as observed in the numerical solution
of the mesoscopic Stokes dynamics as well as in the force
analysis presented in section 6.1. The dynamics of large drops
(ym/x̄ → ∞) is equivalent to the dynamics of macroscopic
drops on a surface with an effective chemical wettability
gradient (i.e. a spatially varying ‘equilibrium contact angle’
θeq(x)) [60–62].

3. Mesoscopic hydrodynamic equations

At low Reynolds numbers the mean field dynamics of an
incompressible Newtonian fluid of viscosity μ is given by the

4
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Figure 5. (a) The effect of the step height on the dynamics of nanodroplets positioned on the top side of a step for the minus case. The dashed
and the solid lines correspond to nanodroplets at t = 200 and t = 18 700, respectively. The droplets are initially positioned at a distance
� = 10 from the step. The droplets have an initial radius a = 15. C = 2.667 and B = 0 correspond to θeq = 90◦. The vertical scale is equal to
the lateral scale. The corresponding lateral (b) and vertical (c) position of the center of mass (x̄ , ȳ) of the droplet relative to the step edge as a
function of time.

Navier–Stokes equation for the local pressure p(r, t) and the
flow field u(r, t):

∇ ·σ = −∇ p + μ∇2u = 0, (1)

∇ · u = 0, (2)

with the stress tensor σi j = −pδi j + μ(∂ j ui + ∂i u j ). In
this study, we neglect the influence of the vapor phase of air
above the film. Therefore the tangential components of the
component of the stress tensor σ ·n normal to the liquid–vapor
surface �lv (with outward pointing normal vector n) is zero.
The normal component of σ ·n, i.e. the normal forces acting on
the liquid surface, are given by the sum of the Laplace pressure
and of the disjoining pressure:

σ · n = n(γ κ +�+ xg) at �lv, (3)

with the surface tension coefficient γ and the local mean
curvature κ of the liquid surface (κ < 0 for a sphere); g is
the strength of a spatially constant external body force density
pointing in the x direction (with −gx as the corresponding
potential) which we introduce in order to study the strength
of barriers to the lateral motion of droplets. Alternatively,
for incompressible fluids one can define a new pressure p′ =
p − xg such that the external body force density g enters into
the Stokes equation (1) rather than the boundary condition
in equation (3): 0 = −∇p′ + ex g + μ∇2u. Although
this approach might be more intuitive, the equivalent form
used here is more convenient for implementing the boundary
element method used here to numerically solve these equations
(see the appendix).

The dynamics of the free liquid surface is determined
by mass conservation together with the incompressibility
condition: the local normal velocity is identical to the normal
component of the local flow field.

We neglect hydrodynamic slip at the liquid–substrate
surface �ls and we only consider impermeable substrates.
Since we assume the substrate to be stationary this results in
the following boundary condition for the flow field:

u = 0 at �ls. (4)

In order to avoid strong initial shape relaxation of
the droplets (in response to placing them on the substrate
with a certain shape) which can lead to significant lateral
displacements [63], we choose a parabolic initial profile which
is smoothly connected to a precursor film of thickness y0:

y(x; t = 0) = y0 + a

[
1 −

( |x − x̄ |
a

)2]|x−x̄ |m+1

, (5)

such that a is the droplet height at the center and half the
base width. Accordingly the distance of the droplet edge from
the step at x = 0 is given by � = |x̄ | − a with x̄ the
position of the center of the droplet in the x direction. The
parameter m specifies the smoothness of the transition region
from the drop to the wetting layer. In this study we choose
m = 10. We investigate the droplet dynamics for two different
situations. In the first one we position the droplet on the top
side of the step of height h with the three-phase contact line
(x = x̄ + a, y = h + y0, z) at a distance � = −x̄ − a with
x̄ < −a from the step edge at x = 0. In the second situation

5
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Figure 6. (a) The initial and the final configurations of a droplet with
a = 15. Initially it is positioned at � = 10 (x̄ = −25, dashed–dotted
line). For the minus case it moves towards an isolated edge where it
stops with the leading contact line pinned at the step edge (full line).
For this final configuration the arclength s of the interface is
measured as indicated from a certain position on the wetting layer on
the vertical side of the step. (b) A comparison between DJP-induced
(equation (6), full line) and surface-tension-induced (equation (7),
dashed line) lateral force densities during the motion (with the
leading three-phase contact line still well separated from the edge)
expressed in terms of the position x̄ of the center of mass of the
droplet. (c) Laplace pressure γ κ (dashed–dotted line) and DJP �
(full line) on the surface of the droplet in the final equilibrium
configuration as a function of the arclength s. In the absence of other
external forces (e.g. g in equation (3)) at each point on the droplet
surface these add up to the constant pressure p inside the droplet.
B = 0 and C = 2.667 correspond to θeq = 90◦. Force densities (b)
and pressures (c) are measured in units of γ /b2 and γ /b,
respectively.

we place the droplet on the bottom side of the step with the
three-phase contact line (x = x̄ − a, y = y0, z) at a distance
� = x̄ − a with x̄ > a from the wedge at the base of the step.

In equilibrium equation (3) reduces to the Euler–Lagrange
equation of the effective interface Hamiltonian of a fluid film
on a substrate as derived, for example, in [64]. This means that
we approximate the normal forces on the liquid surface due
to the intermolecular interactions by the disjoining pressure
derived for equilibrium systems.

In a non-equilibrium situation, the unbalanced forces
acting on the fluid surface add up to a resulting net force on
the liquid body. We separately consider the two contributions
f� and fγ from the disjoining pressure and from the Laplace
pressure, respectively, both normalized by the droplet volume

d and given by the following integrals over the liquid–vapor
surface �d of the droplets:

f�(x) = 1


d

∫
�d

�(x, y)nx ds (6)

fγ (x) = 1


d

∫
�d

γ κnx ds. (7)

For a liquid ridge translationally invariant in the z direction
both integrals as well as 
d = Ad L are proportional to the
macroscopic ridge length L, so that the latter drops out of the
expressions for the force densities (in units of N m−3) f� and
fγ . In three dimensions ds is a two-dimensional surface area
element. Ad is the two-dimensional cross-sectional area of the
liquid ridge.

4. Model of the heterogeneity

In the following we calculate the disjoining pressure for a
fluid film or droplet near a topographic step as displayed in
figure 1. Apart from a very thin coating layer of thickness d we
assume the substrate material to be homogeneous, disregarding
its discrete molecular structure. Many substrates used in
experiments are coated, for example, by a native oxide layer
or by a polymer brush which is used to modify the wetting
properties of the substrate. However, a more refined analysis
of the DJP, which takes the molecular structure of the substrate
and of the fluid into account, yields terms of a form similar
to those generated by a coating layer [2, 65]. In general,
i.e. far from the critical point of the fluid, the vapor or gas
phase covering the system has a negligible density which
we neglect completely. Assuming pairwise additivity of the
intermolecular interactions, i.e. the fluid particles as well as the
fluid and the substrate particles are taken to interact with each
other via pair potentials Vαβ(r) where α and β relate to liquid
(l), substrate (s) or coating (c) particles and r is the interatomic
distance, one can show that the disjoining pressure (DJP) of the
system is given by [26]

�(r) =
∫

s

[
ρ2

l Vll(r − r′)− ρl ρsVsl(r − r′)
]

d3r, (8)

with r, r′ ∈ R
3 and ρl and ρs as the number densities of the

liquid and substrate, respectively. 
s is the actual substrate
volume.

In order to facilitate the calculation of the disjoining
pressure of the step we decompose it into contributions from
quarter spaces (edges) forming building blocks which can be
calculated analytically. We first consider an edge occupying
the lower left quarter space 
�

e = {r ∈ R
3 | x � 0 ∧ y � 0},

which in the following we denote by �. For Lennard-Jones-
type pair potentials Vαβ(r) = Mαβ/r 12 − Nαβ/r 6, where Mαβ

and Nαβ are material parameters, the DJP in the vicinity of a
non-coated edge occupying 
�

e is given by

��
e (x, y) =

∫ 0

−∞
dx ′

∫ 0

−∞
dy ′

×
∫ −∞

−∞
dz′

(
�Me

|r − r′|12
− �Ne

|r − r′|6
)
, (9)

where �Me = ρ2
l Mll − ρlρsMls and �Ne = ρ2

l Nll − ρlρs Nls.
The first term dominates close to the surface of the edge and
the second term at large distances from the substrate.

6
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Figure 7. The effect of the contact angle on the dynamics of droplets on the top side of the step for a droplet with initial height a = 15 and for
the minus case. (a) The initial profile (� = 10) is shown in the top panel. The lower graphs show the configurations of the droplets after the
initial relaxation (t/C ≈ 60, dashed lines) and in the final stages (t/C = 6200, 7400, and 7800 for I, II and III, respectively, solid lines) for
θeq = 75.5◦ (I), 97.2◦ (II) and 120◦ (III) from top to bottom. The corresponding substrate parameters are I (C = 2, B = 0), II (C = 3, B = 0)
and III (C = 4, B = 0), respectively. In (b) and (c) as a function of time the corresponding lateral and vertical positions x̄ and ȳ, respectively,
of the center of mass of the droplets are shown relative to the step edge. The dips in (c) occur when the leading three-phase contact line
reaches the edge; then the droplet stops (compare to (b)).

All integrals in equation (9) can be calculated analytically
and one obtains the DJP as the corresponding difference��

e =
�Me I 12�

e −�Ne I 6�
e of two contributions with

I 12
e (x, y) = π

11 520x9y9(x2 + y2)7/2

× [−280x6y6(x4 + y4)− 448x2y2(x12 + y12)

− 128(x16 + y16)+ 128(x9 + y9)(x2 + y2)7/2

− 35x8y8 − 560x4y4(x8 + y8)] (10)

and

I 6
e (x, y) = π

24x3y3
√

x2 + y2
[2(x3 + y3)

√
x2 + y2

− 2(x4 + y4)− y2x2]. (11)

The contributions to the disjoining pressure of a thin
coating layer of thickness d on the upper side of the edge
occupying 
u�

c = {r ∈ R
3 | x � 0,−d � y � 0}, the

right part of the edge occupying 
r�
c = {r ∈ R

3 | −d �
x � 0, y � 0} and the thin rod which fills the tip area of the
edge 
t�

c = {r ∈ R
3 | −d � x � 0,−d � y � 0} can be

calculated analogously:

�χ�
c (x, y) =

∫


χ�

c

�Mc

|r − r′|12
d3r ′ −

∫


χ�

c

�Nc

|r − r′|6 d3r ′,

(12)
with �Mc = ρ2

l Mll − ρcρl Mcl and �Nc = ρ2
l Nll − ρcρl Ncl;

χ stands for u (upper), r (right) or t (tip). Actual coating layers
have a more complicated structure, in particular in the direct
vicinity of edges and wedges, which depends on the specific
combination of coating and substrate material as well as on

the way the coating is produced. Such details can influence
droplets if their contact line is right at the edge or wedge but
the effect is proportional to the square of the coating layer
thickness d . For simplicity we only consider systems with
coating layers which are thin compared to the wetting film
thickness (see below), for which the contribution from the
thin rod of coating material at the tip of the edge or in the
corner of the wedge is irrelevant. According to equation (12)
the contribution to the disjoining pressure from the upper
coating layer can be decomposed into �u

c = �M I 12u
c (x, y)−

�N I 6u
c (x, y). To first order in d we obtain

I 12u
c (x, y) = πd

1280(x2 + y2)
9/2 y10

× [128(x2 + y2)9/2 − 315xy8 − 840x3y6

− 1008x5y4 − 576x7y2 − 128x9] (13)

and

I 6u
c (x, y) = πd

8y4(x2 + y2)
3/2

× [−2(x2 + y2)3/2 + 3xy2 + 2x3]. (14)

By symmetry one has �r�
c (x, y) = �u�

c (y, x) for the
contribution of the vertical part of the coating. The DJP of
a coated edge occupying 
�

ce = {r ∈ R
3 | x � 0 ∧ y � 0} is

therefore given by

��
ce(x, y) = ��

e (x + d, y + d)+�u�
c (x, y)

+�r�
c (x, y). (15)

The DJP contribution from a coated edge occupying the
right quarter space 
�

ce = {r ∈ R
3 | x � 0 ∧ y � 0} can

7
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Figure 8. The effect of changing B (while varying C such that θeq = 90◦ in all cases, see figure 3(a)) on the dynamics of the droplets on the
top side of an edge for an initial droplet with a = 15 and for the minus case. The values of B and C are I (B = −1, C = 1.2703), II (B = 0,
C = 2.6667) and III (B = 1, C = 7.7583). (a) The top panel depicts the initial profile (� = 10). The dashed lines show the configuration of
the droplet after the initial relaxation t/C ≈ 60 and the solid lines correspond to the final configuration of the droplets at t/C = 16 400, 7300
and 2500 for I, II and III, respectively. In (b) and (c) as a function of time the corresponding lateral and vertical positions x̄ and ȳ,
respectively, of the center of mass of the droplets are shown relative to the step edge.

be obtained analogously. However, since the integrals for the
right part corresponding to equations (9) and (12) are the mirror
image (with respect to the yz plane) of their counterparts for
the left-hand side, the former ones can be expressed in terms
of the latter ones. Therefore the DJP of the coated lower right
quarter space��

ce(x, y) is equal to��
ce(−x, y). Combining the

contributions of the left and the right part leads to the following
expression for the DJP of a step of height h:

�(x, y) = ��
ce(x, y + h)+��

ce(−x, y)− 2�r�
c (x, y). (16)

The last term on the right-hand side of equation (16) removes
the artificial extra coatings on the left and the right quarter
spaces (at x = 0, y < 0) which get buried upon building the
step out of the coated edges. Figure 1 shows typical examples
for the DJP. The DJP is not only a function of the vertical
distance from the substrate, but also of the lateral distance from
the step. In this regard, the substrate in the vicinity of the
step resembles a chemically structured substrate with laterally
varying wettability [60–62].

For positions far from the step the distribution of the
DJP resembles that of the coated, laterally homogeneous flat
substrate obtained by setting h = 0 in equation (16). To linear
order in d one has

�ch(y) = π�Me

45y9
− π�Ne

6y3
− π�Med

5y10
+ π�Ned

2y4

+ π�Mcd

5y10
− π�Ncd

2y4
. (17)

Since the repulsive contributions decay rapidly with distance
from the substrate we neglect all those repulsive contributions

which are shorter ranged than the corresponding term (∼y−9)
arising from �12�

e (x, y) [57, 65], leading to

�ch(y) = π�Me

45y9
− π�Ne

6y3
− π�Nd

2y4
, (18)

with �N = �Nc − �Ne. The equilibrium thicknesses y0 of
the wetting film on such a substrate minimizes the effective
interface potential [65, 66]:

�ch(y) =
∫ ∞

y
�ch(y) dy. (19)

With equation (18) this leads to

�ch(y) = π�Me

360y8
− π�Ne

12y2
− π�Nd

6y3
. (20)

The second term is usually written as −He/(12πy2), where
He = π2�Ne is the so-called Hamaker constant.

At this point we introduce dimensionless quantities
(marked by ∗) such that lengths are measured in units of b =
[2|�Me|/(15|�Ne|)]1/6 which for �Me > 0 and �Ne > 0 is
the equilibrium wetting film thickness y0 on the uncoated flat
substrate. The DJP is measured in units of the ratio γ /b, where
γ is the liquid–vapor surface tension. Thus the dimensionless
DJP�∗

cf = �cfb/γ far from the edge has the form

�∗
ch(y

∗) = C

(
∓ 1

y∗9 ∓ 1

y∗3 + B

y∗4

)
. (21)

In the first and second terms of equation (21) the upper (lower)
sign corresponds to �Me < 0 (�Me > 0) and �Ne <

8
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Figure 9. (a) The effect of the step height on the dynamics of nanodroplets positioned on the top side of a step for the plus case. The dashed
and the solid lines correspond to times t = 200 and t = 105, respectively. The droplets of size a = 15 are initially positioned at a distance
� = 10 from the step. C = 4.2327 and B = −2.5 result in an equilibrium contact angle θeq = 90◦. Time evolution of the (b) horizontal
position x̄ and (c) vertical position ȳ of the center of mass of the droplets relative to the step edge. Since ȳ depends only weakly on h only the
case h = 20 is shown.

Figure 10. The effect of B on the dynamics of the droplets near an edge for the plus case and for an initial droplet shape with a = 15. The
values of B and C , i.e. I (B = −2.5, C = 4.2327) and II (B = −4, C = 0.9265) are selected such that the equilibrium contact angle is
θeq = 90◦ in both cases. (a) The initial distance from the step edge is � = 10. The dashed lines show the droplets after the initial relaxation at
t/C ≈ 60 and the solid lines correspond to the droplets in the migration phase at t/C = 24 000. The horizontal position x̄ and the vertical
position ȳ of the center of mass of the droplet are shown as a function of time in (b) and (c), respectively. For less negative values of B the
velocity dx̄/dt is larger (I).

0 (�Ne > 0), respectively. The dimensionless amplitude
C = A b/γ , with A = π(|�Me|/45)−1/2(|�Ne|/6)3/2,
compares the strength of the effective intermolecular forces
in the uncoated case and of the surface tension forces. The
amplitude B = π�Nd/(2Ab4) measures the strength of the
coating layer. Since the molecular structure of the substrate and

of the fluid yields a term of the same form [2, 65] we consider
B itself as a parameter independent of the actual properties
of the coating layer. For the interactions considered here,
�Me � 0 is a necessary condition for the occurrence of an
equilibrium wetting layer of nonzero thickness but�Ne can be
positive or negative. Therefore the first term in equation (21)

9
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Figure 11. (a) Nanodroplets with initial size a = 15 positioned at the base of topographic steps of different height for the minus case. The
droplets start at a distance � = 10 from the step. C = 2.667 and B = 0 correspond to θeq = 90◦. The dashed and the solid lines correspond to
the configurations just after the initial relaxation at t = 170 and to a later time t = 30 000, respectively. As a function of time the horizontal
position x̄ and the vertical position ȳ of the center of mass relative to the step base are shown in (b) and (c), respectively. Since ȳ depends only
weakly on h, in (c) only the trajectory for h = 20 is shown.

Figure 12. (a) Droplets of initial size a = 15 near a corner of substrates with different contact angles θeq in the minus case. The top panel
shows the initial droplet profile with � = 5. The other panels show the droplets after the initial relaxation (t/C = 44.5 (I), 20.3 (II) and 34.25
(III), dashed lines) and during the migration stage (t/C = 26 100 (I), 17 200 (II) and 13 600 (III), solid lines) for θeq = 75.5◦ (I, C = 2,
B = 0), 97.2◦ (II, C = 3, B = 0) and 120◦ (III, C = 4, B = 0), respectively. The time evolution of the center of mass (x̄, ȳ) relative to the
corner is shown in (b) and (c) for the lateral and vertical direction, respectively.

can only be positive while the second term can be positive or
negative. In the following we shall refer to these two cases
simply as the minus ( ) and the plus ( ) case. In order to
avoid a clumsy notation in the following we also drop the stars.

With this, one has

�ch(y) = C

(
1

y9
∓ 1

y3
+ B

y4

)
. (22)

10
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Figure 13. (a) Nanodroplets on substrates with different B but the same contact angle θeq = 90◦ near a corner in the minus case: (I: B = −1,
C = 1.2703), (II: B = 0, C = 2.6667) and (III: B = 1, C = 7.7583), top to bottom. The top panel depicts the initial droplet shape (� = 10).
The corresponding graphs show the droplets after the initial relaxation (dashed lines, t/C ≈ 60) and in the migration process at x̄ = 36.5
(solid lines, t/C = 78 500, 37 500 and 12 700 for I, II and III, respectively). The time evolution of the center of mass (x̄, ȳ) relative to the
corner is shown in (b) and (c) for the lateral and vertical direction, respectively.

Figure 2 shows the typical profile of�ch(y) for the minus
and the plus case and also the corresponding equilibrium
wetting layer thickness y0 for which �ch(y0) = 0. While the
parameter C measures the strength of the DJP, by changing B
one can modify the shape of the DJP [56]. In equation (22)
the admissible value ranges of C and B which provide partial
wetting can be inferred from considering the equilibrium
contact angle θ [2]:

cos θ = 1 +
∫ ∞

y0

�ch(y) dy. (23)

The admissible value ranges of B and C for which 0◦ < θ <

180◦ (partial or incomplete wetting) are given in figure 3 for
both the minus and the plus case. In the minus case, for each
value of B one can find a value of C such that the resulting
substrate is partially wet. Since the signs of the first two terms
in equation (22) differ the disjoining pressure has a zero for any
B and the depth of the minimum of the corresponding effective
interface potential can be tuned by choosing an appropriate
value for C . In the plus case, however, B has to be negative in
order to obtain a sign change of �. The maximum admissible
value of B (i.e. B < Bmax) can be obtained by simultaneously
solving the following equations for y0 and Bmax:

�ch(y0) = 1

y9
0

− 1

y3
0

+ Bmax

y4
0

= 0 (24)

�ch(y0) = 1

8y8
0

− 1

2y2
0

+ Bmax

3y3
0

= 0, (25)

from which one finds Bmax = −1.868 (compare figure 2(d)).
In order to obtain dimensionless hydrodynamic equations

(see equations (1)–(3)) we choose Ab/μ as the velocity

scale. With this, the dimensionless form of the stress
tensor is given by σi j = −pδi j + C(∂ j ui + ∂i u j) and the
surface tension coefficient drops out of equation (3). The
dimensionless time is given in units of μ/A. In order to
study the dynamics of nanodroplets we solve the dimensionless
hydrodynamic equations with a standard biharmonic boundary
integral method described in more detail in the appendix.

5. Results

5.1. Nanodroplets on homogeneous flat substrates

In order to provide the information and terminology required
for the subsequent considerations we first recall some basic
results for the wetting of flat and homogeneous substrates.
For this purpose a nanodroplet with a = 15 and an initial
configuration given by equation (5) was positioned on the
substrate. Figure 4 shows the equilibrium profile of the
nanodroplet for various values of C and B , resulting in an
equilibrium contact angle θeq = 90◦ for both the minus and
the plus case, i.e. the values (B,C) lie on the dashed curves
in figures 3(a) and (b). It is evident from the figure that
the droplets have relaxed from the initial condition. The
equilibrium profiles in all cases are roughly equal but the
nanodroplets differ near their contact lines (see the inset
of figure 4) and with respect to their heights. The term
proportional to B in equation (22) is rather short ranged and
most important in the direct vicinity of the substrate. The top
parts of the droplets are only influenced by the term C/y3 such
that the curvature at the peak changes with C , independently
of B . This also changes the droplet height. However, the
wetting film thickness y0 also changes with B , such that the
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Figure 14. The lateral position x̄ of the center of mass as a function
of time for droplets of size a = 15 (solid line) and a = 10 (dashed
line) near the corner of a wedge in the minus case with B = 0,
C = 2.6667 and θeq = 90◦.

differences in droplet height in figure 4 are a combined result
of both effects.

Due to the translational symmetry of the substrate and
due to the symmetry of the initial drop configuration the
shape relaxation does not result in a lateral displacement of
the droplets, in contrast to droplets placed on heterogeneous
substrates [63, 67].

5.2. Nanodroplets on the top side of steps

Previous studies of droplets near edges (corresponding to
steps of infinite height) have shown that, in contrast to what
is expected from a simple macroscopic model taking into
account only interface energies, droplets are attracted towards
the edge in the minus case and repelled from the edge in
the plus case [56]. In the minus case, the droplets move
towards the edge with increasing velocity, but they stop rather
abruptly before the leading contact line reaches the edge. The
distance from the edge at which the droplets stop increases with
decreasing B , i.e. with increasing strength of the coating layer.
In the plus case, the droplets move away from the step with a
velocity which decreases with the distance from the step. The
strength of the attraction or repulsion is expected to be lower
for steps of finite height.

5.2.1. Minus case. In order to test the influence of the step
height on the dynamics of nanodroplets identical droplets of
half-base width a = 15 were placed at a distance � = 10 from
steps of height h = 2.5, 5, 10, 15, 20 and ∞. The results of the
numerical solution of the mesoscopic hydrodynamic equations
for the minus case are shown in figure 5(a) for C = 2.667 and
B = 0 which correspond to θeq = 90◦. In order to have a
better view of the dynamics we monitor the time evolution of
the position of the center of mass of the droplets (x̄ , ȳ) relative
to the step edge in figures 5(b) and (c), where x̄ and ȳ are given
by

x̄ =
∫

d

x dV∫

d

dV
, ȳ =

∫

d

y dV∫

d

dV
− h, (26)

with 
d denoting the droplet volume. Since the droplets
are smoothly connected to the wetting film, which on large
substrates would influence the center of mass of the fluid, in
calculating x̄ and ȳ we only consider the fluid above y =
c0y0 + h with c0 > 1, i.e. only the fluid volume slightly above
the wetting film. We selected c0 = 1.2; but since we focus
on substrates with equilibrium contact angles of about 90◦ the
results are only weakly affected by the precise choice of the
value of c0.

In all cases the dynamics of the droplets proceeds in
three stages. The first stage is a fast initial shape relaxation,
similar to the behavior on homogeneous substrates, which
is accompanied by a lowering of the droplet center of
mass ȳ without any considerable lateral motion. This is
followed by a relatively slow lateral motion towards the
edge, during which the changes in the droplet shape are
almost unnoticeable. Although the droplet shape is slightly
asymmetric the lateral surface-tension-induced force density
fγ defined in equation (7) is much smaller than the force
density f� induced by the DJP (see equation (6)) as shown in
figures 6(b). Figure 5(b) clearly shows that the lateral motion
of the droplet slows down rapidly as soon as its leading three-
phase contact line reaches the edge. During this third and final
stage a part of the droplet volume leaks into the wetting film
on the vertical part of the step and, as a result, the droplet
experiences a sudden drop in its height ȳ (see figure 5(c)). The
trailing three-phase contact line of the droplet still continues
its motion towards the step and, as a consequence, the mean
height of the droplet increases again and becomes even larger
than during the migration stage. While the droplet contracts, its
asymmetry gradually increases such that the surface-tension-
induced force density fγ grows and finally, as the equilibrium
configuration is reached, cancels f�. (This latter stage of
cancellation is not visualized in figure 6(b) due to numerical
problems in evaluating the force densities on droplets once they
have reached the step edge.) In equilibrium, at each point on its
surface the Laplace pressure and the disjoining pressure add up
to the constant value of the hydrostatic pressure in the droplet
(see figure 6(c)).

Increasing the step height from h = 2.5 to 5 and 10
results in a significant increase in the droplet speed during
the migration phase. The asymptotic speed for isolated edges
(corresponding to h = ∞), i.e. the maximum speed, is almost
reached for h = 20. This height value is large compared to the
thickness of the wetting layer but comparable with the droplet
size; here the base diameter is 2 a = 20. However, in order to
be able to conclude that the step height above which the droplet
perceives the step as an isolated edge is comparable with the
droplet size, further calculations for droplets of different size
are needed.

Changing the equilibrium contact angle θeq by increasing
C while keeping B = 0 does not qualitatively change the
behavior of the droplets, as shown in figure 7(a) for droplets
with a = 15 near an isolated edge (corresponding to h =
∞), apart from the increase of ȳ during the initial relaxation
process for large θeq. The reason for this increase in droplet
height is that the initial shape of the droplet is not adapted
to the substrate parameters. Changing C does not change the
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Figure 15. (a) Droplets of initial size a = 15 on substrates with θeq = 90◦ (C = 4.2327 and B = −2.5) starting at � = 10 on the base of steps
with heights varying between h = 2.5 (top) and h = ∞ (bottom, corresponding to an isolated wedge) right after the initial relaxation process
at t = 210 (dashed lines) and during the migration process at t = 9100 (solid lines). The horizontal position x̄ and the vertical position ȳ of
the center of mass are shown in (b) and (c), respectively, as a function of time.

Figure 16. Droplets of initial size a = 15 near isolated wedges (h = ∞) in the plus case. θeq = 90◦ on both substrates: (I: B = −2.5,
C = 4.2327) and (II: B = −4, C = 0.9265). (a) The top panel shows the initial droplet shape and the lower panels show the droplets just
after the initial relaxation at t/C ≈ 60 (dashed lines) and in their final configuration at t/C = 2500 and t/C = 14 500 for substrate I and II,
respectively (solid lines). The horizontal position x̄ and the vertical position ȳ of the center of mass during the motion are shown in
(b) and (c), respectively.

functional form of the DJP, only its strength. Consequently,
droplets move faster for larger C (resulting in larger θeq) and
their final shape is less symmetric. With the leading contact
line pinned right at the step edge, large θeq > 90◦ also result
in an overhang over the step edge. Since for fixed wetting film
thickness b on the uncoated flat substrate the timescale used to
obtain dimensionless hydrodynamic equations depends on the
substrate parameters in the same manner as the dimensionless
parameter C , we rescale time by C in figures 7(b) and (c), as

well as in all subsequent figures which compare x̄(t) and ȳ(t)
for different values of C . This corresponds to changing the
substrate material but keeping surface tension, viscosity and
wetting film thickness constant [54].

Figure 8(a) shows the effect of changing the value of B
(while keeping the contact angle constant) on the dynamics and
on the final configuration of droplets which start with a = 15
and for the minus case on the top side of an isolated edge (h =
∞). For each value of B we choose C such that θeq = 90◦,
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Figure 17. A droplet positioned symmetrically on an edge (dashed line) is in an unstable equilibrium both in the (a) minus case (C = 2.67 and
B = 0) and in the (b) plus case (C = 4.2327 and B = −2.5). A tiny perturbation at t = 0 pushes the droplet either up or down the step. After
that in the minus case the droplet stays next to the step (a) whereas in the plus case (b) it moves away from the edge (solid lines, t = 1000 and
t = 1050 in (a) and (b), respectively). In the presence of a wedge, i.e. for a finite step height h, the droplet is (c) pushed onto the top side of
the step in the minus case but (d) towards the corner of the step in the plus case (solid lines, t = 800 and t = 815 in (c) and (d), respectively).

Figure 18. (a) A nanodroplet of radius a = 15 pushed over an edge (minus case, B = 0 and C = 3) by an external, horizontal body force
gex = 0.00208ex (G = g Ad = 0.71475, direction indicated by the horizontal arrow). Droplet shapes for t = 0 (indicated), 100, 650, 1050,
1150 and 6950 are shown (from the upper left to the lower right). (b) The minimum total force per unit length G th = gth Ad (Ad is the droplet
cross-sectional area) to push droplets over the edge for two droplet cross-sectional areas Ad = 127 (dashed line) and 288 (solid line)
corresponding to a � 10 and 15, respectively. The values of (C, B) = (1, 0), (2, 0), (3, 0) and (4, 0) correspond to θeq = 51.3◦, 75.5◦, 97.2◦
and 120◦, respectively. The force density (force per unit volume) g is measured in units of γ /b2.

i.e. corresponding to the dashed curve in figure 3(a). For all
values of B the droplets move towards the edge. Changing the
values of B and C does not qualitatively change the behavior
of the system. However, a closer examination of x̄ and ȳ
(see figures 8(b) and (c), respectively) reveals quantitative
differences in the dynamics and in the final configuration of
the droplets despite the fact that the contact angle is the same
for all these cases. For larger (positive) values of B (and thus
C , see figure 3(a)) droplets move faster in the lateral direction
although the contact angle equals θeq = 90◦ for all of them.

In addition, the final position of the droplets is closer to the
step edge for larger values of B , eventually leading to a slight
overhang. The small differences in ȳ for different values of B
are related to the fact that the shape of nanodroplets is not only
determined by θeq, as shown in figure 4, and that the wetting
film thickness depends on B .

5.2.2. Plus case. Even if they exhibit the same equal
equilibrium contact angles θeq the behavior of droplets in the
plus case differs substantially from that in the minus case:
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Figure 19. The final positions and shapes of droplets initially (dashed lines) spanning a topographic step of height h = 5 (Ad = 250) and
h = 2.5 (Ad = 275) ((a) and (d)), h = 15 (Ad = 150) and h = 10 (Ad = 200) ((b) and (e)) and h = 50 (Ad = 1667, (c) and (f)) in the minus
case (B = 0, (a), (b) and (c)) and in the plus case (B = −2.5, (d)–(f)), for various values of C . In the minus case C = 0.1, 1 and 4 correspond
to θeq = 15.7◦, 51.3◦ and 120◦, respectively, while for the plus case C = 0.1, 1, 2 and 6 correspond to θeq = 12.5◦, 40.2◦, 58.2◦ and 114.7◦,
respectively.

Figure 20. (a) A droplet with cross-sectional area Ad = 312.5 pulled out of the corner of a wedge (B = 0 and C = 3) by an external
horizontal body force gex = 0.00465ex (G = g Ad = 1.453125, direction indicated by the horizontal arrow). Shown are droplet shapes for
t = 0 (indicated), 400, 1400, 3700, 4700 and 4900 (from left to right). (b) The minimum total force per unit ridge length G th = gth Ad

required to extract the droplet from the corner as a function of C for droplets of cross-sectional area Ad = 200 (corresponding to a � 17.5,
dashed line) and Ad = 312.5 (corresponding to a � 22, solid line) in the minus case (B = 0). The values C = 1, 2, 3 and 4 correspond to
θeq = 51.3◦, 75.5◦, 97.2◦ and 120◦, respectively. The force density g is measured in units of γ /b2.
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Figure 21. The DJP-induced force density f� (in units of γ /b2) on droplets of size a = 15 and 5 in the vicinity of an edge ((a) and (b)) and a
wedge ((c) and (d)) on substrates of the minus ((a) and (c)) and the plus ((b) and (d)) type with C = 1 and various values of B as indicated in
the boxes as a function of the distance � from the edge or the corner of the wedge.

Figure 22. The DJP-induced force density f� (in units of γ /b2) on droplets of height a = 15 and widths w = 2 a and 0.5a in the vicinity of
an edge ((a) and (b)) and a wedge ((c) and (d)) on substrates of the minus ((a) and (c)) and the plus ((b) and (d)) type with C = 1 and various
values of B as indicated in the boxes as a function of the distance � from the edge or wedge.

the direction of motion is reversed. However, apart from this
sign change, the influences of the step height, the equilibrium
contact angle and B are similar.

The dependence of the droplet dynamics on the step height
for the plus case is shown in figure 9(a). The initial size of
the droplets is a = 15 and the contact angle θeq = 90◦ (with
C = 4.2327, B = −2.5). The corresponding lateral and

vertical positions of the center of mass of the droplets relative
to the step edge are shown in figures 9(b) and (c), respectively.
As in the minus case the migration phase is preceded by a
fast initial relaxation process (during which ȳ drops slightly).
However, the droplets are repelled from the step. The lateral
speed of the motion continuously decreases as the distance of
the droplets from the step edge increases. For higher steps the
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Figure 23. The DJP-induced force density f� (in units of γ /b2) on droplets of size a = w = 15 on the top side ((a) and (b)) and on the
bottom side ((c) and (d)) of steps of various heights h with substrates of the minus (B = −1, (a) and (c)) and the plus (B = −2.5, (b) and (d))
type with C = 1 as a function of the distance � from the step.

droplets are faster. But as in the minus case, the maximum
speed (reached for h = ∞, i.e. in the case of an isolated edge)
is almost reached for h = 20 (see figure 9(b)).

The results for different values of B , while keeping the
contact angle θeq = 90◦ fixed, are depicted in figure 10(a). The
corresponding lateral x̄ and vertical ȳ positions of the center
of mass of the droplet relative to the step edge are given in
figures 10(b) and (c), respectively. For all the cases considered
the droplets move away from the step. However, as in the
minus case, the droplet speed increases with B (i.e. for less
negative values of B), even though the contact angle is not
changed. The reason for this is that larger (i.e. less negative)
values of B require larger values of C in order to maintain
the same θeq. As in the minus case the droplet height, i.e. ȳ,
depends on B as well.

5.3. Nanodroplets at the step base

In [56] we have demonstrated that droplets near corners, i.e. at
the base of a step of infinite height, are attracted to the corner
in the plus case and repelled from the corner in the minus
case (while in a macroscopic model taking into account only
interface energies the free energy of the droplets is independent
of their distance from the corner). In other words, the direction
of motion is reversed as compared to the case of the edge.
However, as we shall show in the following, at a step composed
of an edge and a corner at its base, the direction of motion of
nanodroplets is the same on both sides of the step.

5.3.1. Minus case. As in the case of droplets on the top side of
steps, the step height influences the droplet velocity but not the

Figure 24. The total disjoining-pressure-induced force per unit ridge
length F� = f� Ad at large distance from steps depends on two
length ratios h/x̄ and ym/x̄ (the cross-sectional area Ad is
proportional to y2

m). This figure summarizes the analytical results
obtained in section 6.2.

direction of motion and the transition from a planar substrate
(h = 0) to an isolated wedge (h = ∞) is continuous. This is
demonstrated in figure 11 for droplets of size a = 15 starting
at a distance � = 10 from the corner. The initial distance �
is chosen such that, after the initial relaxation which precedes
the migration phase, the contact line facing the corner is well
separated from the wetting layer on the vertical part of the
step. For the minus case figure 11(a) presents the results of our
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Stokes dynamics calculations for droplets at the step base for
different step heights. The droplets are repelled from the step
and move away with a speed which decreases continuously
with the distance from the step. The differences in droplet
speed are significant between step heights h = 2.5, 5 and 10
(see figure 11(b)). Increasing the step height further influences
the dynamics of the droplets only at large distances from the
step.

Changing the equilibrium contact angle θeq does not
change the droplet dynamics qualitatively. This is
demonstrated in figure 12(a) for droplets on substrates with
different values of C (while keeping B = 0). The top panel
shows the initial shape used in all cases considered here for the
numerical solution of the Stokes dynamics. The corresponding
lateral position x̄ and vertical position ȳ of the center of mass of
the droplets relative to the corner are depicted in figures 12(b)
and (c), respectively. Increasing θeq (by increasing C) results
in faster droplet motion. Since the initial droplet shape is not
adapted to the modified contact angle θeq 
= 90◦, ȳ changes
rapidly during the initial relaxation process for θeq 
= 90◦.

The dynamics of droplets on substrates with the same
contact angle θeq = 90◦ but different values of B (with
C adapted accordingly) is shown in figure 13(a). The top
panel shows the initial configuration. For all cases considered
the droplets move away from the step. Comparing x̄(t) for
different values of B (see figure 13(b)) shows that the droplet
velocity increases with B (which, for fixed θeq = 90◦, implies
increasing C). After the initial relaxation process the vertical
coordinate ȳ of the center of mass does not vary in time (see
figure 13(c)).

The droplet dynamics depends on the droplet size. This is
demonstrated in figure 14 for droplets of initial sizes a = 10
and 15 starting at x̄ = 20 near an isolated wedge for the minus
case. The larger droplet moves faster because its two three-
phase contact lines have a larger lateral distance from each
other such that they experience a larger difference in the local
disjoining pressure.

5.3.2. Plus case. In the plus case the direction of motion of
the droplets is reversed as compared to the minus case. As
shown in figure 15(a), the migration speed increases with the
step height, but the droplets stop before the leading contact
line reaches the wedge such that the droplets do not move into
the corner. As in the other cases discussed so far, the droplet
speed increases significantly as the step height is increased up
to h = 20. In figure 15(b) the trajectories x̄(t) for h = 20
and for h = ∞ almost coincide. The final distance of the
droplets from the wedge decreases with the step height, but it
remains finite in the limit h → ∞. Once the droplets reach the
wedge there is a brief drop of ȳ due to fluid leaking out of the
droplet into the corner area. After that their vertical position ȳ
of the center of mass increases again (see figure 15(c)). This
increase is the result of a contraction of the droplets, which is
also observed for droplets on the top side of steps in the minus
case and which is more pronounced for higher steps.

Changing B and C such that θeq = 90◦ remains the same
does not change the dynamics of the droplets qualitatively.
Higher values of B and C result in larger droplet velocities (see

figure 16 concerning the example of droplets near an isolated
wedge). Beside this change of droplet speed we find that, for
larger values of C , the final position of the droplets is closer
to the step and the final height ȳ of their center of mass is
larger. The magnitude of the disjoining pressure and therefore
the forces acting on the droplet increase with C . In response to
these forces the droplets deform more upon increasing C .

5.4. Nanodroplets on edges, wedges and steps

In the previous subsections we have discussed the behavior of
nanodroplets originally positioned at a certain lateral distance
from topographic features such as edges, wedges and steps.
Their behavior suggests that these surface features provide
migration barriers for droplets. Even in those situations
in which droplets migrate towards the edge or wedge,
respectively, they stop just before reaching them. This result
is also borne out in a macroscopic model which takes into
account only interface energies: the free energy of a droplet
positioned right on an edge is larger than that of a droplet of
equal volume residing on a flat and homogeneous substrate,
and the free energy of a drop in the corner of a wedge is
even lower. As a consequence, we expect that droplets sitting
on edges to be in an unstable, and droplets sitting inside the
corner of a wedge to be in a stable, configuration. Moving, by
force, a droplet (with the shape of the liquid–vapor interface
remaining a part of a circle) in the first case slightly to one
side results in an increased contact angle on this side, while
the contact angle on the other side decreases. However, with
the leading contact angle being larger than the equilibrium one
the corresponding contact line will move away from the edge,
while the trailing contact line (with the corresponding contact
angle being smaller than the equilibrium one) moves towards
the edge. As a consequence, the droplet leaves its position at
the edge. In the case of a droplet in a wedge, the situation is
reversed: moving, by force, the droplet in one direction results
in a decreased contact angle on this side and an increased
contact angle at the trailing side, such that the droplet moves
back into the corner of the wedge. Accordingly one expects
that a certain force has to be applied to push a droplet over
an edge or to pull it out of the corner of a wedge. In the
following our detailed numerical results indicate that this also
holds for nanodroplets and they enable us to quantify those
external forces.

Our analyses show that a nanodroplet positioned
symmetrically on the tip of an edge is unstable on all types of
substrates, regardless of whether the droplets migrate towards
the edge or away from the edge (see figure 17; there a suitable,
highly symmetric initial shape of the liquid–vapor interface has
been chosen such that it indeed relaxes to the unstable state
of a droplet sitting on the tip of the edge). Due to the mirror
symmetry with respect to the diagonal of the edge, a droplet
right at the tip of an isolated edge is in mechanical equilibrium
but in an unstable one. In the minus case, after a small
perturbation the droplet flips either up or down but then rests
next to the step, i.e. in the position which it would assume upon
migrating towards the edge (figure 17(a)). In the plus case, as
expected from the previous results the droplet migrates away
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from the edge after flipping to either side (figure 17(b)). At
steps of finite height, this symmetry is broken by the presence
of the wedge. In the minus case, the droplets are pushed away
from the wedge, i.e. upwards, which is consistent with the
dynamics of droplets in the vicinity of isolated wedges of the
same material. However, being attracted to the edge as shown
in the previous subsections, they come to rest with the trailing
contact line pinned to the step edge (figure 17(c)). In the plus
case the droplets move in the opposite direction, i.e. they are
attracted by the wedge which they migrate to after leaving the
edge area (figure 17(d)).

In order to displace a droplet from one side of an edge to
the other side (as shown in figure 18(a)) one has to apply an
external force, e.g. a body force such as gravity or centrifugal
forces, which we incorporate into the hydrodynamic equations
via the boundary condition (see equation (3)). If the applied
force is small the droplets assume a new but distorted
equilibrium position with the leading three-phase contact line
still pinned at the edge. But there exists a threshold force
density gth beyond which the configuration described above is
unstable and the leading three-phase contact line depins from
the step edge. As a consequence the droplet flips around the
corner and ends up on the vertical side of the edge. Since
the applied body force has no component parallel to this
vertical part of the substrate, the further fate of the droplet is
determined by the action of the intermolecular forces. In the
minus case considered in figure 18(a) the droplet is attracted to
the edge such that the new stable equilibrium configuration is
that of a droplet residing on the vertical part of the step with
the trailing three-phase contact line pinned at the step edge.
In the plus case (which we have not tested numerically) the
droplet is repelled from the edge and it is expected to move
down the vertical part of the edge. As shown in figure 18(b)
we have determined the body force density g needed to push
the droplets over the edge for various types of substrates (minus
case with B = 0) and for droplets of two different sizes. The
threshold force density gth decreases both with C (i.e. with
θeq) and with the droplet size. Both trends are also expected
to occur for macroscopic droplets. In the limit θeq → 180◦
the droplets lose contact with the substrate and the free energy
of the droplet at the edge equals the free energy on a planar
substrate. Taking, however, the finite range of molecular
interactions into account this no longer holds, but the barrier
still decreases with increasing θeq. Since the force density g
is a body force, i.e. a force density, the total force per unit
ridge length G = g Ad (with the ridge cross-sectional area
Ad = 
d/L ∼ a2) acting on the droplet is proportional to
the droplet cross-sectional area Ad. In figure 18(b) we observe
that the total threshold force G th needed to push droplets over
the edge increases with droplet volume. Apart from the effects
of long-ranged intermolecular forces the main contribution to
the barrier effect of the edge is the increase of the liquid–
vapor surface area when the droplet is deformed as it passes
over the edge. The square root of the ratio of the surface
tension coefficient γ and the body force density g defines a
capillary length below which the surface tension dominates,
while it is less important for larger drops. (The surface area
of three-dimensional droplets increases only quadratically with

the droplet radius a while the volume increases ∼a3.) From
dimensional arguments gtha3 ∼ γ a2 one expects the threshold
body force density gth needed to push droplets over an edge
to decrease ∼1/a with the droplet radius, while for liquid
ridges the total force per unit length G th should still increase
linearly with the droplet radius a. Therefore the total threshold
force G th needed for the larger droplet in figure 18(b) should
be about

√
288/127 ≈ 1.5 times the force needed for the

smaller drop. The actual value is somewhat smaller and we
attribute the difference to the effect of the long-ranged part of
the intermolecular forces.

A macroscopic droplet spanning the whole topographic
step (i.e. with one contact line on the top terrace and one
on the base terrace) moves downhill: since the surface of a
macroscopic droplet is a part of a circle which is cut by the top
side of the step at a higher level than by the base of the step the
contact angle at the upper terrace is smaller than the contact
angle at the lower terrace. This results in a net driving force in
the downhill direction. The final configuration is a droplet with
the upper contact line pinned at the step edge. This is also true
on the nanoscale, as demonstrated in figures 19(a) and (b) for
the minus case and in figures 19(d) and (e) for the plus case.
The latter indicates that the difference in contact angle at the
two contact lines due to the different height level at the top
side and at the base side of the step provides a stronger driving
force than the lateral action of the disjoining pressure which,
in the plus case, moves droplets positioned next to the step in
the uphill direction.

For all substrates the surface of droplets pinned at the
edge becomes convex (corresponding to a negative pressure
in the droplet) for small θeq (i.e. small C , see C = 0.1 in
figures 19(c) and (f)). For very large θeq the upper contact
line depins from the edge and moves down towards the wedge
(see C = 6 in figures 19(c) and (f)). The result is a droplet
sitting in the corner of the wedge area only. The critical value
for θeq between both types of configurations depends on the
droplet volume and the step height: the smaller the droplet
(as compared to the step height) the smaller is the value of
θeq at which the upper contact line depins and the larger the
volume the smaller is the value of θeq at which the droplet
surface becomes convex. Both phenomena are in qualitative
agreement with macroscopic considerations which take into
account interface energies only (see [25, 68]).

Droplets sitting in the corner of a wedge are in an
energetically rather favorable situation as illustrated by the
arguments given at the beginning of this subsection. However,
even in the plus case, for which droplets are attracted by
wedges, they stop before reaching the wedge and they do not
move into the corner of the wedge. In any case, there is
an energy barrier to overcome in order to move droplets out
of wedges, as shown in figure 20(a). If a small horizontal
force is applied to a droplet sitting in the corner of a wedge
it assumes a new, slightly distorted but stable shape. But there
exists a threshold force density gth above which the distorted
configuration becomes unstable and the droplet moves out of
the corner. In the minus case considered in figure 20, the
droplet is repelled from the wedge such that the effect of the
intermolecular forces adds to the external driving force and the
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droplet definitively moves out of the corner of the wedge. In
contrast to the force required to push droplets over an edge, gth

increases with C (i.e. with θeq). The total force per unit ridge
length G th = gth Ad required to pull a droplet out of a wedge
increases only slightly (i.e. less than linearly) with the droplet
volume (see figure 20(b)), so that accordingly the required
force density gth decreases significantly with volume. With
the same dimensional arguments used above for droplets being
pushed over edges one would expect the total force needed to
pull two droplets of different volume out of the corner of a
wedge to be proportional to the square root of the volume ratio.
In particular for small C ≈ 2 according to figure 20(b) the total
threshold force is almost independent of the droplet size, rather
than to increase by a factor

√
312.5/200 = 1.25. We attribute

this difference to the influence of the long-ranged part of the
intermolecular forces.

6. Discussion

6.1. Force analysis

Numerical solutions of the Stokes dynamics of nanodroplets
in the vicinity of edges, wedges and steps are rather time-
consuming, even when using advanced numerical methods. As
shown in figure 6(b), the main driving force for the migration
of droplets is the disjoining-pressure-induced force density f�
as defined in equation (6). After the initial relaxation process,
the shapes of the droplets hardly change during the migration
process until the droplets either reach the edge (minus case)
or the corner of the wedge area (plus case). Unfortunately the
relaxed shape of the droplet is not available analytically, but
for droplets on substrates with θeq ≈ 90◦, as mostly considered
here, the initial shape relaxations are rather mild. Accordingly,
as demonstrated in the following, the force on the droplets
can be estimated rather accurately from calculating f� for
droplets with a shape given by the initial profile in equation (5)
positioned at the distance � = |x̄ |−a from the edge or from the
corner of the wedge. Apparently this estimate becomes invalid
for � � 1.

Figures 21(a) and (b) show the disjoining-pressure-
induced force densities calculated along these lines for droplets
of size a = 15 and 5 as a function of the distance � of the
right contact line to an edge for the minus and the plus case,
respectively. Since f� is proportional to C only results for
C = 1 are shown. For the plus case the force is always
negative for both droplet sizes and at all distances from the
edge, with its strength increasing towards the edge. This means
that droplets should move away from the edge with a speed
which decreases continuously. This is in complete agreement
with the numerical results presented in section 5. For the minus
case and for sufficiently large values of B , the force is positive
in accordance with the numerical results. However, as shown in
figure 21(a), for very small values of B , i.e. for B < Bc � −10
the force in the direct vicinity of the edge becomes negative and
droplets are expected to move away from the edge. Indeed, as
demonstrated in figure 8(b) (x̄(t → ∞) for I lies below the
corresponding values for II and III), the final distance of the
droplets from the step edge in the minus case increases with

more negative values of B . On the other hand, as shown in the
following section 6.2, for large distances from the edge, in the
minus case even for arbitrarily small B the force is positive
so that droplets find an equilibrium position with vanishing
force at a significant distance from the edge. The sign of the
disjoining-pressure-induced force density does not depend on
the droplet size. However, the equilibrium position changes as
a function of droplet size.

The force calculated for droplets of the same size but in the
vicinity of a wedge for the minus and the plus case are shown in
figures 21(c) and (d), respectively. For the minus case the force
is positive for any droplet size and for any B , which means that
the droplets move away from the wedge. For the plus case the
force is negative at large distances, but it changes sign close
to the wedge at a distance which increases with decreasing
the size of the droplets and with decreasing the value of B .
The latter relation is in agreement with the numerical results
presented in figure 16(b).

The disjoining-pressure-induced force density f� pre-
sented in figure 21 has been calculated for droplets with a
shape given by equation (5), i.e. for droplets with equal height
and half-width. However, the substrate parameters used in
figure 21 do not necessarily lead to θeq = 90◦, and droplets
would adopt a very different shape even during the migration
process. In order to check the influence of the droplet shape
on the calculated disjoining-pressure-induced force density f�
we also consider droplets which have a width w different from
their height a (compare with equation (5)):

y(x) = y0 + a

[
1 −

( |x − x̄ |
w

)2]|x−x̄ |m+1

. (27)

Figure 22 compares the disjoining-pressure-induced force
density f� on droplets in the vicinity of edges and wedges in
both the minus and the plus case for different drop widths w
but for a fixed drop height a = 15. The results indicate that
the form of the droplets does not change the sign of f�, and in
particular in the vicinity of the wedge the droplet width has a
rather small influence on the force.

In the vicinity of topographic steps the dependence of
f� on the step height h is also in good agreement with the
results of the full numerical solution of the Stokes dynamics.
Figure 23 shows f� above and below the step on substrates of
the minus and plus type for step heights ranging from h = 2.5
to ∞ (i.e. to isolated edges and wedges). The absolute value
of the force increases with the step height with the force near
isolated edges and wedges as the limiting values. This limiting
value is almost reached for a step height h = 20 (not shown in
figure 23).

6.2. Direction of motion far from the step

Both the force calculations presented in section 6.1 as well
as the results of the numerical solution of the mesoscopic
hydrodynamic equations indicate that the direction of motion
of a nanodroplet far enough from the step does not depend
on whether the droplet is positioned on the top side or on
the bottom side of the step. In the minus case the droplets
move in the downhill direction (i.e. in the direction of positive
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x values) and in the plus case in the opposite direction,
independent of the step height and of the values of B and C
(where the latter has to be positive). In order to understand
this we further analyze the total force per unit ridge length
F� = f�Ad on liquid ridges as defined in equation (6) for
large droplets far from the step. Asymptotically for large |x |
the DJP reduces to its value on a flat substrate so that there
the wetting film thickness assumes its value y0 independent
of x up to O(|x |−3). The leading order correction to the
DJP is ±sign(x)9hC/(16x4) for the plus and minus case,
respectively. Parameterizing the shape of the liquid–vapor
interface to the left and to the right of the droplet apex by x�(y)
and xr (y), respectively, from equation (6) with dy = −nx ds
we obtain

F� = −
[∫ ym

y0

�(x�(y), y) dy −
∫ ym

y0

�(xr (y), y) dy

]

≈ ±sign(x)
∫ ym

y0

9hC

16

[
1

xr (y)4
− 1

x�(y)4

]
dy

≈ ∓ 9hC

16|x̄ |5
∫ ym

y0

[
xr (y)− x�(y)

]
dy = ∓ 9hC

16|x̄ |5 Ad,

(28)

with the droplet apex height ym. In the last but one step we have
approximated F(xr ) − F(xl) ≈ (xr − xl) F ′(x̄) with F(x) =
x−4. The force is proportional to the droplet cross-sectional
area and its sign is determined by the sign of the Hamaker
constant (i.e. depending on the case; plus or minus) only: in
the plus case the force is negative (upper sign) and in the minus
case it is positive (lower sign). This is in complete agreement
with the numerical data. However, other than suggested by
equation (28), the force on a droplet does not diverge in the
limit h → ∞ as this limit has to be taken before taking the
limit |x | → ∞.

At large distances from an isolated wedge as well as from
an isolated edge, the disjoining pressure is to leading order
given by the DJP of the corresponding homogeneous substrate
with ±C/(2x3) as the leading order correction for the plus and
the minus case, respectively. As in the case of the step, up to
this order the thickness of the wetting film is independent of
the (large) distances from the edge or wedge. Using the same
approximations as in the case of the step of finite height, the
force on a droplet at a distance |x̄ | from an edge is given by

F� = ∓ 3C

2x̄4
Ad, (29)

with the upper sign corresponding to the plus case and the
lower sign to the minus case. The sign of the force is the same
as in the case of a step and it is also proportional to the droplet
volume. However, it decreases less rapidly with the distance
from the step.

For very large, almost macroscopic droplets, the situation
is again different from the previous two. In the following we
follow the line of arguments developed in [54, 55] for droplets
in the vicinity of chemical steps. In this limit the droplets are
approximately symmetric with respect to their apex and the
main contribution to the force stems from the vicinity of the
contact lines. For the wetting film as well as near the apex

the x component nx of the surface normal vector is zero and
thus in the vicinity of the apex the DJP is negligibly small. In
most of the examples discussed here the equilibrium contact
angle θeq is about 90◦ and, as a consequence, the lateral width
of the contact lines (i.e. the range of x values within which the
drop profile crosses over to the flat one of the wetting film) is
small and the lateral variation of the DJP within this region is
negligible. Therefore, after parameterizing the droplet surface
in the vicinity of the left and right contact line (at x = x̄ − a
and x = x̄ + a, respectively) by the corresponding function
x(y), the total force on a droplet can be approximated by

F� ≈ −
[∫ ∞

y0

�(x̄ − a, y) dy −
∫ ∞

y0

�(x̄ + a, y) dy

]

= −�(x̄ − a, y0)+�(x̄ + a, y0) ≈ 2a∂x�(x̄, y0),

(30)

where �(x, y0) is the local effective interface potential at the
level y0 of the wetting film (on the top side of the step one has
to add h to y0). Extending equation (23) to inhomogeneous
substrates one can define a spatially varying ‘equilibrium
contact angle’ cos θeq(x) = 1 + �(x, y0). In this sense,
a droplet in the vicinity of a topographic step is exposed to
an effective chemical wettability gradient which it follows.
Expanding ∂x�(x, y) for large |x | yields

F� ≈ ∓3aCh

x̄4
+ O(x̄−5), (31)

with the upper sign corresponding to the plus case and the
lower sign to the minus case. The force is equal on both
sides of the step and it increases linearly with the step height
but it decreases rather rapidly with the distance from the step;
however, more slowly than in the case of nanodroplets. The
force increases linearly with the base width 2a rather than with
the cross-sectional area Ad. As in the case of nanodroplets the
actual force on a droplet does not diverge in the limit h → ∞.
Using the same approximations as in the case of the step of
finite height, the force on a droplet at a distance |x | from an
isolated edge is given by

F� ∼ ∓3aC

|x̄ |3 + O(x̄−4), (32)

with the upper sign corresponding to the plus case and the
lower sign to the minus case. In the vicinity of a wedge
the situation is more complicated. In order to obtain, as in
equation (30), the effective interface potential, the point (x, y)
corresponding to the upper limit of the integral there has to
correspond to a point at infinite distance from the substrate.
However, taking y to ∞ for a fixed value x̄ does not change
the distance from the vertical part of the wedge. At this point
it is not clear whether the force integral in equation (6) can
be approximated by the form given in equation (30) because
the basic assumption, that the disjoining pressure is negligible
at the apex, is probably not true. Expanding the force as
calculated from equation (30) for large distances from a step
of very large height one obtains terms of the order O(x̄−3)

competing with terms of order O(hx̄−4), which indicates that
in the case of a wedge the approximations equation (30) is
based on lead to a mathematically ill-posed problem.
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In all cases F� essentially depends on the ratio of the
step height h and the distance from the step x̄ as well as
on the ratio of the apex height ym and x̄ . The asymptotic
results are summarized in figure 24. F� varies according to
a power law x̄−ζ , ζ ∈ IN, of the distance from the step. For
finite-sized droplet and steps of finite height (h/x̄ → 0 and
ym/x̄ → 0) we obtain the fastest decay with ζ = 5. For
almost macroscopic droplets (ym/x̄ → ∞) in the vicinity of
finite-sized steps and for nanodroplets near isolated edges and
wedges one has ζ = 4. For large drops (ym/x̄ → ∞) next to
an isolated edge we get the weakest decay with ζ = 3. In any
case, the total force per unit length F� is proportional to the
Hamaker constant as observed in the numerical solution of the
mesoscopic Stokes dynamics as well as in the force analysis
presented in section 6.1.

6.3. Estimates for the velocity

The driving force f on the droplets is balanced by viscous
forces. By applying a simple analysis within the lubrication
approximation one can show that the rate of energy dissipation
is proportional to the square of the velocity ū = ∂t x̄(t) of
the droplets [1, 69]. The form of this dependence can be
expected to hold also for droplets with large contact angles on
the basis of analyticity and symmetry arguments. By equating
this dissipation with the work ū f
d done by the driving force
one finds

ū = dx̄/dt ∼ f/
d. (33)

For droplets far from the step with f (x̄) given by
equations (31) and (32) as a power law one has x̄(t)ν ∼ t and
therefore

|x̄(t)| = (|x0|ν + ct)1/ν (34)

with ν = 4 for large droplets in the vicinity of edges, ν = 5 for
large droplets in the vicinity of steps of finite height as well as
for nanodroplets near isolated edges and wedges and ν = 6
for nanodroplets near steps of finite height. c is a constant
which also depends on whether there is an edge, wedge or step
and whether the droplet is large or small. The functional form
given by equation (34) with the corresponding value of ν can
be fitted to the positions of nanodroplets as a function of time
obtained by numerically solving the mesoscopic hydrodynamic
equations, e.g. to the data shown in figure 9 (droplet on the
top side of steps, plus case) and figure 11 (droplet on the
step base, minus case). However, the numerically available
range of x̄ values is rather small so that the fits are consistent
with the above values of ν but cannot rule out different ones.
In addition, it is not clear whether the distances considered
in the numerical solutions of the mesoscopic hydrodynamic
equations are large enough to reach the asymptotic regime
considered here, and whether the droplets should be considered
small or large in the above sense.

7. Perspectives

A major and obvious driving force for studying the dynamics of
nanodroplets on structured substrates is the rapid development
and miniaturization of microfluidic devices, in particular of

open microfluidic devices [19–22]. But this is not the
only research area for which a detailed understanding of
the influence of the long-ranged part of the intermolecular
interactions on fluids in the vicinity of lateral surface structures
might be important. Another example is the dynamics
of nanodroplets at chemical surface structures as discussed
in [54, 55]. Moreover, dewetting processes are also strongly
influenced by surface heterogeneities, both during the initial
phase of film breakup [16, 70] as well as during hole
growth [33]. The latter example is particularly interesting in
this respect because it reveals an intrinsic nanoscopic length
scale which has to be understood: the receding contact line
is pinned only by steps of a minimum height which increases
with the size of the liquid molecules [33]—a clear indication
that details of the intermolecular interactions in the vicinity of
the step are relevant.

All results presented in this paper have been obtained
for homogeneous straight liquid ridges. Apart from the fact
that such ridges are unstable with respect to breaking up
into three-dimensional droplets [71, 72, 23, 24], the question
remains to check how relevant these results are for actual three-
dimensional droplets. In this context we point out that the
basic driving mechanism for droplets in the vicinity of steps
is the difference of the disjoining pressure on that side of the
droplet which is closer to the step and the side which is further
away from the step. In such a situation also three-dimensional
droplets move. However, the third dimension certainly changes
the behavior of droplets spanning topographic steps [73, 74]:
depending on the droplet volume, the droplet can spread along
the step into a cigar-shaped configuration. The influence of
the long-ranged part of the intermolecular interactions on this
phenomenon has not yet been studied.

It is worthwhile to point out that, although the dynamics
is different, there are strong similarities between nanodroplets
and solid nanoclusters: their energetics on structured surfaces
is determined by intermolecular forces as demonstrated in [75]
by molecular dynamics simulations of gold clusters on graphite
surfaces. Unfortunately, in such simulations taking into
account the long-ranged component of the intermolecular
forces increases the numerical cost drastically, such that most
of the effects discussed here are not accessible by molecular
dynamics simulations [76].

This leaves the question of experimental tests of our
theoretical predictions presented here. As detailed in [56] the
forces on the nanodroplets are of the order of 10−13 N (i.e.
about eight orders of magnitude stronger than the gravitational
force on such a droplet) and the resulting velocities range
between 0.1 and 0.1 mm s−1 for viscosities between 0.1
and 100 Pa s. While topographic surface structures of
almost any type can be produced with modern lithographic
techniques, positioning nanodroplets with nanometer accuracy
next to a step remains a tough challenge. Most promising
are techniques based on using atomic force microscopes as
pens [77, 78], but there are no experiments available yet.
Experimentally it is much easier to grow droplets from an
aerosol or a vapor phase rather than to deposit them at a
specific location. Experimentally it has been shown that
water nanodroplets preferentially condense onto terrace steps
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of vicinal surfaces [79]. However, these data do not allow one
to determine whether the droplets reside on the top terrace,
on the bottom terrace, or whether they span the step. This
example shows that condensation on (and evaporation from)
nanostructured substrates is a challenging problem of its own.
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Appendix. Numerical algorithm

In order to study the effect of the intermolecular forces on
nanodroplets near a topographic step we solve equations (1)–
(3) numerically using a standard and accurate biharmonic
boundary integral method (BBIM) [80–82, 56, 54, 55].
To this end we introduce the stream function ψ(x, y) so
that ∂ψ/∂y = ux and ∂ψ/∂x = −uy as well as the
vorticity ω(x, y) = ∂ux/∂y − ∂uy/∂x , which allows us
to reformulate the dimensionless versions of equations (1)
and (2) in terms of the following harmonic and biharmonic
equations [80–82, 56, 54, 55]:

∇2ω = 0 (A.1)

and
∇4ψ = 0. (A.2)

The standard BBIM relies on mapping the equations for
ω and ψ onto the boundary r(s) = (x(s), y(s)) of the
fluid, parameterized in terms of its contour length parameter
s. This results in an integral equation for ω, ψ , and their
derivatives ωn = n · ∇ω and ψn = n · ∇ψ , with the
surface normal vector pointing outwards of the liquid. By
dividing the boundary of the system into a series of elements
(see figure A.1) one obtains a coupled system of algebraic
equations which can be solved numerically. With the tangential
velocity ut = ψn and the normal velocity un = −ψs

(with the index s indicating the derivative in the direction
tangential to the boundary) the position of the liquid boundary
after a time step can be calculated via the explicit Euler
scheme [80–82, 56, 54, 55]:

r(t +�t) = r(t)+ u(t)�t . (A.3)

In order to solve these equations the boundary conditions
of the system must be expressed in terms of ω and ψ .
Depending on the phases in contact with each other, three
different types of boundary interfaces can be identified (see
figure A.1): liquid–solid interfaces �ls, liquid–liquid interfaces
(those boundaries �ll1 and �ll2 which are located at the end
sides of the system) and liquid–vapor interfaces �lv. For �ls

we impose the no-slip condition (u = 0) which corresponds
to ψ = 0 and ψn = 0. For �ll1 and �ll2 we apply a no-flux
condition which corresponds to having a vertical symmetry
plane there. Such a system corresponds to a periodic repetition
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Figure A.1. The dynamics of a droplet is investigated which initially
is positioned either on the top side or the bottom side of a step at a
distance � from the step. The boundary of the system � decomposes
into three different groups: liquid–liquid (ll), liquid–solid (ls) and
liquid–vapor (lv) interfaces. The discretized node points considered
in the numerical investigation are indicated; n and t represents the
normal and the tangential unit vectors on �, respectively.

of the system attached to its mirror image. Correspondingly
the slope of the liquid–vapor interface at the side ends of
the system is zero. These conditions can be implemented by
setting ψ = 0 and ω = 0 there. The tangential and the normal
component of the boundary condition (3) along the liquid–
vapor interface �lv in terms of the stream function and the
vorticity are (lower indices s indicate derivatives with respect
to the contour length parameter s)

ω = 2ψss + 2κψn (A.4)

and

ωn = −2ψnss + 2κψss + 2κsψs + κs +�s + gxs

C
, (A.5)

respectively, with the local curvature

κ = − yssxs − xss ys

(x2
s + y2

s )
3/2
. (A.6)

In order to increase the efficiency of the numerical
calculations we employ an adaptive time stepping: for any
numerical step, the time step is selected such that the
displacement of any node does not exceed δ per cent of the
length of the elements connected to that node; δ can be changed
during the numerical calculations. The starting value for δ
and the rate of its increase depends on the actual situation but
typically we have started with δ = 0.01 and then gradually
increased it to 0.1 or even more. In order to avoid numerical
instabilities, the position of the end points of the boundary
elements are smoothed after a specified number of steps by
fitting a spline through the points on the liquid–vapor interface,
followed by selecting new and equally spaced points on the
spline.
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[11] Quéré D 2008 Annu. Rev. Mater. Sci. 38 71–99
[12] Bico J, Tordeux C and Quéré D 2001 Europhys. Lett.
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60 4027–42
[29] Rascón C and Parry A O 2000 Nature 407 986–9
[30] Bruschi L, Carlin A and Mistura G 2002 Phys. Rev. Lett.

89 166101
[31] Klier J, Leiderer P and Wyatt A F G 2005 Phys. Rev. B

72 245410
[32] Gang O, Alvine K J, Fukuto M, Pershan P S, Black C T and

Ocko B M 2005 Phys. Rev. Lett. 95 217801
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