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We study the resonant behavior of a system consisting of a square array of multi-coated
cylinders by calculating the effective dielectric constant of the system. The results were
examined numerically using the finite element method.
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1. Introduction

Finding the response of a system consisting of a periodic array of solid cylinders
embedded in a homogenous matrix has a long history dating back to Lord Rayleigh.*
Runge? extended Rayleigh’s method to coated elements where the geometry was
composed of an array of tubes and the core of the tubes was filled with the same
material as the matrix. Israelachvili et al.® reported the solution of the problem
when the materials of core and matrix were different.

The inspection of the behavior of the solution as a function of the property
of the core and shell divulged a new feature of the system. Nicorovici et al.*™©
discovered that the procedure of coating the cylinders with a material that has a
dielectric constant, which is the negative of that of the cylinders (eghell = —core)
or matrix (£shell = —Ematrix) can yield the response of a system with magnified
cylinders. This means that a system with diminutive concentration may condition-
ally give the response of a concentrated system. These authors termed the system
in these situations “partially-resonant” and the conditions that put the system in
these particular states the “partial resonances” of the system. The term “resonance”
may be misleading here. In fact, the above-mentioned features are a generalization
of what happens in two-phase composites when ecore = —Ematrix, Which is not a
resonance.”® Therefore, one needs to consider that the term “partial resonance”
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only refers to a specific condition. The term “partial” was applied due to the fact
that the response of the system in these situations is still limited.

In this report, we elucidate how the above-described behavior occurs in a system
consisting of arrays of multi-coated cylinders. The motivation for this research stems
from the further need to inspect the behavior of systems with components, which
have a negative permittivity () or negative permeability (u) or systems having
both ¢ and p negative (the so-called left-handed medium?). These systems have
shown interesting and unexpected results,* 5?1 which may also be of practical
interest.!?

Note that, although periodic arrays are idealized microstructures they may be
realizable experimentally. One reason for studying these structures is that their
properties can many times be easily computed. Also, the results of periodic systems
can be useful for grasping the interplay between the microstructure and macroscopic
properties of composites. We numerically show that a disordered structure can also
be partially resonant.

The structure of this report is explained here. The following section describes
the geometry under study. In Sec. 3, we briefly explain the procedure of deriving the
response of the system. Section 4 predicts some results from the theoretical study
of the system when it is in resonant states. Section 5 verifies the results of the
previous section and finally, in Sec. 6, we summarize the key findings of this study.

2. Geometric Description

Consider a homogenous matrix with a unit dielectric constant surrounding an array
of composite cylinders, which have a topology based upon the well-known square
lattice. Each lattice point of the square array can be described by a lattice vector,
T,, defined as:

T = h(niey, + nsey,), (1)

where h is the characteristic length that expresses all the dimensionless distances
ny and ng are arbitrary integers and the two basic vectors, e,, and e,,, form the
orthonormal basis of the plane. Let 6 be an angle measured from the x-axis. Thus,
one can write

x1 =rcosf, xg=rsind. (2)

The radiuses of the core and coating layers are determined by aq,...,an—1, respec-
tively, as is shown Fig. 1. With these considerations, one can show that the volume
fractions occupied by the core and coating layers can be obtained from

fi=n(ai —al,) (i=1,...,N—1) (3)

and the total volume fraction can be expressed as:

N1
F= Z fi (4)
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Fig. 1. The multi-coated cylinder under study.

ap = 0 has been included here and in the following relations in order to reduce
the number of mathematical notations. We also use the term “layer” for the core,
coating layers and matrix, and the dielectric constant ratio between layers ¢ — 1 and
i is represented by ;1 ;.

3. Mathematical Modeling

Considering the problem symmetrical allows it to be solved independent of the
direction of the applied field, and without compromising generality, we assume a
potential gradient of unit magnitude to be applied along the x;-axis. For the unit
cell located at the origin, considering the general solution of the Laplace equation
in polar coordinates (r,0) and following Ref. 1, the potential (V') inside the layers
may be given as:

oo

V= Z Bl cos(2n —1)0 r<ar, (5a)
n=1

Vi = Z[E;T‘Qn_l + F;i'l"_gn-i_l] COS(ZTZ - 1)0 a;—1 S r S al(l = 27 sy N — 1) )
n=1

(5b)

VN = Z[Eflvr%fl + ENp=2 cos(2n — 1)0 7> an_1, (5¢)
n=1

where EY and FV are unknown coefficients that are to be determined.
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At all the surfaces between the layers, the potential and normal component of
the electric displacement are continuous, i.e.,

V1= 2
ov?t ov? T=a1, (6a)

Lo T 2oy
Vi-l — i

gvi-1 oV r=a1i=2,...,N—-1), (6b)
g =y
yN-1 _ N

oy N-1 gyN  r=an-1 (6¢)
EN-1 or 5Na—

By applying Egs. (6) E? and F} can be related to each other as:
Fp+ Ly ai" B, =0 (i>2) (7)
where

gic1i— 1+ (gim1i + 1)L Y ai—a/a;—1)4" 2
gic1i+ 14 (gim1 — V) Li Yai—a/ai—1)4n=2"

Li = (3)

To derive EYN and F}N, one may follow the method of Zuzovski and Brenner.'?
These authors derived another relation for the potential through the matrix in one
unknown A,. Comparing the resultant relation with Eq. (5¢), allows two linear
equations to be found relating EY and FN¥ to A,,. These two equations yield a set
of linear equations in the unknowns A,, with the help of Eq. (7)

A, = (2n+2]—1
T = Sonta7As_1+ 0no, 9
a%lezLﬁfH ;( om+1 ) 2n+2J1J—1 0 9)

where d,0 represents the Kronecker delta (1 for n = 0 otherwise 0) and S,, are
constants characteristic of the array. After finding EY and F2, other coefficients
can be found by using Egs. (6).

The effective dielectric constant can be calculated using the following formula

cef = 1 +27Ap, (10)

where Ag can be derived by solving the system of linear algebraic equations obtained
from Eq. (9). As a solution in an explicit form, we present the following simple
formula, which gives reasonable results in very low volume fractions

2F

LN A F (11)

Eoff = 1 —

In order to obtain a more accurate expression one can use the methods outlined by
Manteufel and Todreas.!*
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4. Theoretical Prediction

As can be seen from Eq. (9), ax_; and LY play important roles in the response
of the system to the applied field. Due to the form of the mathematical expression
of LY [i.e., Eq. (8)], for some cases, there may exist a different number and series of
dispersed layers that provide following relation

4n+2 N* 4n+2 N
N* 1Ln+1 Ln+1 (12)

and, as a result, the response of the system in these situations would be the same.
For example, when the coating layer i is perfectly conducting or insulating, L:F
would be 1 and —1, respectively. This means that the layers under the layer ¢ will
have no effect on the calculation of L. Thus, there are infinite selections for the
number and property of the layers under the layer i.

The particular cases occur when

gi-1+e,=0 (2<i<N). (13)
From Eq. (8) we find the following
, P+Q
Lifl=——= (1<i<N-1 14
R TR e (14)
where
[ 4n—27

P=(giit1—1) |gic1i+ 14 (5521, — 1)LG!

An—2 An—2
Q = (€i,i+1 + 1) i+l — 1+ (51'71,1' + 1)[/:;1 <ai2> (CL7;1>
a;—1 a;

R=(eiit1+1) |1+ 1+ (5521, — 1)L

a 4n—2 a 4n—2
S = (5i,i+1 — 1) €i—1,i — 1+ (81',1’1' + 1)L:;1 =2 < Zl)
ai—1 a;
(15)
Substituting condition (13) into Eq. (14) gives the following statement
pist — St =1t G £ DI s/ ™ Mo PO

€i1i+1 1+ (€141 — 1)L (ai—2/a;)*2(a;/a;—1)?"#n=2) '
If two layers, ¢« — 1 and ¢, have the same dielectric constant, which is equal to €;_1,
one may derive the following

gictit1 — 14 (gic1ip1 + 1)L aig/a;)*" 2
gimtit1 + 14 (gic1i41 — 1)L Hai—2/a;)472 "
A comparison of Eqgs. (16) and (17) shows that the field through the continuous
phase would be the same if layer ¢ had the same property as layer ¢ — 1 and all

Litt = (17)
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the layers under layer i — 1 were magnified by a factor of (a;/a;_1)*. Layer i —
1 experiences two changes. Magnification by occupying the place of layer ¢ and
reduction due to the extension of layer ¢ — 2. Thus, this case can be materialized
only if

Ai—1 > \/G;Q;—2 . (18)

The inspection of L5 in condition (13) revealed part of the results. Let us now
derive an expression for L¢. From Eq. (8) after substituting Eq. (13) and developing
a relation for L1 analogous to Eq. (8), the following equation can be derived

i €icai— 1+ (gicoi + DL 2 (ai—3/a;i—1)*" 2 (ai—1/a;—2)*" 2

Li = i
gi—oi+ 1+ (gi—2, — VLG 2 (ai—3/ai—1)*=2(a;—1/a;—2)4n=2
@ 4n—2
><( ’1> (2<i<N). (19)
a2

When two layers, ¢ — 1 and ¢ — 2, have the same dielectric constant equal to €;_o,
the result for L?, would be

gi—2i— 1+ (gi—2; + 1)L (ai—3/a;—1)*" 2
€imoi+ 1+ (gima; — 1)L ?(aj—3/a;—1)4n=2"

L = (20)
A comparing of Eqgs. (19) and (20) indicates that there is another equivalent sys-
tem in which all the layers (¢ = 1,...,4 — 3) have been extended by a factor of
(a;—1/ai—2)*. The layer i — 1 now has the property equal to that of layer i — 2 and
its outer radius is a;—1 X (a;—1/a;—2). This system can be materialized if

;-1 < y/a;a;—2 . (21)

Some conclusions can be drawn on the basis of the above relations. When i = 2
in Eq. (13), the second equivalent system cannot occur, but there is always an equiv-
alent system. When 3 < ¢ < N — 1, both equivalent systems can occur, although
not simultaneously because of the limitations dictated in Egs. (18) and (21), which
contravene each other. Therefore, finding the equivalent system in this situation
has been warranted except when a;—1 = Vaiai—2. If ¢« = N, the first equivalent
system has no meaning and the second one can occur if a;—1 < \/a;—2/2.

Since Eq. (13) expresses resonance between two successive layers, one may con-
sider different cases in which several pair layers satisfy relation (13), i.e.,

€i-1+¢& =0 (Z:j,kJ,) (22)

The behavior of the system in these states can be readily detected by successively
applying the methods declared above. For example, we consider the following case

€1+ =0 (i:27...,N—1). (23)

Successively employing the methods ultimately indicates that the field inside the
matrix would not change if the multi-coated cylinders were replace by solid cylinders
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of radius ay_1 and dielectric constant €. Therefore it can be shown that LTIY can
be simplified into the following form

N €1 — 1
y=2 49
and as a result, the potential inside the matrix would be
= 1+¢
v = E FN | —— 1oL 21 =201 og(2n — 1)0). 25
— n (1 _ El)a;l\}n_—f ( ) ( )
n=1

From the above result, it can be understood that in this situation, the sign of € for
the layers between layers 1 and N(1 < i < N) can be arbitrarily chosen and all the
cases yield the same response.

When all the layers (i = 2,..., N) fulfil condition (13) and N is an odd number,
the system behaves like a solid medium with the dielectric constant of the matrix.

5. Numerical Verification

Numerical simulation is nowadays a well-developed tool for inspecting the response
of systems. Although the unit cell of the periodic structures has been largely
simulated,'® they are mostly in two-phase with positive transport properties.

For given geometry and solid volume fractions, the Matlab PDE toolbox was
utilized and the Laplace equation solved for a unit cell of the system using the
finite element method. The unit cell consists of matrix and dispersed layers (core
and coating layers). A potential gradient of unit magnitude was applied externally
along the xj-axis and other external boundaries were insulated. At the surfaces
between the layers, continuity conditions (6) were implemented. By using solution-
adaptive refinement, one can add cells where they are needed in the mesh, thus
enabling the features of the potential field to be better resolved. Based on the
theoretical findings, the three considerable cases were studied numerically.

e Figure 2(a) shows a unit cell of a system consisting of three-coated cylinders.
The dielectric constants of the core and coating layers were selected to be +2.5,
+5, +2 and —2 and the radiuses 0.15, 0.2, 0.275 and 0.33, respectively. In order
to construct the equivalent system [Fig. 2(b)], second and third coating layers
were joined together and considered as one unit layer with a dielectric constant
equal to +2. Also, the core and first coating layers are magnified by the factor
(0.33/0.275)*. Therefore, the radiuses of the layers are a = 0.216, a3 = 0.288 and
a3 = 0.33. The distributions of the induced fields are given in the figures show
that although the fields inside the dispersed layers of the systems are completely
different, they are exactly the same through the matrix.

e Now we consider the system of Fig. 2(a) with one alteration. In order to satisfy
condition (21), the radius of the third coating layer has been extended to the
value 0.4 as is shown in Fig. 3(a). Based on the predicted scheme for the second
equivalent system, we assemble a two-coated cylinder [Fig. 3(b)] with radiuses



412  A. Moosavi € P. Sarkomaa

(b)

Fig. 2. Equipotential contours inside the unit cell of the first case. The original system (a) and
equivalent system (b).
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(b)

Fig. 3. Equipotential contours inside the unit cell of the second case. The original system (a)
and equivalent system (b).
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(b)

Fig. 4. Induced potential field inside the layers of the unit cell in third case. The original (a) and
equivalent system (b).
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(b)

Fig. 5. Induced potential fields inside the layers of a simple system composed of a two-coated
cylinder and arbitrary boundaries. The original (a) and equivalent system (b). Note that the
potential fields outside the first coating layers are equal. This is also correct for the third case.
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of a] = 0.28359375, a5 = 0.378125 and a3 = 0.4. The dielectric constants of the
layers are +2.5 for the core, +5 for the first coating layer and —2 for the second
coating layer. It is clear from the figures that the potential fields outside a5 are
equal.

e In third case, a two-coated cylinder has been considered as depicted in Fig. 4(a).
The dielectric constants of the core and coating layers are —2, +2 and —2, re-
spectively. In the next system [Fig. 4(b)], the two-coated cylinder is replaced by
a solid cylinder with the same dielectric constants as the core of the original
system. Both systems have the same total volume fraction. Again, by applying
the same boundary conditions, the fields through the matrix of both systems are
the same.

To further investigate this subject, we consider a simple system consisting of
a two-coated cylinder (with details explained in the third case above) covered by
another material of unit dielectric constant. Arbitrary boundary and boundary con-
ditions were selected and implemented on the system as is represented in Fig. 5(a).
Figure 5(b) shows that changing the dielectric constant of the first coating layer
to —2 causes no disturbance in the field through the matrix. Therefore, disordered
structures can also be partially resonant. This fact had been predicted by Nicorovici

l5’6

et a and the numerical investigation shows the same result.

6. Summary

Inspection of the resonant behavior of the multi-coated structures exposed new
results in this field. When the sum of the dielectric constants of two successive
layers is equal to zero, a series of layers can be magnified and the magnification
is not limited to one layer. The ratio of magnification for the layers detailed. We
also explained that, for every resonant state, there may be two types of equivalent
system, although only one of them may be of any physical significance. All the
numerical investigations were in accordance with the theoretical predictions.
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