
Solution method 

1- Converting the proposed model to MILP 

In order to convert the proposed bi-level problem into a MILP which guaranties obtaining the global optimum 

solution, three steps should be followed: 

i) Substituting the lower level problem with its KKT optimality conditions 

In the proposed bi-level model, the lower level problem is linear since TVPP bidding price is specified for ISO. 

Therefore, the lower level problem is convex and substituting it with its KKT optimality conditions causes the upper 

and lower level problems to solve simultaneously. In order to substitute the lower level problem by its KKT 

conditions, at first Lagrange equation is built as (a1). 
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Based on Lagrange equation, KKT optimality conditions are attained for 

CCDDRRBB Ss,Ss,Ss,Tt,Ff,Dd,Ii 
TT

 as follows. 
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It should be noted that matrix )b,l(F TT  in equation (a5) represents the relation between the power flow of lines 

and voltage angel of buses through the equations of CDRCDR
sstsbsstsl

)b,l(FFP TT
TTTT  . 

However, the outcome formulation is an MPEC which suffers nonlinearity of upper level objective function -(1) 

in associated paper- and nonlinearity of KKT complementary conditions (a6)-(a14). Therefore, parts ii and iii utilize 

linearization of these nonlinearities to convert MPEC to MILP [A]. 

ii) Linearizing the upper level objective function 

The upper level problem objective function nonlinearity is due to the terms CDRCDR
TVPP
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DA . TT , each one consists of multiplication of two variables. Using KKT optimality conditions 

and strong duality theory, linearized form of nonlinear parts of objective function is represented in (a15). 
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iii) Linearizing the KKT complementary conditions 

Relations (a6)-(a14) represent KKT complementary conditions which are nonlinear. In order to linearizing these 

relations, binary variable series w and sufficient large amount series M are defined. For example, linearization of 

KKT complementary condition (a7) is done through following four relations where CDR ssifts

maxw , pM  and puM  are 

binary variable for upper limit of CDR ssifts

DA  and sufficient large numbers, respectively [A]. Other KKT 

complementary conditions can be linearized in the same way. 
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