
1. The Probability Transformation Concept and Formulation 
 

 A general reformulation of the probabilistic constraints in the stochastic analyses 

propagation can be written as below:   
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where o
i  is the probability of the constraint   0iG X   being true, chosen a priori by the designer, 

and iP  is the probability of the thi constraint that should be satisfied. The probability of each 

constraint may be obtained by evaluating the integral in Eq. (2), which is the fundamental 

expression of the probabilistic problem: 
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where X ( )f X  is the PDF of random vector X. In practice, it is difficult to use the joint PDF because 

of scarcity of joint observations for a large number of random variables. At best, what is known 

are the marginal probability distributions of each random variable and possibly correlations 

between pairs of random variables. Another difficulty in solving Eq. (2) is the fact that the 

constraints,  qG X , may not represent an implicit form after adding random variables. Such 

difficulties have motivated the development of various approximate techniques. The general 

methods are the First and Second Order Reliability Methods (FORM and SORM, respectively), 

Neural Network Surface Responses (NNSR), and Mean Value First Order Second Moments 

(FOSM). FORM and SORM are said to be transformation methods, because the integral in Eq. (2) 

is not solved in the original space (X), but is mapped to the Standard Gaussian space (U). In fact, 

determining the probability of the constraints with random variables is achieved by mapping the 

problem from the physical space to the normal space by utilizing the probabilistic transformation 

(PT). Probability transformation is used to transform various random parameters into the new 

space in which the probability calculation can be easily implemented. The main advantages of this 

approach are its computational cost and ease of probability calculation compared to other methods 

of this class [1]. The mathematical representation of this transformation is expressed in the 

following. Fig. 1 represents a schematic of the PT. As it represents, any random parameter with its 

specified PDF and CDF could be transformed into the standard normal space.  

 
 Fig. 2, depicts schematic steps of transforming input random variables into the independent 

standard normal space. In Step 1, non-standard input variables rp
jX  are transformed to random 

variables iZ  with standard PDF. However, rp
iZ are still correlated and therefore, another 

transformation is performed, in step 2, to convert rp
iZ  to statistically independent standard-normal 

variables rp
iU . 

 

Fig.  1  A schematic of the probability Transformation  

 



To formulate the step 1 transformation, it has been assumed that the rp
iX  and rp

iZ  must have 

similar cumulative density functions (CDF) As below: 
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where rp
iX

F  is the CDF of the random variable rp
iX  and   is the CDF of the random variable rp

iZ  

which, by definition, is standard normal. Accordingly, random variables rp
iZ  can be extracted 

from: 
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Standard normal random variables rp
iZ  are correlated. However, new correlation 

coefficients between rp
iZ  and rp

jZ  can be assessed by the following equation [1]: 
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where   is the joint binormal PDF of rp
iZ  and rp

jZ  with the following formula: 
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 The equation Error! Reference source not found. can be simply solved by numerical 

approaches to find rp rp
i jZ Z

 . In the next step, statistically dependent variables rp
iZ  are transformed 

into independent and standard-normal variables rp
iU . In this regard, the proposed transformation, 

in [2], is implemented to eliminate the dependencies of rp
iZ . This transformation is formulated as: 
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Fig.  2  Probability transformation the Random Parameters to the standard normal space 

 



where l  is an upper triangular matrix which is factorized through Cholesky decomposition of the 

coefficient correlation matrix ZZR . The coefficient correlation matrix ZZR  is also defined as: 
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Based on the proposed transformation, input random parameters rp
iX  are now replaced with their 

equivalent standard and normally distributed parameters rp
iU . 

 
2. Probability of Constraints 

 

 For the sake of demonstration, we consider a simple constraint in this section and seek to 

achieve the probability of it with the proposed approach. Let the constraint be: 

0G S R    (9) 

where S and R show demand and capacity, respectively. Obviously, we desired our capacity to be 

equal or greater than the demand, therefore, the probability of  [ 0]P S R   being true is: 
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 To further clarify the situation, Fig. 3 represents all of the possible states that R and S could 

happen simultaneously. Having two parameters for the constraint, the joint PDF of R and S has 

three dimension which is represented in the figure by its contours. R=S limit state is of great 

importance because it separates the joint PDF into two regions; Feasible and Failure. The 

probability of the constraint being true is sum of all probabilities in the feasible area which is 

shown in the gray color. 

 

 
Fig.  3 Schematic of constraints probability surface,  feasible, and failure  Region 

 



 

 

Equation 10 can also be written as: 
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where gF  is the joint CDF. Now, assuming that S and R are independent and standard normal, the 

probability could be written as: 
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where    is the standard normal CDF of R and S. Considering the constraint in the point 0g  , we 

have: 
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 In this equation, 
g

g




 is of represents an important indicator   is called safety factor index. 

From analytical geometry point of view,   is the minimum distance between the origin and the 

limit state in the standard normal space. Fig. 4 represents this concept. 

 
This figure also shows another incentive for using standard normal space. Since   is a distance, 

the standard normal transformation provides a dimensionless space in which we can measure any 

distance, easily,  while in the physical space the distances are a combination of different 

dimensions which makes them meaningless.  

 

 

 

 

 
Fig.  4 geometrical representation of the safety index 

 



3. First Order Reliability Method (FORM) 

 

 In the FORM, the probability integral is attained in the standard normal space at a point 

with maximum probability density. The FORM is obtained at constraints ( )iG x  at a point *u

defined by the optimization problem: 

 * arg min  | ( ) 0u u G u   (14) 

where “arg min” signifies the argument of the minimum of a function. It is proved that *u  is 

located on the limit state, ( ) 0G u  , and has minimum distance from the origin in the standard 

normal space. Because equal probability density contours in the standard normal space are 

concentric circles centered at the origin, *u  has the highest probability density [3]. This point is 

known as the design point, most probable point (MPP), and also beta point. 
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