Theory of Formal Languages and Automata Lecture 13

Mahdi Dolati

Sharif University of Technology

Fall 2023

November 22, 2023

Closure

Theorem

CFLs are closed under union.

Proof.

- Consider $G_1 = (V_1, \Sigma, R_1, S_1)$ such that $L(G_1) = A$
- Consider $G_2 = (V_2, \Sigma, R_2, S_2)$ such that $L(G_2) = B$

• Construct
$$G = (V, \Sigma, R, S)$$
 by

•
$$V = V_1 \cup V_2 \cup \{S\}$$

• $R = R_1 \cup R_2 \cup \{S \rightarrow S_1 \mid S_2$

- If $w \in A$ then $S_1 \stackrel{*}{\Rightarrow} w$. So, $S \Rightarrow S_1 \stackrel{*}{\Rightarrow} w$
- If $w \in B$ then $S_2 \stackrel{*}{\Rightarrow} w$. So, $S \Rightarrow S_2 \stackrel{*}{\Rightarrow} w$
- If $w \in L(G)$ then $S \Rightarrow S_1 \stackrel{*}{\Rightarrow} w$ or $S \Rightarrow S_2 \stackrel{*}{\Rightarrow} w$. Thus, $w \in A \cup B$.

< A

CFLs are closed under concatenation.

Proof.

- Consider $G_1 = (V_1, \Sigma, R_1, S_1)$ such that $L(G_1) = A$
- Consider $G_2 = (V_2, \Sigma, R_2, S_2)$ such that $L(G_2) = B$
- Construct $G = (V, \Sigma, R, S)$ by

•
$$V = V_1 \cup V_2 \cup \{S\}$$

• $R = R_1 \cup R_2 \cup \{S \to S_1 S_2\}$

イロト 不得下 イヨト イヨト 二日

CFLs are closed under Kleene star.

Proof.

• Consider $G_1 = (V_1, \Sigma, R_1, S_1)$ such that $L(G_1) = A$.

• Construct
$$G = (V, \Sigma, R, S)$$
 by

•
$$V = V_1 \cup \{S\}$$

• $R = R_1 \cup \{S \rightarrow SS_1 \mid \varepsilon$

Theorem

CFLs are closed under prefix.

Proof.

• Consider a CFG that generates the language L. Convert it to Chomsky normal form $G=(V,\Sigma,R,S).$

• If $L = \emptyset$, then $\operatorname{Prefix}(L) = \emptyset$.

- Consider the derivation and parse tree for any string in the language. Any prefix groups the variables in the parse tree into three types.
 - The prefix includes all terminals in subtree of the variable,
 - The prefix includes some terminals in subtree of the variable (split path),
 - The prefix includes no terminals in subtree of the variable,

4 円

Proof Cont.

- We want to construct a CFG that keeps track of a split path such that:
 - Terminals left to the split path are produced,
 - Terminals right to the split are replaced with ε ,
 - The terminal connected to the last variable in the split path is produced.
- We introduce three variables $\langle A,L\rangle$, $\langle A,S\rangle$, and $\langle A,R\rangle$ for every variable A in the grammar.
- Note, we have three types of rules:

•
$$S \to \varepsilon$$

•
$$A \to BC$$

• $A \to t$

3

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Proof Cont.

• Construct
$$G' = (V', \Sigma, R', S')$$
:
• $V' = \{ \langle A, D \rangle \mid A \in V \text{ and } D \in \{L, S, R\} \},$
• $S' = \langle S, S \rangle,$
• R' :

Since $L \neq \emptyset$	$\langle S, S \rangle \to \varepsilon$
For every $A \to BC$	$\langle A,L\rangle \to \langle B,L\rangle \langle C,L\rangle$
	$\langle A,S\rangle \to \langle B,L\rangle \langle C,S\rangle \mid \langle B,S\rangle \langle C,R\rangle$
	$\langle A, R \rangle \rightarrow \langle B, R \rangle \langle C, R \rangle$
For every $A \rightarrow t$	$\langle A, L \rangle \to t$
	$\langle A,S\rangle \to t$
	$\langle A,R\rangle \to \varepsilon$

Mahdi Dolati (Sharif Univ. Tech.)

◆ロト ◆御ト ◆注ト ◆注ト ─注

Proof Cont.

• Consider string $w = w_1 w_2 \dots w_n \in L$, therefore there is derivation:

$$S \stackrel{*}{\Rightarrow} A_1 A_2 \dots A_n$$
 where $A_i \Rightarrow w_i$,

• By construction, for each $1 \le i \le n$, we have:

$$\langle S, S \rangle \stackrel{*}{\Rightarrow} \langle A_1, L \rangle \dots \langle A_{i-1}, L \rangle \langle A_i, S \rangle \langle A_{i+1}, R \rangle \dots \langle A_n, R \rangle$$

$$\stackrel{*}{\Rightarrow} w_1 w_2 \dots w_i$$

- Therefore, G' derives any prefix of any string in L.
- A similar argument shows that any string in L^{\prime} is a prefix of a string in L.

< 合型

CFLs are closed under reversal.

Proof.

Consider grammar $G = (V, \Sigma, R, S)$ where B = L(G). Construct CFG G' where

$$R' = \{A \to u^{\mathcal{R}} \mid A \to u \text{ is a rule in } R\}.$$

Show that each for variable $A \in V$ and $u \in (V \cup \Sigma)^*$

$$A \stackrel{n}{\Rightarrow}_{G} u \leftrightarrow A \stackrel{n}{\Rightarrow}_{G'} u^{\mathcal{R}}.$$

 $\stackrel{n}{\Rightarrow}$ means $\stackrel{*}{\Rightarrow}$ in exactly k steps.

Mahdi Dolati (Sharif Univ. Tech.)

- 34

イロト イヨト イヨト イヨト

Proof Cont.

• Base case n = 0: $A \stackrel{0}{\Rightarrow}_{G} u$, then $u = A = u^{\mathcal{R}}$. So $A \stackrel{0}{\Rightarrow}_{G'} u^{\mathcal{R}}$ and vice versa.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Closure Reversal

Proof Cont.

• Inductive step: Assume for all n > 0, $A \in V$ and $u \in (V \cup \Sigma)^*$:

$$A \xrightarrow{n-1}_{G} u \leftrightarrow A \xrightarrow{n-1}_{G'} u^{\mathcal{R}}.$$

- If $A \stackrel{n}{\to}_{G} u$, then there is $C \in V$ and $x, y, z \in (V \cup \Sigma)^*$ such that u = xyz, $A \stackrel{n-1}{\longrightarrow}_{G} xCz$, and $C \Rightarrow_{G} y$.
- By induction hypothesis: $A \xrightarrow{n-1}_{G'} z^{\mathcal{R}} C x^{\mathcal{R}}$.
- By construction $C \Rightarrow_{G'} y^{\mathcal{R}}$.
- Thus, $A \stackrel{n}{\Rightarrow}_{G'} z^{\mathcal{R}} y^{\mathcal{R}} x^{\mathcal{R}} = (xyz)^{\mathcal{R}} = u^{\mathcal{R}}.$
- Repeat for the reverse direction. Then:

$$A \stackrel{n}{\Rightarrow}_{G} u \leftrightarrow A \stackrel{n}{\Rightarrow}_{G'} u^{\mathcal{R}}.$$

Mahdi Dolati (Sharif Univ. Tech.)

イロト 不得下 イヨト イヨト 二日

Proof Cont.

• Therefore, for $w \in B$

$$S \stackrel{*}{\Rightarrow}_{G} w \leftrightarrow S \stackrel{*}{\Rightarrow}_{G'} w^{\mathcal{R}},$$

which implies $L(G') = B^{\mathcal{R}}$

- 2

・ロト ・ 四ト ・ ヨト ・ ヨト

CFLs are closed under Suffix.

Proof.

Note that $\text{Suffix}(A) = \text{Prefix}(A^{\mathcal{R}})^{\mathcal{R}}$. CFLs are closed under prefix and reversal. Thus, CFLs are closed under suffix.

3

< □ > < 同 > < 回 > < 回 > < 回 >

CFLs are closed under intersection with a regular language.

Proof.

- A a CFL recognized by the PDA $M_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_1, F_1)$
- B a regular language recognized by the NFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$

• Construct PDA
$$M = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

•
$$Q = Q_1 \times Q_2$$

•
$$F = F_1 \times F_2$$

• The transition function for all $a \in \Sigma_{\varepsilon}, b, c \in \Gamma_{\varepsilon}$:

 $\delta((q,r), a, b) = \{((s,t), c) \mid (s,c) \in \delta_1(q,a,b) \text{ and } t \in \delta_2(r,a)\},\$

• As M runs on input w, its stack and the first element of its state change according to q_1 whereas the second element of its state changes according to q_2 .

3

(a)

- Union
- Concatenation
- Kleene star
- Prefix
- Reversal
- Suffix
- Intersection with a regular language

< 47 ▶

3

- CFLs are not closed under intersection.
- Consider two CFLs:

•
$$A = \{a^m b^m c^n \mid m, n \ge 0\}$$

•
$$B = \{a^m b^n c^n \mid m, n \ge 0\}$$

• However, we will prove (later) that their intersection is not context free:

$$A \cap B = \{a^n b^n c^n \mid n \ge 0\}$$

3