Theory of Formal Languages and Automata Lecture 12

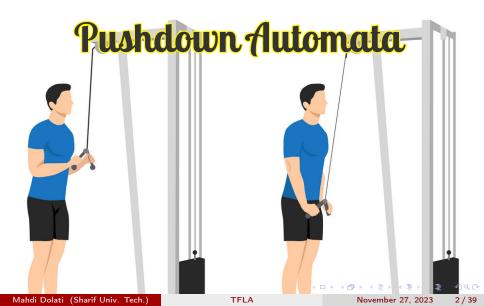
Mahdi Dolati

Sharif University of Technology

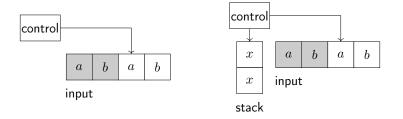
Fall 2023

November 27, 2023

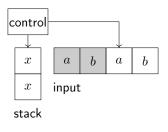
Theory of Formal Languages and Automata

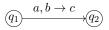


- Pushdown automata (PDA): A new computational model similar to NFA but have a stack for additional memory
- Pushdown automata are equivalent in power to CFG
 - Two methods to prove a language is CF: recognize it or generate it



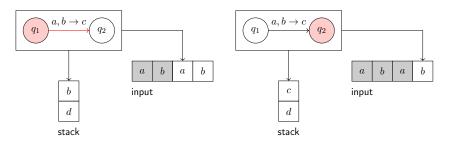
- Control: States and transitions,
- Input: contains a string,
- Arrow: Next symbol to be read,
- Write a symbol on the stack and read them later:
 - Push,
 - Pop.
- The stack can hold an unlimited number of symbols.





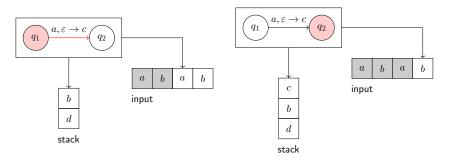
- Read symbol is *a*,
- Pop symbol b off the stack, and
- Push symbol *c* onto the stack.

• Replace:



3

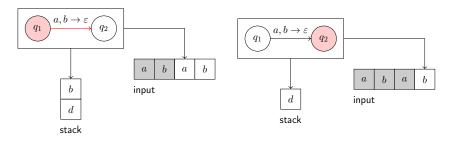
• Push:



- 2

・ロト ・ 四ト ・ ヨト ・ ヨト

• Pop:



3

・ロト ・ 四ト ・ ヨト ・ ヨト

• No change:

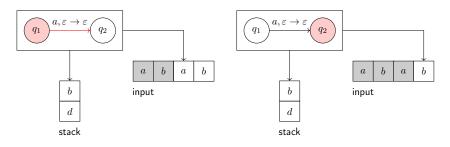
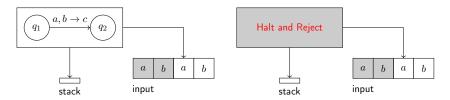


Image: A matrix

3

• Pop from an empty stack:

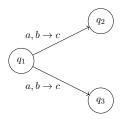


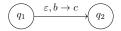
3

Image: A matrix

- PDAs may be nondeterministic,
- In terms of power:

Deterministic PDA < Nondeterministic PDA,





3

Definition (PDA)

A PDA is a 6-tuple $(Q,\Sigma,\Gamma,\delta,q_0,F)$ where Q, $\Sigma,$ $\Gamma,$ and F are finite sets, and

- Set of states: Q,
- 2 Input alphabet: Σ ,
- Stack alphabet: Γ,
- I Transition function: $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon}),$
- **③** Start state: $q_0 \in Q$, and
- Set of accept states: $F \subseteq Q$,

- 3

- 4 回 ト 4 回 ト

Compute

Automaton $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts w if:

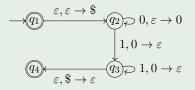
- Can write $w = w_1 w_2 \dots w_m$, where $w_i \in \Sigma_{\varepsilon}$,
- There exists sequence of states $r_0, r_1, \ldots, r_m \in Q$,
- There exists strings (stack content) $s_0, s_1, \ldots, s_m \in \Gamma^*$, such that,

$$\begin{array}{cccc} \bullet & r_0 = q_0 \text{ and } s_0 = \varepsilon, \\ \bullet & (r_{i+1}, b) \in \delta(r_i, w_{i+1}, a), \\ \bullet & s_i = at \\ \bullet & s_{i+1} = bt \\ \bullet & a, b \in \Gamma_{\varepsilon} \text{ and } t \in \Gamma^* \\ \bullet & r_m \in F. \end{array}$$

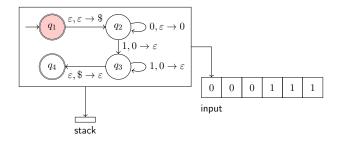
Example

Read symbols from the input:

- Push each zero onto the stack until zero is read,
- Opon reading a one, pop a zero off the stack for each one,
- If a zero is read: Reject.
- If input is finished and stack is empty: Accept.
- If input is finished and stack is not empty: Reject.
- If stack becomes empty and input is not finished: Reject.



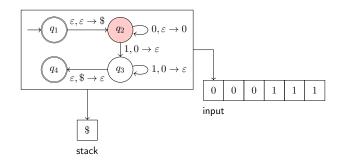
14/39



Mahdi Dolati (Sharif Univ. Tech.)

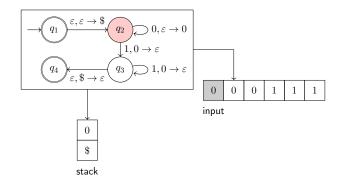
November 27, 2023 15 / 39

3



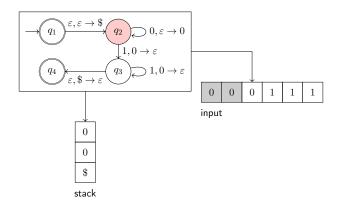
November 27, 2023 16 / 39

3



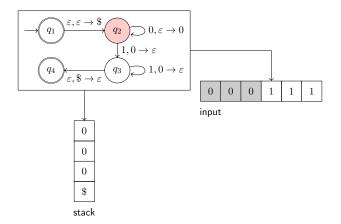
November 27, 2023 17 / 39

3



November 27, 2023 18 / 39

3



Mahdi Dolati (Sharif Univ. Tech.)

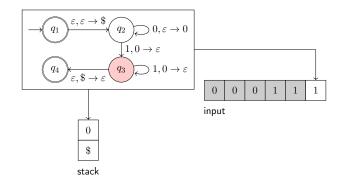
November 27, 2023 19 / 39

3



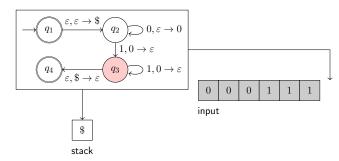
November 27, 2023 20 / 39

3



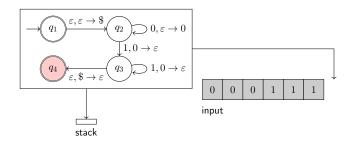
November 27, 2023 21 / 39

3



November 27, 2023 22 / 39

3

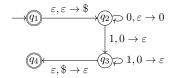


Mahdi Dolati (Sharif Univ. Tech.)

November 27, 2023 23 / 39

3

- $Q = \{q_1, q_2, q_3, q_4\},$
- $\Sigma=\{0,1\}$,
- $\Gamma = \{0,\$\}$,
- Start state: q₁,
- $F = \{q_1, q_4\}$, and



• Following table gives δ , where blank entries signify \emptyset .

Input:	0			1			ε		
Stack:	0	\$	ε	0	\$	ε	0	\$	ε
q_1									$\{(q_2,\$)\}$
q_2			$\{(q_2, 0)\}$	$\{(q_3,\varepsilon)\}$					
q_3				$\{(q_3,\varepsilon)\}$				$\{(q_4,\varepsilon)\}$	
q_4									
							< E		

Mahdi Dolati (Sharif Univ. Tech.)

November 27, 2023 24 / 39

Theorem

A language is context free iff some pushdown automaton recognizes it.

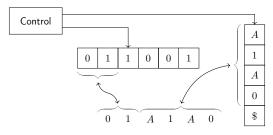
- The theorem has two directions.
- First, we prove the forward direction.
- Then, we prove the reverse direction.

Lemma

If a language is context-free, then some pushdown automaton recognizes it.

Proof idea:

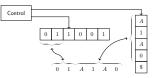
- If a language is CF, then some CF grammar generates it.
- Construct PDA P that recognizes input string w, if CF grammar G generates that input (converting a CFG into a PDA).



→ Ξ →

→ Ξ →

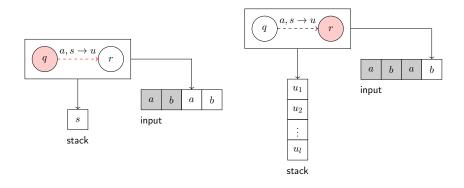
- Push \$ and the start variable onto the stack.
- 2 Repeat:
 - If the top of stack is a variable symbol A, nondeterministically select a substitution rule for A and substitute A with the right-hand side of the rule,
 - If the top of stack is a terminal symbol a and is equal to the next symbol from the input, read the symbol from the input and pop the symbol. Otherwise, reject on this branch,
 - If the top of stack is \$, enter the accept state. The string is accepted if it has all been read.



27 / 39

A handy notation:

• Write the entire string $u = u_1 \dots u_l$ on the stack.



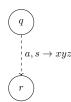
→

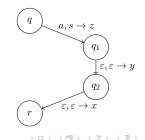
3

 $\delta(q, a, s)$:

- $\bullet \ \, {\rm Add} \ \, (q_1,u_l) \ {\rm to} \ \, \delta(q,a,s),$
- $\delta(q_1,\varepsilon,\varepsilon) = \{(q_2,u_{l-1})\},\$
- $\delta(q_2,\varepsilon,\varepsilon) = \{(q_3,u_{l-2})\},\$

•
$$\delta(q_{l-1},\varepsilon,\varepsilon) = \{(r,u_1)\}.$$





3

29 / 39

Proof.

•
$$Q = \{q_{start}, q_{loop}, q_{accept}\} \cup E$$
,

- Σ : Set of terminals in the grammar,
- Γ : Set of terminals, variables, and symbol \$,

•
$$S: q_{start}$$
,

•
$$F = \{q_{accept}\}$$
, and

$$\begin{array}{c} \overbrace{q_{start}} \\ \varepsilon, \varepsilon \to S\$ \\ \overbrace{q_{loop}} \\ \varepsilon, \$ \to \varepsilon \\ \varepsilon, \$ \to \varepsilon \\ \hline{q_{accept}} \end{array} \qquad \mbox{for rule } A \to w \\ \hline{\varepsilon}, \$ \to \varepsilon \\ \hline{q_{accept}} \end{array}$$

$$\begin{split} \delta(q_{start},\varepsilon,\varepsilon) &= \{(q_{loop},S\$)\}, \\ \delta(q_{loop},\varepsilon,A) &= \{(q_{loop},w) \mid A \to w \text{ is a rule}\}, \\ \delta(q_{loop},a,a) &= \{(q_{loop},\varepsilon)\}, \\ \delta(q_{loop},\varepsilon,\$) &= \{(q_{accept},\varepsilon)\}. \end{split} \tag{1}$$

Lemma

If a pushdown automaton recognizes some language, then it is context free.

Assumptions:

- The automaton has a single accept state, q_{accept} .
- The automaton empties its stack before accepting.
- Each transition of the automaton either pushes a symbol or pops a symbol, but never both at the same time.

Proof idea:

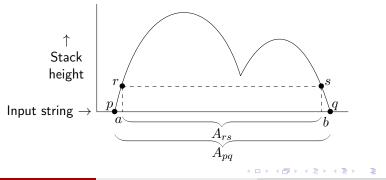
- Build a CFG G that generates all strings accepted by the PDA P:
- For each pair of states $p, q \in P$, introduce a variable A_{pq} ,
- A_{pq} generates all strings that can take P from p with an empty stack to q with an empty stack.
- Strings that A_{pq} generates do not change the state of stack from p to q.
- Let x be a string generated by A_{pq} :
 - P's first move on x includes a push,
 - P's last move on x includes a pop.

Proof idea (cont.):

- If at the end P pops the symbol that was pushed at the start:
 - Stack is only empty at the beginning and at the end,

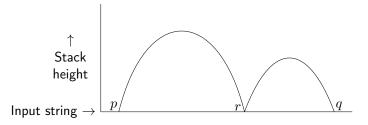
•
$$A_{pq} \rightarrow a A_{rs} b$$
,

- a and b are input symbols,
- r is the state after p and s is the state before q.



Proof idea (cont.):

- $\bullet\,$ If at the end P doesn't pop the symbol that was pushed at the start:
 - Stack is also empty at a point besides the beginning and the end,
 - $A_{pq} \rightarrow A_{pr}A_{rq}$,
 - r is the state where the stack becomes empty.



34 / 39

Proof.

The equivalent grammar G of a given $P=(Q,\Sigma,\Gamma,\delta,q_0,\{q_{accept}\})$ has variables:

•
$$\{A_{pq} \mid p, q \in Q\}$$
,

and, the start variable is $A_{q_0,q_{accept}}$. Rules of G are:

• For
$$p, q, r, s \in Q$$
, $u \in \Gamma$, and $a, b \in \Sigma_{\varepsilon}$:

• If
$$\delta(p, a, \varepsilon)$$
 contains (r, u) ,

2 If
$$\delta(s,b,u)$$
 contains $(q,arepsilon)$, then

③ Put the rule $A_{pq} \rightarrow aA_{rs}b$ in G.

2 For
$$p, q, r \in Q$$
, put the rule $A_{pq} \rightarrow A_{pr}A_{rq}$.

③ For
$$p \in Q$$
, put the rule $A_{pp} \to \varepsilon$ in G.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Claim

If A_{pq} generates x, then x can bring P from p with empty stack to q with empty stack.

Proof by induction:

- Basis: Consider a 1 step derivation. The only rules in G with no variable on the right-hand side is $A_{pp} \rightarrow \varepsilon$. Clearly, ε takes P from p with empty stack to q with empty stack.
- Induction step: Assume the claim is true for derivations of length at most k. Suppose A_{pq} ^{*}⇒ x with k + 1 steps. The first step in the derivation is either A_{pq} ⇒ aA_{rs}b or A_{pq} ⇒ A_{pr}A_{rq}:

36 / 39

イロト イポト イヨト イヨト 二日

Proof by induction (Cont.):

- $A_{pq} \Rightarrow aA_{rs}b$: Let x = ayb where A_{rs} generates y in k steps. Hypothesis tells y can bring P from r with empty stack to s with empty stack. By construction, $A_{pq} \Rightarrow aA_{rs}b$ means that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) for some u. Therefore, x can bring P from p with empty stack to q with empty stack.
- $A_{pq} \Rightarrow A_{pr}A_{rq}$: Let x = yz where $A_{pr} \stackrel{*}{\Rightarrow} y$ and $A_{rq} \stackrel{*}{\Rightarrow} z$ each in at most k steps, respectively. Hence, x can bring P from p with empty stack to q with empty stack.

37 / 39

Claim

If x can bring P from p with empty stack to q with empty stack, then A_{pq} generates x.

Proof by induction:

- Basis: Consider a 0 step computation, not changing the state and not reading any characters. Thus, x can only be ε. Since G has rules A_{pp} → ε the basis is proved.
- Induction step: Assume the claim is true for computations of length at most k. Suppose P has a computation on x that brings p with empty stack to q with empty stack in k + 1 steps. Either (1) the stack in only empty at the beginning and end of this computation, or (2) it becomes empty elsewhere, too:

38 / 39

イロト 不得下 イヨト イヨト 二日

Proof by induction (Cont.):

- Case 1: Let first and last read symbols be a and b, respectively. Symbol u that is pushed at the beginning is popped at the end. Thus, $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) for some r and s. Therefore, $A_{pq} \rightarrow aA_{rs}b$ is in G. Let x = ayb where y can bring from r with empty stack to s with empty stack in k-1 steps (should be able to pop u at the end). According to the hypothesis, $A_{rs} \stackrel{*}{\Rightarrow} y$ and hence $A_{pq} \stackrel{*}{\Rightarrow} x$.
- Case 2: Let r be the state where the stack becomes empty. Then, computations from p to r and r to q have at most k steps with empty stacks at the start and the end. According to the hypothesis, $A_{pr} \stackrel{*}{\Rightarrow} y$ and $A_{rq} \stackrel{*}{\Rightarrow} z$ where x = yz. By construction, $A_{pq} \rightarrow A_{pr}A_{rq}$ is in Gand thus $A_{pq} \stackrel{*}{\Rightarrow} x$.