Theory of Formal Languages and Automata Lecture 10

Mahdi Dolati

Sharif University of Technology

Fall 2023

November 4, 2023

- It is possible to remove certain types of rules:
 - Useless,
 - ε -rule,
 - Unit.

It does not mean a reduction of the total number of rules.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Suppose CFG G = (V, T, S, P) contains:

$$(*)A \to x_1 B x_2, \tag{1}$$

$$(**)B \rightarrow y_1 \mid y_2 \mid \ldots \mid y_n.$$
 (2)

where $A \neq B$ and (**) is the only rule that has B as the left side. If we build $\hat{G} = (V, T, S, \hat{P})$ by deleting rule (*) and adding

$$A \to x_1 y_1 x_2 \mid x_1 y_2 x_2 \mid \dots \mid x_1 y_n x_2,$$
 (3)

then, $L(G)=L(\widehat{G})$.

イロト イポト イヨト イヨト 二日

Simplification

Useless

Definition

Let G=(V,T,S,P) be a CFG. A variable $A \in V$ is said to be useful iff there is at least one $w \in L(G)$ such that

$$S \stackrel{*}{\Rightarrow} xAy \stackrel{*}{\Rightarrow} w,$$
 (4)

where $x, y \in (V \cup T)^*$.

- A variable is useless if it is not useful.
- A production rule is useless if it contains a useless variable.

Two reasons for being useless:

- Is not reachable from the start variable,
- 2 Can not derive any string.

Simplification Useless

Theorem

For any CFG G = (V, T, S, P) there is an equivalent grammar $\widehat{G} = (\widehat{V}, \widehat{T}, S, \widehat{P})$ that does not contain any useless variables or productions.

< □ > < 同 > < 回 > < 回 > < 回 >

Example (Useless)

Variable C can not derive any string:

$$\begin{array}{ll} S \rightarrow aS \mid A \mid C, \\ A \rightarrow a, \\ B \rightarrow aa, \\ C \rightarrow aCb. \end{array} \qquad \begin{array}{ll} S \rightarrow aS \mid A, \\ A \rightarrow a, \\ B \rightarrow aa. \end{array}$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example (Useless Cont.)

Draw the dependency graph of the grammar where nodes are variables and (A, B) edge exists if there is a production rule $A \rightarrow xBy$.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

- A rule of the form $A \to \varepsilon$ is a ε -rule.
- A variable for which the derivation $A \stackrel{*}{\Rightarrow} \varepsilon$ is possible is called nullable.

Theorem

For any CFG G where $\varepsilon \notin L(G)$ there is an equivalent grammar \widehat{G} having no $\varepsilon\text{-rules}.$

(1日) (1日) (1日)

Proof.

First find the set V_N of all nullable variables:

- For all $A \to \varepsilon$, put A into V_n ,
- **2** For all $B \to A_a \dots A_n$ where A_1, \dots , and A_n are in V_n , put B into V_n .

Second consider all rules of the form

$$A \to x_1 \dots x_m, \qquad m \ge 1,\tag{5}$$

where $x_i \in V \cup T$. Put such rules and all versions obtained from removing all combinations of nullable variables into \hat{P} . If all x_i are nullable do not put $A \to \varepsilon$ into \hat{P} .

- 3

< □ > < 同 > < 回 > < 回 > < 回 >

$\underset{\varepsilon\text{-rules}}{\mathsf{Simplification}}$

Example

$S \rightarrow ABaC,$	$S \to ABaC \mid BaC \mid AaC \mid ABa \mid aC \mid Aa \mid Ba \mid a,$
$A \rightarrow BC$,	$A \to B \mid C \mid BC,$
$B \rightarrow b \mid \varepsilon,$	$B \rightarrow b$,
$C \to D \mid \varepsilon,$	$C \rightarrow D$,
$D \rightarrow d.$	$D \rightarrow d.$
$V_n = \{B, C, A\}$	

- 2

イロト イヨト イヨト イヨト

Definition

Any rule of the form $A \rightarrow B$ where $A, B \in V$ is called a unit rule or unit-production.

Theorem

For any CFG G = (V, T, S, P) without ε -rules there is an equivalent grammar $\widehat{G} = (\widehat{V}, \widehat{T}, S, \widehat{P})$ that does not have any unit rules.

< 回 > < 三 > < 三 >

Example (Unit Rule)

$S_0 \to aA$		
$A \rightarrow a$		
$A \rightarrow B$		
$B \to A$		
$B \rightarrow bb$		

$$S_0 \to aA \mid \boldsymbol{aB}$$
$$A \to a$$
$$B \to A \mid \boldsymbol{B}$$
$$B \to bb$$

(a)

November 4, 2023 12 / 37

2

Example (Unit Rule Cont.)

$S_0 \to aA \mid aB$	$S_0 \to aA \mid aB$
$A \rightarrow a$	$A \to a$
$B \to A \mid \mathbf{B}$	$B \to A$
$B \rightarrow bb$	$B \rightarrow bb$

3

Example (Unit Rule Cont.)

$S_0 \to aA \mid aB$	$S_0 \rightarrow aA \mid aB \mid aA$
$A \rightarrow a$	$A \rightarrow a$
$B \rightarrow A$	$B \rightarrow bb$
$B \rightarrow bb$	$D \rightarrow 00$

3

Example (Unit Rule Cont.)

$S_0 \to aA \mid aB \mid aA$	$S_0 \to aA \mid aB$
$A \rightarrow a$	$A \rightarrow a$
$B \rightarrow bb$	$B \rightarrow bb$

3

Simplification Unit

Proof.

- Remove all rules of the form $A \to A$.
- For each A obtain all variables B such that $A \stackrel{*}{\Rightarrow} B$.
 - Use a dependency graph,
 - Nodes are variables,
 - Add edge (C, D) if rule $C \to D$ exists,
 - A derives B if there is a path from A to B.
- Put all non-unit rules of P into \widehat{P} .
- For all $A \stackrel{*}{\Rightarrow} B$ add the following rule to \widehat{P} :

$$A \to y_1 \mid \ldots \mid y_n,$$

where $B \to y_1 \mid \ldots \mid y_n$ is the set of all rules in \widehat{P} with B on the left.

16/37

Simplification Unit

Example

 $S \rightarrow Aa \mid B,$ $B \rightarrow A \mid bb,$ $A \rightarrow a \mid bc \mid B.$ Add non-unit rules:

•
$$S \stackrel{*}{\Rightarrow} A$$
,
• $S \stackrel{*}{\Rightarrow} B$,
• $A \stackrel{*}{\Rightarrow} B$,
• $B \stackrel{*}{\Rightarrow} A$.

$$\begin{split} (\widehat{G}) : & S \to Aa, \\ & B \to bb, \\ & A \to a \mid bc. \end{split}$$

Mahdi Dolati (Sharif Univ. Tech.)

November 4, 2023 17 / 37

- 2

Simplification Unit

Example

Mahdi Dolati (Sharif Univ. Tech.)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで November 4, 2023

18 / 37

Simplification Unit

Example

$$S \rightarrow Aa \mid B,$$

$$B \rightarrow A \mid bb,$$

$$A \rightarrow a \mid bc \mid B.$$
Consider $S \stackrel{*}{\Rightarrow} B$. Should add all $S \rightarrow y_i$ for all $B \rightarrow y_i$ from \widehat{P} .

$$(\widehat{G}) :S \rightarrow Aa \mid a \mid bc,$$

$$B \rightarrow bb,$$

$$A \rightarrow a \mid bc.$$

$$\widehat{G} :S \rightarrow Aa \mid a \mid bc,$$

$$\widehat{G} :S \rightarrow Aa \mid a \mid bc,$$

$$\widehat{G} :S \rightarrow Aa \mid a \mid bc,$$

$$A \rightarrow a \mid bc.$$

$$\widehat{G} :S \rightarrow Aa \mid a \mid bc,$$

$$A \rightarrow a \mid bc.$$

Mahdi Dolati (Sharif Univ. Tech.)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで November 4, 2023

19/37

Example

Mahdi Dolati (Sharif Univ. Tech.)

November 4, 2023

1

20 / 37

イロト イヨト イヨト イヨト

Example

Mahdi Dolati (Sharif Univ. Tech.)

November 4, 2023

Ξ.

21/37

イロト イヨト イヨト イヨト

Simplification

Theorem

If CF language L does not contain ε , there is a CFG that LG = L and does not have any useless rules, ε -rules, or unit rules.

Proof.

Note that

- removal of unit rules does not create ε -rules,
- removal of useless rules does not create ε -rules or unit rules.

Thus, use previous theorems and obtain the grammar by using the following sequence of steps:

- Remove ε -rules,
- 2 Remove unit rules.
- 3 Remove useless rules.

Definition (Chomsky normal form (CNF))

A CFG is in CNF if every rule is of the form:

 $\begin{array}{l} A \rightarrow BC \\ A \rightarrow a \end{array}$

- a is any terminal,
- A, B and C are variables,
- B and C may not be the start variable.

Following rule is also valid:

$$S \to \varepsilon$$

3

< ロト < 同ト < ヨト < ヨト

Theorem

Grammars in CNF generate all context-free languages.

Proof idea:

- Convert any CF grammar into CNF:
 - Add a new start,
 - Eliminate all ε-rules,
 - Eliminate all unit rules.

Normal Forms

Chomsky Normal Form

Proof.

4 Add new start variable that only appears at the left-hand side of rule,

• $S_0 \rightarrow S$.

2 For all $A \neq S_0$ that appear at the left-hand side of a ε -rule:

- Find all rules that A appears in their right-hand side,
- Add a new version of such rules where A is removed (consider all combinations),
- Remove the ε -rule.

③ Fix number of symbols at the right-hand side of rules to two:

$$A \to u_1 u_2 \dots u_k \equiv \frac{A \to u_1 A_1}{A_1 \to u_2 A_2} \\ \dots \\ A_{k-2} \to u_{k-1} A_k$$

④ Ensure two symbols are variables:

$$A_{i-1} \rightarrow u_i A_i \equiv \frac{A_{i-1} \rightarrow U_i A_i}{U_i \rightarrow u_i}$$

Mahdi Dolati (Sharif Univ. Tech.)

Example (CNF Procedure)

 $\begin{array}{l} \boldsymbol{S} \to ASA \mid aB \\ A \to B \mid \boldsymbol{S} \\ B \to b \mid \boldsymbol{\varepsilon} \end{array}$

 $S_{0} \rightarrow S$ $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \varepsilon$

Mahdi Dolati (Sharif Univ. Tech.)

November 4, 2023

26 / 37

イロト 不得 トイヨト イヨト 二日

$S_0 \to S$	$S_0 \to S$
$S \to ASA \mid aB$	$S \to ASA \mid aB \mid a$
$A \to B \mid S$	$A \to B \mid S \mid \boldsymbol{\varepsilon}$
$B \rightarrow b \mid \boldsymbol{\varepsilon}$	$B \rightarrow b$

November 4, 2023

3

27 / 37

・ロト ・四ト ・ヨト ・ヨト

$$S_{0} \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a$$

$$A \rightarrow B \mid S \mid \varepsilon$$

$$B \rightarrow b$$

$$S_{0} \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

3

28 / 37

$$S_{0} \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

$$S_{0} \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

$$S_{0} \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

3

29 / 37

$$S_{0} \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

$$S_{0} \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

э

30 / 37

・ロト ・四ト ・ヨト ・ヨト

$$S_{0} \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$
$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$
$$A \rightarrow \mathbf{B} \mid S$$
$$B \rightarrow b$$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$
$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$
$$A \rightarrow \mathbf{b} \mid S$$
$$B \rightarrow b$$

・ロト ・四ト ・ヨト ・ヨト

3

3

32 / 37

・ロト ・四ト ・ヨト ・ヨト

$$S_0 \rightarrow ASA \mid \mathbf{a}B \mid a \mid SA \mid AS$$
$$S \rightarrow ASA \mid \mathbf{a}B \mid a \mid SA \mid AS$$
$$A \rightarrow b \mid ASA \mid \mathbf{a}B \mid a \mid SA \mid AS$$
$$B \rightarrow b$$

$$S_{0} \rightarrow ASA \mid \boldsymbol{U}B \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid \boldsymbol{U}B \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid ASA \mid \boldsymbol{U}B \mid a \mid SA \mid AS$$

$$B \rightarrow b$$

$$\boldsymbol{U} \rightarrow \boldsymbol{a}$$

・ロト ・四ト ・ヨト ・ヨト

э

$$S_{0} \rightarrow ASA \mid UB \mid a \mid SA \mid AS$$
$$S \rightarrow ASA \mid UB \mid a \mid SA \mid AS$$
$$A \rightarrow b \mid ASA \mid UB \mid a \mid SA \mid AS$$
$$B \rightarrow b$$
$$U \rightarrow a$$

$$S_{0} \rightarrow A\mathbf{A_{1}} \mid UB \mid a \mid SA \mid AS$$

$$S \rightarrow A\mathbf{A_{1}} \mid UB \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid A\mathbf{A_{1}} \mid UB \mid a \mid SA \mid AS$$

$$B \rightarrow b$$

$$U \rightarrow a$$

$$\mathbf{A_{1}} \rightarrow SA$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

34 / 37

• Put restrictions on the positions in which terminals and variables can appear.

Definition

A context-free grammar is said to be in Greibach normal form if all productions have the form

$$A \to ax,$$
 (6)

< □ > < 同 > < 回 > < 回 > < 回 >

November 4, 2023

35 / 37

where $a \in T$ and $x \in V^*$.

Theorem

For every context-free grammar G with $\varepsilon \notin L(G)$, there exists an equivalent grammar \widehat{G} in Greibach normal form.

- In general it is not simple to:
 - convert a given grammar to Greibach normal form,
 - proof that this conversion can always be done.

A B N A B N

Example

Following grammar is not in GNF.

$$S \rightarrow AB, \tag{7}$$

$$A \rightarrow aA \mid bB \mid b, \tag{8}$$

$$B \rightarrow b. \tag{9}$$

However, we can obtain the following grammar that is in GNF:

$$S \rightarrow aAB \mid bBB \mid bB, \tag{10}$$

$$A \rightarrow aA \mid bB \mid b, \tag{11}$$

$$B \rightarrow b. \tag{12}$$

3

< □ > < 同 > < 回 > < 回 > < 回 >