Theory of Formal Languages and Automata Lecture 7

Mahdi Dolati

Sharif University of Technology

Fall 2024

March 2, 2024

< 4³ ►

March 2, 2024

1/31

Theory of Formal Languages and Automata

Pumping, Lemma

Mahdi Dolati (Sharif Univ. Tech.)

March 2, 2024 2 / 31

• Limitations of finite automata

• Example:

$$B = \{0^n 1^n | n \ge 0\}.$$
 (1)

- The machine has to remember the number of zeros, which is unlimited.
- It is impossible using any finite number of states.
- How to formally prove it? Do we need a proof?

Example

Consider the following languages:

 $C = \{w | w \text{ has an equal number of zeros and ones }\}, \text{ and}$ (2) $D = \{w | w \text{ has an equal number of substrings } 01 \text{ and } 10\}.$ (3)

- Pumping lemma: The proof technique.
- According to pumping lemma, all regular languages have a special property.

Property

If a string in a regular language is longer than the pumping length, then, it contains a section that can be repeated indefinitely and still remain in the language.

- Some strings:
 - aa
 - aba
 - abba
 - abbba
- Interestingly, for all strings of length at least three:

$$\underbrace{a}_{x}\underbrace{bbbb}_{y>0}\underbrace{a}_{z}\in L\rightarrow xy^{i}z\in L,\quad\forall i\geq 0$$

47 ▶ ◀

• Some strings:

ababa

- a • abb • ab[ab]
- aba 🛛 abbl
- abbbbabbbbbbb
- ab[ab]
- ab[ab]b[ab]
- ab[ab]b[ab]b[ab]
- Interestingly, for all strings of length at least three:

$$\underbrace{a}_{x}\underbrace{b[ab]}_{y>0}\underbrace{\varepsilon}_{z}\in L\rightarrow xy^{i}z\in L,\quad\forall i\geq 0$$

▲ 冊 ▶ → ● 三

• Some strings:

- a aabbb
- aa aaabbbb

aaaabbbbb

- aaa
- Interestingly, for all strings of length at least one:

< A → <

$$\underbrace{\underset{x}{\varepsilon}}_{x} \underbrace{\underset{y>0}{a}}_{z} \underbrace{\underset{z}{\varepsilon}}_{\varepsilon} \in L \to xy^{i}z \in L, \quad \forall i \ge 0$$
$$\underbrace{\underset{x}{\varepsilon}}_{z} \underbrace{\underset{y>0}{b}}_{z} \underbrace{\underset{z}{\varepsilon}}_{\varepsilon} \in L \to xy^{i}z \in L, \quad \forall i \ge 0$$

Mahdi Dolati (Sharif Univ. Tech.)

March 2, 2024 7 / 31

Theorem (Pumping lemma)

There is a number p (the pumping length) for any regular language A such that any string $s \in A$ of length at least p may be written as s = xyz, satisfying the following conditions:

- $\forall i \ge 0 \quad xy^i z \in A,$
- **2** |y| > 0, and
- $|xy| \le p.$

Proof idea:

- Let $M = (Q, \Sigma, \delta, q_q, F)$ be a DFA recognizing A and |Q| = 5.
- Let $s = s_1 s_2 \dots s_n$ a string in A with n = 7.
- Let q_1, q_3, \ldots, q_5 be 8 states entered during processing of s.

$$s = s_1 \quad s_2 \quad s_3 \quad s_4 \quad s_5 \quad s_6 \quad s_7$$

$$\uparrow \quad \uparrow \quad \uparrow$$

$$q_1 \quad q_3 \quad q_2 \quad q_4 \quad q_5 \quad q_3 \quad q_5 \quad q_2$$

• Observed a repeated state in the first 6 states, i.e., q_3 , (pigenhole principle).

Set:

1
$$x = s_1$$
,
2 $y = s_2 \dots s_5$, and
3 $z = s_6 s_7$.

Mahdi Dolati (Sharif Univ. Tech.)

Proof idea (cont.):

 $s = s_1 s_2 s_3 s_4 t_4 s_5 s_6 s_7 t_{q_1} t_{q_3} t_{q_2} t_{q_4} t_{q_5} t_{q_3} t_{q_5} t_{q_2} t_{q_2}$ $x = s_1, t_{q_1} t_{q_3} t_{q_2} t_{q_4} t_{q_5} t_{q_3} t_{q_5} t_{q_2} t_{q_2} t_{q_4} t_{q_5} t_{q_3} t_{q_5} t_{q_2} t_{q_2} t_{q_4} t_{q_5} t_{q_3} t_{q_5} t_{q_2} t_{q_4} t_{q_5} t_{q_3} t_{q_5} t_{q_5} t_{q_2} t_{q_4} t_{q_5} t_{q_3} t_{q_5} t_{q_5} t_{q_5} t_{q_2} t_{q_4} t_{q_5} t_{q_3} t_{q_5} t_{q_$

< 47 > < 3

Proof.

- Let $M = (Q, \Sigma, \delta, q_q, F)$ be a DFA recognizing A and p = |Q|.
- Let $s = s_1 s_2 \dots s_n$ a string in A with $n \ge p$.
- Let r_1, \ldots, r_{n+1} be the sequence of states entered during processing of s, i.e., $\delta(r_i, s_i) = r_{i+1}$.
- n+1 is at least p+1. Thus, there is at least one repeated state (pigenhole principle).
- Let j and l be the first and second indices of the repeated state. Note that $l \leq p+1.$ Let,

$$x = s_1 \dots s_{j-1}, \quad y = s_j \dots s_{l-1}, \quad z = s_l \dots s_n.$$
 (4)

March 2, 2024

3

11/31

Thus,

Mahdi Dolati (Sharif Univ. Tech.)

- Proof *B* is not regular:
 - $\bullet\,$ Assume B is regular,
 - Find string s ∈ B such that for all divisions s = xyz (respecting conditions in pumping lemma) there is i that xyⁱz ∉ B,
 - This contradicts with the pumping lemma,
 - Thus, B is not regular.
- Requires creativity!

Note

While the pumping lemma states that all regular languages satisfy the conditions described above, the converse of this statement is not true: a language that satisfies these conditions may still be non-regular.

Example

- $B = \{0^n 1^n | n \ge 0\}.$
 - Consider $s = 0^p 1^p$ for arbitrary p.
 - Assume B is regular. Consider three cases for s = xyz:
 - If y consists only of zeros, string xyyz has more zeros than ones. Thus, it is not in B.
 - **2** If y consists only of ones, string xyyz has more ones than zeros. Thus, it is not in B.
 - If y consists of both zeros and ones, string xyyz has correct number of zeros and ones but not in correct order.
 - We considered all possible cases for y and concluded that xy^2z can not be in B. Therefore, the assumption of B being regular is not correct.

イロト イボト イヨト イヨト 一日

Example

- $C = \{xx \mid x \in \{0,1\}^*\}.$
 - Consider $s = 0^p 1^p 0^p 1^p$ for pumping length p.
 - Let s = xyz, where
 - **1** $|xy| \le p$, and **2** |y| > 0.
 - Thus, $x = 0^m$ and y^n where $m + n \le p$,
 - Thus, $z = 0^{p-m-n} 1^p 0^p 1^p$.
 - However, $xy^0z = 0^{p-m}1^p0^p1^p$ which is not in C.
 - Therefore, C can not be regular.

(日) (周) (日) (日) (日) (000

Example

$$C = \{ x x^{\mathcal{R}} \mid x \in \{0, 1\}^* \}.$$

- Consider $s = 0^p 1^p 1^p 0^p$ for pumping length p.
- Let s = xyz, where
 - **1** $|xy| \le p$, and **2** |y| > 0.
- Thus, $x = 0^m$ and y^n where $m + n \le p$,
- Thus, $z = 0^{p-m-n} 1^p 1^p 0^p$.
- However, $xy^0z = 0^{p-m}1^p0^p1^p$ which is not in C.
- Therefore, C can not be regular.

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nonregular Languages Closure Properties

- Another way of proving that a language is not regular:
 - Assume that the given language is regular,
 - Apply an operator (maybe, together with another known regular language) that regular languages are closed under it:
 - Union
 - Concatenation
 - Star
 - Complement
 - Intersection
 - Obtain the resulting language,
 - Show that the resulting language is not regular,
 - This is a contradiction, which proves that the original assumption can not be true.

Example (Method 1: Pumping Lemma)

 $C = \{w | w \text{ has an equal number of zeros and ones } \}.$

- Consider $s = 0^p 1^p \in C$.
- \bullet For all s=xyz, applying $|xy|\leq p,$ substring y consists only of zeros.
- Thus, xyyz is not in C.

However, we know that:

- Regular languages are closed under intersection,
- 0*1* is regular, and
- $B = \{0^n 1^n | n \ge 0\}$ is not regular.

Example (Method 2: Closure Properties)

- $C = \{w | w \text{ has an equal number of zeros and ones } \}.$
 - Assume C is regular.
 - So, $B = C \cap 0^* 1^*$ should be regular, which is a contradiction.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nonregular Languages Closure Properties

Example (Not Repeated)

- $D = \{xy ~|~ x, y \in \{0,1\}^*, |x| = |y|, \text{ and } x \neq y\}.$
 - Regular languages are closed under intersection,
 - $(\Sigma\Sigma)^*$ is regular, and
 - $C = \{xx \mid x \in \{0,1\}^*\}$ is not regular.
 - Assume D is regular.
 - So, $\overline{D} = \{xx \mid x \in \{0,1\}^*\} \cup \{y \mid |y| \text{ is odd }\}^a \text{ should be regular.}$
 - Therefore, $\overline{D} \cap (\Sigma \Sigma)^{*b} = \{xx \mid x \in \{0,1\}^*\}$ should be regular.
 - A contradiction.

^aAn odd-length string can not be in D ^bEven-length strings

Example (A Pumpable Language)

$$E = \{a^k b^m c^n \mid \text{ if } k = 1, \text{ then } m = n\}.$$

- Let the pumping length p = 2.
- We show for all $s \in E$ ($|s| \ge 2$) it is possible to:
 - $\bullet~$ Partition s=xyz, where $|xy|\leq 2,$ and |y|>0,
 - $xy^iz \in E$ for all $i \ge 0$.

•
$$k = 0$$
 and $m = 0$:
 $s = c^n = \varepsilon cc^{n-1} = xyz$. Then, $xy^i z = c^i c^{n-1} = c^{n+i-1} \in E$.

•
$$k = 0$$
 and $m > 0$:
 $s = b^m c^n = \varepsilon b b^{m-1} c^n = xyz$. Then,
 $xy^i z = b^i b^{m-1} c^n = b^{m+i-1} c^n \in E$.

イロト 不得下 イヨト イヨト 二日

Example (A Pumpable Language Cont.)

$$E = \{a^k b^m c^n \mid \text{ if } k = 1, \text{ then } m = n\}.$$

• Let the pumping length
$$p=2$$

- We show for all $s \in E$ ($|s| \ge 2$) it is possible to:
 - Partition s = xyz, where $|xy| \le 2$, and |y| > 0,

•
$$xy^i z \in E$$
 for all $i \ge 0$.

•
$$k = 1$$
 and $m = n$:
 $s = ab^nc^n = \varepsilon ab^nc^n = xyz$. Then, $xy^iz = a^ib^nc^n = \in E$.

- 3

22/31

March 2, 2024

Example (A Pumpable Language Cont.)

$$E = \{a^k b^m c^n \mid \text{ if } k = 1, \text{ then } m = n\}.$$

- Let the pumping length p = 2.
- We show for all $s \in E$ ($|s| \ge 2$) it is possible to:
 - Partition s = xyz, where $|xy| \le 2$, and |y| > 0,
 - $xy^i z \in E$ for all $i \ge 0$.

•
$$k = 2$$
:

 $s = aab^mc^n = \varepsilon aab^mc^n = xyz$. Then, $xy^iz = a^{2i}b^mc^n \in E$.^a

^a2i is never equal to 1.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example (A Pumpable Language Cont.)

 $E = \{a^k b^m c^n \mid \text{ if } k = 1, \text{ then } m = n\}.$

- Let the pumping length p = 2.
- We show for all $s \in E$ ($|s| \ge 2$) it is possible to:
 - Partition s = xyz, where $|xy| \le 2$, and |y| > 0,
 - $xy^i z \in E$ for all $i \ge 0$.

•
$$k \geq 3$$
:
 $s = a^k b^m c^n = \varepsilon a a^{k-1} b^m c^n = xyz$. Then,
 $xy^i z = a^i a^{k-1} b^m c^n = a^{k+i-1} b^m c^n \in E$.^a

 ${}^{\mathbf{a}}k \geq 3 \rightarrow k+i-1 \geq 2$ is never equal to 1.

Mahdi Dolati (Sharif Univ. Tech.)

March 2, 2024

24/31

Nonregular Languages Closure Properties

Example (A Pumpable Language Cont.)

$$E = \{a^k b^m c^n \mid \text{ if } k = 1, \text{ then } m = n\}.$$

- Let the pumping length p = 2.
- We show for all $s \in E$ ($|s| \ge 2$) it is possible to:
 - Partition s = xyz, where $|xy| \le 2$, and |y| > 0,
 - $xy^i z \in E$ for all $i \ge 0$.
- Thus, all strings of length 2 and longer are pumpable.

イロト イポト イヨト イヨト 二日

March 2, 2024

25/31

Example (A Nonregular Lang.)

$$E = \{a^k b^m c^n \mid \text{ if } k = 1, \text{ then } m = n\}.$$

Assume *E* is regular:

- We know that ab^*c^* is regular,
- We know that regulars are closed under intersection,
- Thus, $F = \{ab^nc^n \mid n \ge 0\}$ should be regular with pumping length p.
- Let $s = ab^p c^p$ and all partitions s = xyz with $|xy| \le p$ and |y| > 0:
 - If a is in y, when xy^0z does not start with a!
 - If a is not in y, due to $|xy| \le p$ and |y| > 0, then y only contains b. Thus, xy^0z does not have equal numbers of b and c.
- Thus, F is not pumpable and not regular, which is a contradiction.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Nonregular Languages Closure Properties

Example

$$G = \{0^m 1^n \mid m \neq n\}.$$

•
$$\overline{G} \cap a^* b^* = \{0^n 1^n \mid n \ge 0\},\$$

• We proved that this is not regular.

Example

 $H = \{ w \mid w \in \{0,1\}^* \text{ and } w \text{ has an unequal number of 0s and 1s } \}.$

•
$$\overline{H} \cap a^* b^* = \{0^n 1^n \mid n \ge 0\},\$$

• We proved that this is not regular.

Nonregular Languages Closure Properties of Nonregulars

Theorem

If L is a nonregular language, then \overline{L} is not regular.

Proof.

- Proof by contradiction:
- Assume L is nonregular and \overline{L} is regular,
- We know that class of regular languages is closed under complement,
- Thus, $\overline{(\overline{L})} = L$ should be regular,
- Which is a contradiction.

Nonregular Languages Closure Properties of Nonregulars

Theorem

If L is a nonregular language, then $L^{\mathcal{R}}$ is not regular.

Proof.

- Proof by contradiction:
- Assume L is nonregular and $L^{\mathcal{R}}$ is regular,
- We know that class of regular languages is closed under reversal,
- Thus, $(L^{\mathcal{R}})^{\mathcal{R}} = L$ should be regular,
- Which is a contradiction.

(日) (同) (日) (日) (日)

Closure Properties of Nonregulars

Theorem

The class of nonregular languages is not closed under union.

Proof.

We find two nonregular languages and show that their union is regular:

•
$$A = \{0^n 1^n \mid n \ge 0\}$$
 is not regular,

- We saw that nonregulars are closed under complement,
- Thus, \overline{A} is also nonregular,
- However, $\overline{A} \cup A = \Sigma^*$ is regular.

Note: Not being closed means that the result of the operation may or may not be nonregular. In above, $A \cup A = A$ shows that the union of two nonregulars is still nonregular.

Mahdi Dolati (Sharif Univ. Tech.)

Nonregular Languages Closure Properties of Nonregulars

Theorem

The class of nonregular languages is not closed under intersection.

Theorem

The class of nonregular languages is not closed under Kleene star.

March 2, 2024

31/31