Theory of Formal Languages and Automata Lecture 6

Mahdi Dolati

Sharif University of Technology

Fall 2024

February 17, 2024

- 1 E

1/20

February 17, 2024

- Regular operations: Build up expressions
- Value of a regular expression is a language
 - $(\{0\} \cup \{1\}) \circ \{0\}^* = (0 \cup 1)0^*.$
 - Set of all strings start with a zero or one followed by any number of zeros.
- Powerful method for describing patterns.
- Priority: Star, concatenation, union.

Example

- $(0 \cup 1)^*$
- Let $\Sigma = \{0, 1\}$:
 - $\Sigma:$ Length-one strings
 - Σ^* : All possible strings
 - $0\Sigma^*$: All strings start with a zero
 - $\Sigma^*1:$ All strings ends with a one

∃ ► < ∃ ►</p>

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition (Regular Expression)

R is a regular expression if:

- $a \in \Sigma \to \mathsf{Language}{=}\{a\}$
- ② $ε → Language = {ε}$. This language contains one string, the empty string.
- $\textbf{0} \quad \emptyset \rightarrow \mathsf{Language}{=} \{\}. \text{ This language does not contain any strings}.$
- R_1 and R_2 are regular expressions:
 - $(R_1 \cup R_2)$
 - $(R_1 \circ R_2)$
 - (R_1^*)

• Circular definition vs. inductive definition

(日) (周) (日) (日) (日) (000

- $\bullet \ R \cup \emptyset = R$
- $\bullet \ R \circ \varepsilon = R$
- $\bullet \ R \cup \varepsilon \neq R, \qquad \exists R$

$$R = 0 \to L(R) = \{0\}$$
(1)

$$R = 0 \to L(R \cup \varepsilon) = \{0, \varepsilon\}$$
(2)

• $R \circ \emptyset \neq R$, $\exists R$

$$R = 0 \to L(R) = \{0\}$$
(3)

$$R = 0 \to L(R \circ \emptyset) = \emptyset$$
(4)

Example

- $\Sigma = \{0, 1\}$
 - $0^*10^* = \{w | w \text{ contains a single } 1\}$
 - $\Sigma^* 1 \Sigma^* = \{ w | w \text{ has at least one } 1 \}$
 - $\Sigma^* 001 \Sigma^* = \{w | 001 \text{ is a substring of } w\}$
 - $1^*(01^+)^* = \{w | \text{ every } 0 \text{ is followed by a } 1 \text{ in } w\}$
 - $(\Sigma\Sigma)^* = \{w | \text{ length of } w \text{ is even}\}$
 - $(\Sigma\Sigma\Sigma)^* = \{w | \text{ length of } w \text{ is a multiple of } 3\}$
 - $01 \cup 10 = \{01, 10\}$

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

 $\Sigma = \{0,1\}$

- $0\Sigma^*0 \cup 1\Sigma^*10 \cup 1 = \{w | w \text{ starts and ends with the same symbol}\}$
- $(0\cup\varepsilon)1^* = 01\cup1^*$
- $(0 \cup \varepsilon)(1 \cup \varepsilon) = \{\varepsilon, 0, 1, 01\}$
- $1^* \emptyset = \emptyset$
- $\emptyset^* = \{\varepsilon\}$

(日) (周) (日) (日) (日) (000

Example

- Regular expressions: A useful tool in the design of compilers
- Tokenization: Extract tokens
- Generate the lexical analyzer
- Example:

•
$$D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

 $(+\cup-\cup\varepsilon)(D^+\cup D^+.D^*\cup D^*.D^+)$

Remember operator priorities

3

A B F A B F

(5)

Theorem

A language is regular iff a regular expression can describe it.

Lemma

If a regular expression describe a language, then it the language is regular.

Proof idea:

- Assume we have a regular expression *R* describing language *A*. We convert *R* into an NFA that recognizes *A*.
- Remember: DFA and NFA are equivalent.

4 3 5 4 3 5 5

Proof.

Consider six cases in the definition of regular expressions:

1.
$$a \in \Sigma \rightarrow \text{Language}=\{a\}$$
.
• $N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$
• $\delta(q_1, a) = \{q_2\}$
2. $\varepsilon \rightarrow \text{Language}=\{\varepsilon\}$.
• $N = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$
• $\delta(q_1, b) = \emptyset$
3. $\emptyset \rightarrow \text{Language}=\{\}$.
• $N = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$
• $\delta(q_1, b) = \emptyset$
4. R_1 and R_2 are regular expressions (use closure proofs):
4.1. $(R_1 \cup R_2)$
4.2. $(R_1 \circ R_2)$
4.3. (R_1^*)
(c) Case 3

TFLA

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ∃→

9/20

February 17, 2024

Example

Lemma

If a language is regular, then a regular expression can describe it.

• Generalized Nondeterministic Finite Automaton

- $\bullet \ \mathsf{DFS} \to \mathsf{GNFA} \to \mathsf{regular} \ \mathsf{expression}$
- GNFA is a NFA that its arrows labels may be regular expressions
- GNFA reads blocks of symbols

- Special form of GNFAs:
 - One start and one accept state, different from each other
 - One arrow from start to all other states and no incoming arrows
 - One arrow to accept from all other states and no outgoing arrows
 - One arrow between each pair of states
 - One self-loop in each state

Definition (GNFA)

- A GNFA is a 5-tuple, $(Q, \Sigma, \delta, q_{start}, q_{accept})$, where
 - Finite set of states: Q,
 - 2 Alphabet: Σ ,
 - **3** Transition function: $\delta : (Q \{q_{accept}\}) \times (Q \{q_{start}\}) \rightarrow \mathcal{R},$
 - \mathcal{R} is the set of all regular expressions over Σ .
 - Start state: q_{start}
 - Accept state: q_{accept}

- GNFA accepts $w = w_1 w_2 \dots w_k$, if there exists a sequence of states q_0, q_1, \dots, q_k such that:
 - 1 $q_0 = q_{start}$ 2 $q_k = q_{accept}$ 3 for each i, we have $w_i \in L(\delta(q_{i-1}, q_i))$.

• Convert DFA to GNFA:

- A new start to connect to old start with ε arrow
- A new accept to be connected from all old accepts with with ε arrows
- Combine arrows with union
- Use \emptyset for arrows not in DFA
- Convert GNFA to regular expression:
 - Assume the GNFA has \boldsymbol{k} states
 - Convert the GNFA to an equivalent GNFA with k-1 states
 - If k = 2 there is one arrow from a start state to an accept state
 - Label of the remaining arrow is the regular expression

Mahdi Dolati (Sharif Univ. Tech.)

February 17, 2024 16 / 20

イロト イロト イヨト イヨト 二日

- How to convert a GNFA to an equivalent GNFA with one less state:
 - Select a state other than the start and accept at random
 - Call the selected state q_{rip}
 - Remove q_{rip}
 - Update the label of remaining arrows to compensate for the absence of q_{rip}
 - New labels: Describe all string that change the state the machine either or via q_{rip}

 $\overbrace{\begin{array}{c} R_4 \cup R_1 R_2^* R_3 \\ \hline q_i \end{array}}^{R_4 \cup R_1 R_2^* R_3}$

February 17, 2024

17/20

• CONVERT(G)

- **1** $k \leftarrow$ The number of states of G
- If k = 2, then G has one start state, one accept state, and a single arrow labeled R. Return R.
- $\textbf{ if } k > 2, \text{ then select } q_{rip} \in Q \{q_{start}, q_{accept}\} \text{ and construct } G^{'} = (Q^{'}, \Sigma, \delta^{'}, q_{start}, q_{accept}), \text{ where:}$

•
$$G' = Q - \{q_{rip}\}$$
 and
• for $q_i \in Q' - \{q_{accept}\}$ and $q_j \in Q' - \{q_{start}\}$:
 $\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4),$
(6)

where,

$$R_1 = \delta(q_i, q_{rip}), \qquad R_2 = \delta(q_{rip}, q_{rip}), \tag{7}$$

$$R_3 = \delta(q_{rip}, q_j), \qquad R_4 = \delta(q_i, q_j).$$
(8)

19/20

February 17, 2024

4 Return CONVERT (G')

February 17, 2024

3

20 / 20

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <