Theory of Formal Languages and Automata Lecture 5

Mahdi Dolati

Sharif University of Technology

Fall 2025

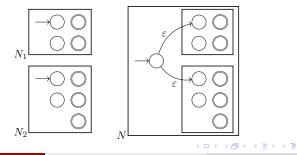
February 24, 2025

Theorem

The class of regular languages is closed under the union operation.

Proof idea:

- Consider two regular languages A_1 and A_2 with NFAs N_1 and N_2 , respectively.
- Construct machine N with a new start state that has two ε arrows to start states of N_1 and $N_2.$



Proof.

 $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$: $Q = \{q_0\} \cup Q_1 \cup Q_2.$ **2** Start state: q_0 . **3** $F = F_1 \cup F_2$. • $q \in Q$ and $a \in \Sigma_{\varepsilon}$: $\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \\ \delta_2(q,a) & q \in Q_2 \\ \{q_1,q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$

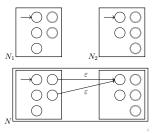
(1)

Theorem

The class of regular languages is closed under the concatenation operation.

Proof idea:

- Consider two regular languages A_1 and A_2 with NFAs N_1 and N_2 , respectively.
- Construct machine N, where its start is the start of N_1 . Connect accept states of N_1 to start of N_2 with ε arrows. Only accept states of N_2 are accept states in N.



Proof.

 $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 . Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$: **1** $Q = Q_1 \cup Q_2$. **2** Start state: q_1 . **③** Accept states: F_2 . • $q \in Q$ and $a \in \Sigma_{\varepsilon}$: $\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q,a) & q \in Q_2 \end{cases}$ (2)

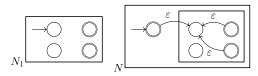
Mahdi Dolati (Sharif Univ. Tech.)

Theorem

The class of regular languages is closed under the star operation.

Proof idea:

- Consider a regular languages A_1 with NFA N_1 .
- Construct machine N that accepts when its input consists of several pieces acceptable by N_1 . Return from accept states with ε arrows to the start state of N_1 . Also, add a new start state that is also an accept state to accept the empty string.



- ∢ A⊐ >

Proof.

 $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* : $Q = \{q_0\} \cup Q_1.$ **2** Start state: q_0 . **3** Accept states: $\{q_0\} \cup F_1$. **4** $q \in Q$ and $a \in \Sigma_{\varepsilon}$: $\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a = \varepsilon \end{cases}$

 $a = q_0$ and $a \neq \varepsilon$

Mahdi Dolati (Sharif Univ. Tech.)

(3)

- More operators for languages:
 - Prefix:

$$Prefix(A) = \{ w \mid w \text{ is a prefix of a string in } A \},$$
(4)

$$Suffix(A) = \{w \mid w \text{ is a suffix of a string in } A\},$$
 (5)

• Right quotient of a language A by a string $u \in \Sigma^*$: Every string that becomes a member of A if concatenated by u:

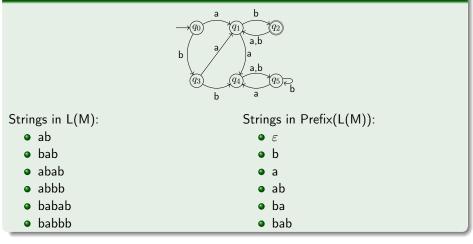
$$Au^{-1} = \{ w \mid w \in \Sigma^* \text{ and } wu \in A \},$$
(6)

• Left quotient of a language A by a string u:

$$u^{-1}A = \{ w \mid w \in \Sigma^* \text{ and } uw \in A \},$$
(7)

→ Ξ →

Example



э

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem

The class of regular languages is closed under Prefix.

Proof idea:

- Given a DFA M_1 that recognizes a regular language L,
- We should build another DFA M_2 that recognizes Prefix(L).
- A string w is in L, M reads it and ends up in a state that can reach a final state,
- Thus, we may turn all states in M that can reach a final state into a final state to recognize Prefix(L).

Proof.

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ be a DFA that recognizes the regular language L.

Construct $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$:

•
$$Q_2 = Q_1$$
, $\delta_2 = \delta_1$ and $q_2 = q_1$.

• $F_2 = \{q \mid q \in Q_1 \text{ where there is a path from q to a state in } F_1\}.$

Consider a string $w \in L(M_2)$ that takes M_2 to state $q \in F_2$. Consider the path from q to a state in F_1 , which exists by definition. Build a string x from labels of arrows in that path. Thus, $wx \in L_1$, which implies that $w \in Prefix(L_1)$.

Consider a string $wx \in L(M_1)$ where $w, x \in \Sigma^*$. String w takes M_1 to a state q from which x can reach a state in F_1 . Thus, $q \in F_2$ that implies $w \in L(M_2)$.

Theorem

The class of regular languages is closed under Suffix.

Mahdi Dolati (Sharif Univ. Tech.)

February 24, 2025

3

Theorem

The class of regular languages is closed under left quotient.

Proof.

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ be a DFA, $A = L(M_1)$ and $u \in \Sigma^*$. We build a DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ that recognizes:

$$u^{-1}A = \{x \mid x \in \Sigma^* \text{ and } ux \in A\}.$$
(8)

Let $Q_2 = Q_1$, $\delta_2 = \delta_1$ and $F_2 = F_1$:

- Let q_2 be the state that M_1 enter after reading u. Any string $x \in \Sigma^*$ that takes M_1 from q_2 to a state in F_1 is in $u^{-1}A$. Choosing q_2 to be the initial state of M_2 ensures all such strings are in the $L(M_2)$.
- If a string x takes M_2 from q_2 to a final state, then ux is in the $L(M_1)$.

13/30

イロト 不得 トイヨト イヨト 二日

- Another way of describing regular languages,
 - DFAs and NFAs, and
 - Regular Expressions.

3

Image: Image:

• A grammar is regular if it is right- or left-linear.

Definition

A grammar G = (V, T, S, P) is right-linear if all rules are of the form:

 $\begin{array}{l} A \rightarrow xB, \\ A \rightarrow x, \end{array}$

where, $A, B \in V$, and $x \in T^*$.

Definition

A grammar G = (V, T, S, P) is left-linear if all rules are of the form:

 $\begin{array}{l} A \to Bx, \\ A \to x, \end{array}$

where, $A, B \in V$, and $x \in T^*$.

Mahdi Dolati (Sharif Univ. Tech.)

3

 G_1 : A right-linear grammar,

 $S \to abS \mid a$

A derivation:

 $S \Rightarrow abS \Rightarrow ababS \Rightarrow ababa.$

Language of G_1 is described by $(ab)^*a$.

February 24, 2025

э

• A special form:

$$A \to aB_1$$

$$A \to abcB$$

$$B_1 \to bB_2$$

$$B_2 \to cB$$

$$A \to aB_1$$

$$A \to abc$$

$$B_1 \to bB_2$$

$$B_2 \to c$$

February 24, 2025

2

17/30

(a)

 G_2 : A left-linear grammar,

$$S \rightarrow S_1 ab,$$

 $S_1 \rightarrow S_1 ab \mid S_2,$
 $S_2 \rightarrow a,$

 $S \Rightarrow S_1ab \Rightarrow S_1abab \Rightarrow S_2abab \Rightarrow aababab.$

Language of G_2 is described by $aab(ab)^*$.

(日) (周) (日) (日)

February 24, 2025

3

Linear grammar:

- Exactly one variable in the left-hand side of productions,
- At most one variable in the right-hand side of productions,
- No restriction on the position of the variable in the right-hand side of productions relative to terminals.
- Regular grammars are linear grammars, but not vice versa.

Example Grammar G_3 : $S \rightarrow A,$ $A \rightarrow aB \mid \varepsilon,$ $B \rightarrow Ab,$

く 戸 ト く ヨ ト く ヨ ト 一

February 24, 2025

Theorem

If grammar G = (V, T, S, P) is right-linear, then L(G) is a regular language.

Proof idea:

Derivations have the special form:

 $ab \dots cD$,

• Using a rule $D \rightarrow dE$ yields,

$$ab\ldots cD \Rightarrow ab\ldots cdE$$
,

- States correspond to variables,
- Input correspond to terminal prefix.

Proof.

Let $V = \{V_0, V_1, ...\}$ and $S = V_0$. Also, rules are in form $V_i \rightarrow v_j V_k$ and $V_n \rightarrow v_l$. Construct a NFA $M = (\{V_i\} \cup \{V_f\}, T_{\varepsilon}, \delta, V_0, \{V_f\})$:

Rule	Transition
$V_i \rightarrow v_j V_k$	$\delta(V_i, v_j)$ contains V_k
$V_n \to v_l$	$\delta(V_n, v_l)$ contains V_f

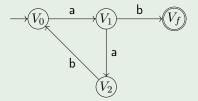
- $w \in L(G)$: Derivation of w is equivalent to a transition from the start state to a final state,
- $w \in L(M)$: The transition from the start state to the final state is equivalent to a derivation in G.

イロト イポト イヨト イヨト 二日

Example

Construct a NFA for:

$$\begin{array}{ccc} V_0 \to aV_1, & & V_0 \to aV_1, \\ V_1 \to abV_0 \mid b. & \xrightarrow{\text{transform}} & V_1 \to aV_2 \mid b, \\ & & V_2 \to bV_0. \end{array}$$



Regular expression: $(aab)^*ab$.

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem

If L is a regular language on Σ , then there exists a right-linear grammar G such that L = L(G).

Proof.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA that accepts L. Assume:

$$Q = \{q_0, q_1, \dots, q_n\}$$

$$\Sigma = \{a_1, a_2, \dots, a_m\}.$$

Construct right-linear grammar $G = (V, \Sigma, S, P)$ with:

- V = Q,
 S = q₀,
- *P*:

$$\begin{array}{ll} \delta(q_i,a_j) = q_k & \text{adds} & q_i \to a_j q_k \\ q_k \in F & \text{adds} & q_k \to \varepsilon. \end{array}$$

Proof Cont.

Consider $w = a_i a_j \dots a_k a_l \in L$. Then, following transitions are possible in M:

$$\begin{split} \delta(q_0, a_i) &= q_p \\ \delta(q_p, a_j) &= q_r \\ & \cdots \\ \delta(q_s, a_k) &= q_t \\ \delta(q_t, a_l) &= q_f \in F, \end{split}$$

which entails following derivation is possible in G:

$$q_0 \Rightarrow a_i q_p \Rightarrow a_i a_j q_r \Rightarrow \dots \Rightarrow a_i a_j \dots q_s$$

$$\Rightarrow a_i a_j \dots a_k q_t \Rightarrow a_i a_j \dots a_k a_l q_f \Rightarrow a_i a_j \dots a_k a_l q_l$$

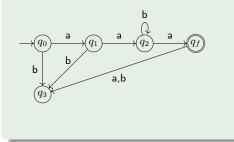
Conversely, if $w \in L(G),$ by a similar argument, M accepts w, which completes the proof.

Mahdi Dolati (Sharif Univ. Tech.)

24 / 30

< □ > < 同 > < 回 > < 回 > < 回 >

Construct a right-linear grammar for the language of aab^*a .



$$\begin{array}{l} q_0 \rightarrow aq_1 \\ q_0 \rightarrow bq_3 \\ q_1 \rightarrow aq_2 \\ q_1 \rightarrow bq_3 \\ q_2 \rightarrow aq_f \\ q_2 \rightarrow bq_2 \\ q_f \rightarrow aq_3 \\ q_f \rightarrow bq_3 \\ q_f \rightarrow \varepsilon \end{array}$$

Mahdi Dolati (Sharif Univ. Tech.)

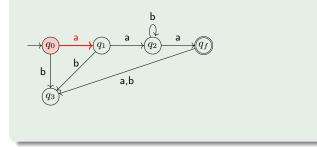
February 24, 2025

< A[™]

(B)

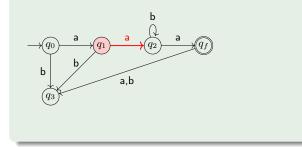
3

Construct a right-linear grammar for the language of aab^*a . Examine the acceptance and generation of string aaa:



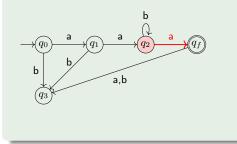
$$\begin{array}{l} q_0 \rightarrow aq_1 \\ q_0 \rightarrow bq_3 \\ q_1 \rightarrow aq_2 \\ q_1 \rightarrow bq_3 \\ q_2 \rightarrow aq_f \\ q_2 \rightarrow bq_2 \\ q_f \rightarrow aq_3 \\ q_f \rightarrow bq_3 \\ q_f \rightarrow bq_3 \\ q_f \rightarrow \varepsilon \end{array}$$

Construct a right-linear grammar for the language of aab^*a . Examine the acceptance and generation of string aaa:



$$\begin{array}{l} q_0 \rightarrow aq_1 \\ q_0 \rightarrow bq_3 \\ q_1 \rightarrow aq_2 \\ q_1 \rightarrow bq_3 \\ q_2 \rightarrow aq_f \\ q_2 \rightarrow bq_2 \\ q_f \rightarrow aq_3 \\ q_f \rightarrow bq_3 \\ q_f \rightarrow \varepsilon \end{array}$$

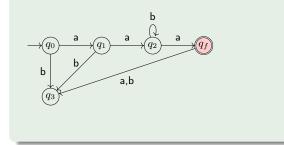
Construct a right-linear grammar for the language of aab^*a . Examine the acceptance and generation of string aaa:



$$\begin{array}{l} q_0 \rightarrow aq_1 \\ q_0 \rightarrow bq_3 \\ q_1 \rightarrow aq_2 \\ q_1 \rightarrow bq_3 \\ q_2 \rightarrow aq_f \\ q_2 \rightarrow bq_2 \\ q_f \rightarrow aq_3 \\ q_f \rightarrow bq_3 \\ q_f \rightarrow \varepsilon \end{array}$$

< 47 ▶

Construct a right-linear grammar for the language of aab^*a . Examine the acceptance and generation of string aaa:



$$\begin{array}{l} q_0 \rightarrow aq_1 \\ q_0 \rightarrow bq_3 \\ q_1 \rightarrow aq_2 \\ q_1 \rightarrow bq_3 \\ q_2 \rightarrow aq_f \\ q_2 \rightarrow bq_2 \\ q_f \rightarrow aq_3 \\ q_f \rightarrow bq_3 \\ q_f \rightarrow \epsilon \end{array}$$

< 47 ▶

Theorem

A language L is regular if and only if there exists a left-linear grammar G such that L = L(G).

Proof idea:

• We can covert a right-linear grammar \widehat{G} and a left-linear grammar G to each other such that $L(G) = L(\widehat{G})^{\mathcal{R}}$:

$$\begin{array}{rccc} A \to Bv & \leftrightarrow & A \to v^{\mathcal{R}}B \\ A \to v & \leftrightarrow & A \to v^{\mathcal{R}} \end{array}$$

- We can prove that reverse of a regular language is a regular language.
- Since \widehat{G} is right-linear, $L(\widehat{G})$ is regular. Thus, $L(\widehat{G})^{\mathcal{R}}$ is regular, which means that L(G) is also regular.
- For any regular language L, we can construct a right-linear grammar \widehat{G} such that $L^{\mathcal{R}} = L(\widehat{G})$. Then, we can construct a left-linear grammar G such that $L(G) = L(\widehat{G})^{\mathcal{R}}$, which generates L.