Theory of Formal Languages and Automata Lecture 3

Mahdi Dolati

Sharif University of Technology

Fall 2025

February 17, 2025

- What is a computer?
 - Computational model: An idealized computer
 - Use different models when considering different features
 - Finite state machine or finite automaton: Simplest model
 - A FA either accept or reject its input string.

• A computer with extremely limited amount of memory

Example (Automatic Doors)

- Two states = {OPEN, CLOSED}
- Needs 1 bit of memory

State transition table

	NEITHER	FRONT	REAR	BOTH
CLOSED	CLOSED	OPEN	CLOSED	CLOSED
OPEN	CLOSED	OPEN	OPEN	OPEN

Mahdi Dolati (Sharif Univ. Tech.)

TFLA

< ∃⇒ February 17, 2025

3/39

э

- Other examples:
 - Elevator controller
 - Electronic thermostat

- The states (a finite set) are the memory,
- Starts from a fixed initial state,
- Change state based by reading the input one symbol at a time,
- Accept if is in an accept state after reading the input.
- Standard ways of representation,
- Methodology and terminology helps to design such devices.

- A simple setting to start
 - Definition
 - Manipulation
 - Power and limitations

Image: Image:

3

Finite automaton M_1 :

- State diagram of M_1
- State: A circle with a name
 - Start state: An arrow points to it
 - Accept state: Two circles
- Input: Strings (consume one-by-one)

• 1101

- Transitions: arrows (match on the label)
- Output: {accept, reject} after reading last symbol

6/39

Definition (Finite Automaton)

- A 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where
 - Q: states,
 - ${f 2}$ Σ : alphabet,
 - $\begin{tabular}{ll} \bullet & \delta : \ Q \times \Sigma \to Q \ {\rm transition} \ {\rm function}, \end{tabular} \end{tabular}$
 - **4** $q_0 \in Q$: start state,
 - **(a)** $F \subseteq Q$: accept states.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Example

•
$$Q = \{q_1, q_2, q_3\}$$

• $\Sigma = \{0, 1\}$
• δ :

$$\begin{array}{c|cccc} 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2 \end{array}$$

Start state: q₁
F = {q₂}

Mahdi Dolati (Sharif Univ. Tech.)

TFLA

- A: Set of all strings that machine M accepts
 - A is the language of machine M
 - L(M) = A
 - M recognizes A
 - M accepts A
- Each machine accepts only one language
 - o Can be Ø

Example

Mahdi Dolati (Sharif Univ. Tech.)

February 17, 2025

< A

9/39

Example

2
$$\Sigma = \{0, 1\}$$

$$\begin{array}{c|ccc} 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

④ Start state: q_1

5
$$F = \{q_2\}$$

Mahdi Dolati (Sharif Univ. Tech.)

TFLA

2

10/39

・ロト ・聞ト ・ヨト ・ヨト

Example (Accept 1101)

2

э

э

э

э

イロト イヨト イヨト

Example (Reject 1010)

æ

Example (Reject 1010 Cont.)

э

Example (Reject 1010 Cont.)

э

Example (Reject 1010 Cont.)

э

Example (Reject 1010 Cont.)

Mahdi Dolati (Sharif Univ. Tech.)

February 17, 2025 20 / 39

3

Example (Language of a DFA)

$A = \{w | w \text{ is the empty string } \varepsilon \text{ or ends in a zero}\}$

Mahdi Dolati (Sharif Univ. Tech.)

February 17, 2025 21 / 39

3

(3)

Formal definition of computation:

• Finite automaton's computation:

Definition

$$\begin{split} &M = (Q, \Sigma, \delta, q_0, F) \\ &w = w_1 w_2 \dots w_n \\ &M \text{ accepts } w \text{ if a sequence of states } r_0, \dots, r_n \text{ exists:} \\ & \bullet r_0 = q_0, \\ &\bullet \delta(r_i, w_{i+1}) = r_{i+1}, \text{ for } i = 0, \dots, n-1, \text{ and} \\ &\bullet r_n \in F. \end{split}$$

• M recognizes A: $A = \{w | M \text{ accepts } w\}$

イロト 不得下 イヨト イヨト 二日

Example (Reject 1010 Cont.)

Input	$States(r_0,\ldots,r_n)$	Output	
ε	q_1	REJECT	
1	q_1, q_2	ACCEPT	
000	q_1, q_1, q_1, q_1, q_1	REJECT	
011	q_1,q_1,q_2,q_2	ACCEPT	
1110	q_1, q_2, q_2, q_2, q_1	REJECT	

Mahdi Dolati (Sharif Univ. Tech.)

February 17, 2025

æ

23/39

Definition (Regular Language)

We call a language regular language if there exists a finite automaton that recognizes it.

24/39

Prove that following languages are regular ($\Sigma = \{0, 1\}$):

•
$$L_1 = \emptyset$$

- $L_2 = \Sigma^*$
- $L_3 = \{w \mid w \text{ starts and ends with } 0\}$
- $L_4 = \{w \mid w \text{ length of } w \text{ is not a multiple of } 3\}$

Theory of computation:

- Properties of finite automata and regular languages
- Design automata to recognize some languages
- Prove non-regularity
- Manipulation:
 - Objects: Languages
 - Operations: Manipulate languages

Definition (Regular Operations)

 \boldsymbol{A} and \boldsymbol{B} are regular languages:

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}$
- Star: $A^* = \{x_1x_2 \dots x_k | k \ge 0 \text{ and } x_i \in A\}$

26/39

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

$$\begin{split} \Sigma &= \{a, b, \dots, z\} \\ A &= \{ \texttt{good, bad} \}, \ B = \{ \texttt{boy, girl} \} \end{split}$$

- $A \cup B = \{ \text{good, bad, boy, girl} \}$
- $A \circ B = \{ \text{goodboy, goodgirl, badboy, badgirl} \}$
- $A^* = \{\varepsilon, \text{ good, bad, goodgood, goodbad} \\ badbad, badgood, goodgoodgood, goodgoodbad\}$

イロト イポト イヨト イヨト 二日

- Closed under some operation: The result is in the collection of inputs
- Example:
 - Multiplication
 - Division
- Collection of regular languages is closed under:
 - Complement
 - Union
 - Concatenation
 - Star

Theorem

The complement of a regular language is a regular languages.

Proof idea:

- Consider a regular language A,
- Since A is regular, there exists a DFA $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ that recognizes A,
- Construct a new DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ that recognizes \overline{A} ,
- M_1 and M_2 consume a string similarly, however, when M_1 accepts a string M_2 rejects it and vice versa.

イロト イポト イヨト イヨト 二日

Proof.

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ be a DFA such that $L(M_1) = A$. Construct $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$:

- **1** $Q_2 = Q_1$
- 2 Σ
- $\delta_2 = \delta_1$
- $q_2 = q_1$
- **5** $F_2 = Q_1 F_1.$
 - Formal correctness proof?

イロト 不得下 イヨト イヨト 二日

Example (Substring Complement)

 $L(M_1) = \{w \mid bba \text{ is a substring of } w\}$ $L(M_2) = \{w \mid bba \text{ is not a substring of } w\}$

Mahdi Dolati (Sharif Univ. Tech.)

February 17, 2025

31/39

イロト 不得下 イヨト イヨト 二日

Example (Input=aabb)

Mahdi Dolati (Sharif Univ. Tech.)

February 17, 2025 32 / 39

3

・ロト ・ 四ト ・ ヨト ・ ヨト

Example (Input=aabb Cont.)

Mahdi Dolati (Sharif Univ. Tech.)

February 17, 2025 33 / 39

3

Example (Input=aabb Cont.)

3

Example (Input=aabb Cont.)

3

Example (Input=aabb Cont.)

Output of M_1 = reject Output of M_2 = accept

Mahdi Dolati (Sharif Univ. Tech.)

Theorem

The class of regular languages is closed under the union operation. In other words, A_1 and A_2 are regular $\rightarrow A_1 \cup A_2$ is regular.

Proof idea:

- There exists a finite automaton M_1 that recognizes A_1
- There exists a finite automaton M_2 that recognizes A_2
- We construct a finite automaton M that recognizes $A_1 \cup A_2$
- Can *M* simulate *M*₁ and then *M*₂ on the input and accept if either of simulations accept?
 - We can't rewind the input tape!
- Simulate the machines simultaneously
 - Keep track of both machines
 - Possible with finite memory

3

A B M A B M

Proof.

$$\begin{split} M_1 &= (Q_1, \Sigma, \delta_1, q_1, F_1) \\ M_2 &= (Q_2, \Sigma, \delta_2, q_2, F_2) \\ \text{Construct } M_1 &= (Q, \Sigma, \delta, q_0, F): \\ \bullet & Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} \\ \bullet & \Sigma \\ \bullet & \delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \\ \bullet & q_0 = (q_1, q_2) \\ \bullet & F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\} \end{split}$$

• Formal correctness proof?

Mahdi Dolati (Sharif Univ. Tech.)

(a)

February 17, 2025

2

38 / 39

- Prove the closure under concatenation?
- Break the string into two pieces that are accepted by M_1 and $M_2, \label{eq:mass_stress}$ respectively
- Where to break the string?
- New technique: Nondeterminism