Theory of Formal Languages and Automata Lecture 2

Mahdi Dolati

Sharif University of Technology

Fall 2025

February 15, 2025

Theory of Formal Languages and Automata

Background: Strings and Languages

Mahdi Dolati (Sharif Univ. Tech.)

February 15, 2025

うへつ

- Important concepts:
 - Alphabet,
 - String,
 - Language.

3

- Alphabet: Any nonempty finite set
 - Σ and Γ
- Symbols: Members of the alphabet

Example

$$\Sigma_{1} = \{0, 1\}$$
(1)

$$\Sigma_{2} = \{a, b, c, d, \dots, x, y, z\}$$
(2)

$$\Gamma = \{0, 1, x, y, z\}$$
(3)

< 47 ▶

3

- String over an alphabet: A finite sequence of symbols from the alphabet
 - No spaces or commas.

Example

- 01001 is an string over $\Sigma_1 = \{0, 1\}$
- abracadabra is an string over $\Sigma_2 = \{a, b, c, d, \dots, x, y, z\}$
- Length: Number of symbols in the string,
 - $w = w_1 w_2 \dots w_n$: the string has length n,
 - Denoted by |w|=n.
- Empty string: ε , string of length zero

Reverse:

•
$$w = w_1 w_2 \dots w_n$$

• $w^{\mathcal{R}} = w_n w_{n-1} \dots w_1$

Example

•
$$abb^{\mathcal{R}} = bba$$

•
$$a^{\mathcal{R}} = a$$

•
$$\varepsilon^{\mathcal{R}} = \varepsilon$$

3

• Substring: one string appears consecutively within another.

Example

- cad is a substring of abracadabra
- 0100 is a substring of 001000
- 0000 is not a substring of 001000

• Concatenation: Append one string to the end of another

• concat $(x_1 \dots x_m, y_1 \dots y_n) = x_1 \dots x_m y_1 \dots y_n$

$$\bullet ||xy|| = |x| + |y||$$

•
$$\varepsilon x = x\varepsilon = x$$

• $x^k = \underbrace{xx \dots x}_k$
• $|x^k| = k \cdot |x|$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Prefix: xz = y, x is a prefix of y
- ε is the only prefix of ε
- Each string of length n has n+1 prefixes
- Proper prefix: x is a prefix of y and $x \neq y$

Example
Prefixes of aaba:
Οε
2 a
3 aa
aab
3 aaba

- b

- Lexicographic order: Dictionary order
- String order (Shortlex order): Same as the lexicographic order, except that shorter strings precede longer strings:
 - (ε, 0, 1, 00, 01, 10, 11, 000, ...)

イロト イヨト イヨト イヨト

- Language: A set of strings
- Prefix-free language: no member is a proper prefix of another

Example	
• Finite	
• $L_1 = \emptyset$	
• $L_2 = \{\varepsilon\}$	
• $L_3=\{$ a, aa, aba $\}$	
• Infinite	
• $L_4 = \Sigma^*$	
• $L_5 = \Sigma^+$	
• $L_6 = \{a^n b^n n \ge 0\} = \{\varepsilon, ab, aabb, \dots\}$	

- Operations on languages:
 - Union: Languages are sets,
 - Intersection: Languages are sets,
 - Complement: $\overline{L} = \Sigma^* \backslash L$,
 - Reversal: $L^{\mathcal{R}} = \{ w^{\mathcal{R}} | w \in L \}$
 - Concatenation: $L_1 \circ L_2 = \{xy | x \in L_1 \land y \in L_2\}$
 - Kleene star: $L^* = \{x_1 x_2 \dots x_k | k \ge 0 \land x_i \in L\}$

	Can be empty	Can be infinite
Alphabet	X	X
String	\checkmark	×
Language	\checkmark	\checkmark

3

(日) (周) (日) (日)

Theory of Formal Languages and Automata

i'e] a finite collection of ineducible polynomials file, t) (0(t)(x) I ti for each one Pick a pi = 5 Thun pick a non-content t (Q) which is pi-aducidly close t t for each i and addically close to the original Era

Background: Definition, Theorem, and Proof

Mahdi Dolati (Sharif Univ. Tech.)

February 15, 2025

500

Definition (Definition)

Describe employed objects and notations.

- Simple: Set,
- Complex: Security.

Must be precise.

Definition (Mathematical Statement)

Expression of a property of an object, that may or may not be true. No ambiguity!

Definition (Proof)

A convincing logical argument about the truth of a statement.

- Proof beyond reasonable doubt,
- Proof beyond any doubt.

Definition (Theorem)

A mathematical statement proved true.

- Lemmas,
- Corollaries.

A B M A B M

How to prove?

- Understand the notation,
- Rewrite the statement,
- Break the statement down and address each part separately.
 - P iff Q: P only if Q (forw. dir.) and P if Q (rev. dir.)

•
$$P \leftrightarrow Q$$
: $P \rightarrow Q \land P \leftarrow Q$

- Sets A and B are equal: $a \in A \rightarrow a \in B \land b \in A \leftarrow b \in B$
- Try to find a counterexample,
- Try simpler special cases of the statement,

Example

Statement: The sum of the degrees of all the nodes in undirected graphs is an even number. Examples:

 $\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ (a) \ sum=0 \end{array} \qquad (b) \ sum=2 \qquad (c) \ sum=4 \qquad (d) \ sum=6 \end{array}$

Observation: Every time an edge is added the sum increases by two.

A B b

18/36

February 15, 2025

How to write a proof?

- A well-written proof is a sequence of statements, following each other,
- Be careful,
- Be neat: Use simple and clear pictures/text,
- Be concise: Present a high-level sketch first.

Theorem

 $\overline{A \cup B} = \overline{A} \cap \overline{B}.$

Proof.

Reverse

Mahdi D

Forward direction:

olati (Sharif Univ. Tech.)	TFLA	February 15, 2025	20/36
	<		৩৫৫
			. ,
	$\rightarrow x \in \overline{A \cup B}$		(11)
	$\rightarrow x \notin A \cup B$		(10)
	$\rightarrow x \notin A \land x \notin B$		(9)
	$x\in\overline{A}\cap\overline{B}\rightarrow x\in\overline{A}\wedge x\in\overline{B}$		(8)
direction:			
	$\rightarrow x \in \overline{A} \cap \overline{B}$		(7)
	$\rightarrow x \in \overline{A} \land x \in \overline{B}$		(6)
	$\rightarrow x \notin A \land x \notin B$		(5)
	$x\in\overline{A\cup B}\to x\notin A\cup B$		(4)

Theorem

The sum of the degree of all the nodes in every graph G is an even number.

Proof.

Let G = (V, E) and d(v) be the degree of node $v \in V$. Every $(v, u) \in E$ contributes 1 to d(v) and 1 to d(u). Thus, the sum, $\sum_{(u,v)\in E} (1+1) = 2|E|$, is an even number.

Types of proof:

- Direct proof,
- Indirect proof,
- Proof by construction,
- Proof by contradiction,
- Proof by induction.
- A proof may contain different subproofs.

Direct Proof:

- A fundamental rule of inference,
- Called **modus ponens** (proposing mode¹ or method of affirming²) by logicians,
- If p and $p \to q$ are theorems, then q is also a theorem:

$$\frac{p \to q}{\frac{p}{\therefore q}}$$

TFLA

¹merriam-webster.com

²britannica.com

Mahdi Dolati (Sharif Univ. Tech.)

Indirect Proof:

- Called **modus tollens** (removing mode³ or method of denying⁴) by logicians,
- $\bullet~{\rm If}~\neg q~{\rm and}~p\to q$ are theorems, then $\neg p$ is also a theorem:

$$\frac{p \to q}{\neg q}$$
$$\frac{\neg q}{\therefore \neg p}$$

TFLA

³merriam-webster.com

⁴britannica.com

Mahdi Dolati (Sharif Univ. Tech.)

Proof by construction:

• Want the existence of a particular type of object:

$$\exists x \ P(x), \tag{12}$$

- Demonstrate how to construct the object,
 - Find a and then prove that P(a) is true.

Theorem

There exists a 3-regular graph with n nodes for every even number n > 2.

Proof.

Construct G = (V, E). $V = \{0, 1, \dots, n-1\}.$ $E = \{\{i, i+1\} | 0 \le i \le n-2\}$ $\cup \{\{n-1, 0\}\}$ $\cup \{\{i, i+n/2\} | 0 \le i \le n/2 - 1\}$ (13)
(14)
(14)
(15)

Edges described by Eqs. (13) and (14) create a circle. Edges described by Eq. (15) connect nodes on opposite sides of the circle. Thus, each nodes has degree 3.

イロト 不得下 イヨト イヨト 二日

Proof by contradiction:

- Assume that the statement is false,
- Show that this assumption leads to a false consequence, called a contradiction.

$$\frac{p}{\neg q \to \neg p}$$
$$\therefore q$$

Example (Proof by Contradiction)

Statement: It does not rain outside.

Proof: Jack sees Jill coming from outdoors, completely dry. If it were raining (the false assumption), Jill would be we (false consequence). Thus, it must not be raining.

Theorem

 $\sqrt{2}$ is irrational.

Proof.

Assume $\sqrt{2}$ is rational. Thus, $\sqrt{2} = m/n$ for some $m, n \in \mathbb{Z}$. Assume m and n are co-prime. Thus, m or n is an odd number.

$$n\sqrt{2} = m,\tag{16}$$

$$2n^2 = m^2 \to m \text{ is even } \to m = 2k.$$
 (17)

Substituting 2k for m, we get

$$2n^2 = (2k)^2 = 4k^2.$$
(18)

▲ 西部

February 15, 2025

29/36

n is even too. Contradiction!

Mahdi Dolati (Sharif Univ. Tech.)

Proof by induction:

- Show a property of all elements of an infinite set.
- Two steps:
 - Basis
 - Induction Step

Example

Set: $\mathcal{N} = \{1, 2, ...\}$ and property: $\mathcal{P}(k)$. Basis: $\mathcal{P}(1)$. Induction step: $\mathcal{P}(k) \rightarrow \mathcal{P}(k+1)$.

- Basis: No need to start from one,
- $\mathcal{P}(k)$ is called the induction hypothesis.

• Strong:
$$\bigwedge_{i \in \{1,...,k\}} \mathcal{P}(i)$$

(本間) (本語) (本語) (二語

Example: The correctness of home mortgage formula.

Definition

P: principal (the amount of the original loan) P_t : outstanding loan after the *t*-th month ($P_0 = P$) I: yearly interest rate M = 1 + I/12: monthly interest rate Y: monthly payment

Definition

- 0 Loan increases because of M
- **2** Loan decreases because of Y

$$P_t = MP_{t-1} - Y$$

(19)

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem

$$P_t = PM^t - Y\left(\frac{M^t - 1}{M - 1}\right), \qquad t \ge 0$$

Proof.

Basis:
$$P_0 = PM^0 - Y\left(\frac{M^0-1}{M-1}\right) = P.$$

Induction step:

$$P_{k+1} = P_k M - Y \tag{20}$$

$$= \left[PM^{k} - Y\left(\frac{M^{k} - 1}{M - 1}\right) \right] M - Y$$
(21)

$$= PM^{k+1} - Y\left(\frac{M^{k+1} - M}{M - 1}\right) - Y\left(\frac{M - 1}{M - 1}\right)$$
(22)

$$= PM^{k+1} - Y\left(\frac{M^{k+1} - 1}{M - 1}\right)$$
(23)

Mahdi Dolati (Sharif Univ. Tech.)

< E > < E >

Binary tree:

Theorem

A binary tree of height n has at most 2^n leaves.

Proof.

Notation: l(n): Maximum #leaves in a BT of height n. Basis: $l(0) = 1 \le 2^0$ Induction hypothesis: $l(k) \le 2^k$. Induction step: Can create at most two leaves in place of each previous one.

$$l(k+1) = 2l(k) \le 2 \times 2^k = 2^{k+1}$$
(24)

Theorem

Number of regions generated by n mutually intersecting straight lines is:

$$A(n) = \frac{n(n+1)}{2} + 1.$$
 (25)

Proof.

Basis: A(1) = 2, A(2) = 4. Induction hypothesis: $A(k) = \frac{k(k+1)}{2} + 1$. Observation: A(k+1) = A(k) + k + 1. Induction step:

$$A(k+1) = \frac{k(k+1)}{2} + 1 + k + 1,$$
(26)

$$=\frac{k(k+1)+2(k+1)}{2}+1,$$
 (27)

$$=\frac{(k+1)(k+2)}{2}+1.$$
 (28)

36/36

イロト イポト イヨト イヨト 二日