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Background: Strings and Languages

Important concepts:
Alphabet,
String,
Language.
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Background: Strings and Languages

Alphabet: Any nonempty finite set
Σ and Γ

Symbols: Members of the alphabet

Example

Σ1 = {0, 1} (1)
Σ2 = {a, b, c, d, . . . , x, y, z} (2)
Γ = {0, 1, x, y, z} (3)

Mahdi Dolati (Sharif Univ. Tech.) TFLA February 15, 2025 4 / 36



Background: Strings and Languages

String over an alphabet: A finite sequence of symbols from the
alphabet

No spaces or commas.

Example
01001 is an string over Σ1 = {0, 1}
abracadabra is an string over Σ2 = {a, b, c, d, ..., x, y, z}

Length: Number of symbols in the string,
w = w1w2 . . . wn: the string has length n,
Denoted by |w|=n.

Empty string: ε, string of length zero
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Background: Strings and Languages

Reverse:
w = w1w2 . . . wn

wR = wnwn−1 . . . w1

Example

abbR = bba

aR = a

εR = ε
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Background: Strings and Languages

Substring: one string appears consecutively within another.

Example
cad is a substring of abracadabra
0100 is a substring of 001000
0000 is not a substring of 001000
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Background: Strings and Languages

Concatenation: Append one string to the end of another
concat(x1 . . . xm, y1 . . . yn) = x1 . . . xmy1 . . . yn
|xy| = |x|+ |y|
εx = xε = x
xk = xx . . . x︸ ︷︷ ︸

k

|xk| = k · |x|
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Background: Strings and Languages

Prefix: xz = y, x is a prefix of y
ε is the only prefix of ε
Each string of length n has n+ 1 prefixes
Proper prefix: x is a prefix of y and x ̸= y

Example
Prefixes of aaba:

1 ε

2 a
3 aa
4 aab
5 aaba
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Background: Strings and Languages

Lexicographic order: Dictionary order
String order (Shortlex order): Same as the lexicographic order, except
that shorter strings precede longer strings:

(ε, 0, 1, 00, 01, 10, 11, 000, . . . )
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Background: Strings and Languages

Language: A set of strings
Prefix-free language: no member is a proper prefix of another

Example
Finite

L1 = ∅
L2 = {ε}
L3 = { a, aa, aba }

Infinite
L4 = Σ∗

L5 = Σ+

L6 = {anbn|n ≥ 0} = {ε, ab, aabb, . . . }
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Background: Strings and Languages

Operations on languages:
Union: Languages are sets,
Intersection: Languages are sets,
Complement: L = Σ∗\L,
Reversal: LR = {wR|w ∈ L}
Concatenation: L1 ◦ L2 = {xy|x ∈ L1 ∧ y ∈ L2}
Kleene star: L∗ = {x1x2 . . . xk|k ≥ 0 ∧ xi ∈ L}
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Background: Strings and Languages

Can be empty Can be infinite
Alphabet ✗ ✗

String ✓ ✗

Language ✓ ✓
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Theory of Formal Languages and Automata

Background:Background:
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Background: Definition, Theorem, and Proof

Definition (Definition)
Describe employed objects and notations.

Simple: Set,
Complex: Security.

Must be precise.

Definition (Mathematical Statement)
Expression of a property of an object, that may or may not be true. No
ambiguity!
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Background: Definition, Theorem, and Proof

Definition (Proof)
A convincing logical argument about the truth of a statement.

Proof beyond reasonable doubt,
Proof beyond any doubt.

Definition (Theorem)
A mathematical statement proved true.

Lemmas,
Corollaries.
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Background: Definition, Theorem, and Proof

How to prove?
Understand the notation,
Rewrite the statement,
Break the statement down and address each part separately.

P iff Q: P only if Q (forw. dir.) and P if Q (rev. dir.)
P ↔ Q: P → Q ∧ P ← Q

Sets A and B are equal: a ∈ A→ a ∈ B ∧ b ∈ A← b ∈ B

Try to find a counterexample,
Try simpler special cases of the statement,
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Background: Definition, Theorem, and Proof

Example
Statement: The sum of the degrees of all the nodes in undirected graphs is
an even number.
Examples:

(a) sum=0 (b) sum=2 (c) sum=4 (d) sum=6

Observation: Every time an edge is added the sum increases by two.
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Background: Definition, Theorem, and Proof

How to write a proof?
A well-written proof is a sequence of statements, following each other,
Be careful,
Be neat: Use simple and clear pictures/text,
Be concise: Present a high-level sketch first.

Keep it neat, keep it concise.
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Background: Definition, Theorem, and Proof

Theorem
A ∪B = A ∩B.

Proof.
Forward direction:

x ∈ A ∪ B → x /∈ A ∪ B (4)

→ x /∈ A ∧ x /∈ B (5)

→ x ∈ A ∧ x ∈ B (6)

→ x ∈ A ∩ B (7)

Reverse direction:

x ∈ A ∩ B → x ∈ A ∧ x ∈ B (8)

→ x /∈ A ∧ x /∈ B (9)

→ x /∈ A ∪ B (10)

→ x ∈ A ∪ B (11)
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Background: Definition, Theorem, and Proof

Theorem
The sum of the degree of all the nodes in every graph G is an even number.

Proof.
Let G = (V,E) and d(v) be the degree of node v ∈ V . Every (v, u) ∈ E
contributes 1 to d(v) and 1 to d(u). Thus, the sum,

∑
(u,v)∈E

(1 + 1) = 2|E|,

is an even number.
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Background: Definition, Theorem, and Proof

Types of proof:
Direct proof,
Indirect proof,
Proof by construction,
Proof by contradiction,
Proof by induction.

A proof may contain different subproofs.
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Background: Definition, Theorem, and Proof

Direct Proof:
A fundamental rule of inference,
Called modus ponens (proposing mode1 or method of affirming2) by
logicians,
If p and p→ q are theorems, then q is also a theorem:

p→ q
p

∴ q

1merriam-webster.com
2britannica.com
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Background: Definition, Theorem, and Proof

Indirect Proof:
Called modus tollens (removing mode3 or method of denying4) by
logicians,
If ¬q and p→ q are theorems, then ¬p is also a theorem:

p→ q
¬q
∴ ¬p

3merriam-webster.com
4britannica.com
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Background: Definition, Theorem, and Proof

Proof by construction:
Want the existence of a particular type of object:

∃x P (x), (12)

Demonstrate how to construct the object,
Find a and then prove that P (a) is true.

Mahdi Dolati (Sharif Univ. Tech.) TFLA February 15, 2025 25 / 36



Background: Definition, Theorem, and Proof

Theorem
There exists a 3-regular graph with n nodes for every even number n > 2.

Proof.
Construct G = (V,E).
V = {0, 1, . . . , n− 1}.

E ={{i, i+ 1}|0 ≤ i ≤ n− 2} (13)
∪ {{n− 1, 0}} (14)
∪ {{i, i+ n/2}|0 ≤ i ≤ n/2− 1} (15)

Edges described by Eqs. (13) and (14) create a circle. Edges described by
Eq. (15) connect nodes on opposite sides of the circle. Thus, each nodes
has degree 3. . . .
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Background: Definition, Theorem, and Proof

Proof by contradiction:
Assume that the statement is false,
Show that this assumption leads to a false consequence, called a
contradiction.

p
¬q → ¬p

∴ q
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Background: Definition, Theorem, and Proof

Example (Proof by Contradiction)
Statement: It does not rain outside.
Proof: Jack sees Jill coming from outdoors, completely dry. If it were
raining (the false assumption), Jill would be we (false consequence). Thus,
it must not be raining.
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Background: Definition, Theorem, and Proof

Theorem
√
2 is irrational.

Proof.
Assume

√
2 is rational. Thus,

√
2 = m/n for some m,n ∈ Z. Assume m

and n are co-prime. Thus, m or n is an odd number.

n
√
2 = m, (16)

2n2 = m2 → m is even → m = 2k. (17)

Substituting 2k for m, we get

2n2 = (2k)2 = 4k2. (18)

n is even too. Contradiction!
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Background: Definition, Theorem, and Proof

Proof by induction:
Show a property of all elements of an infinite set.
Two steps:

Basis
Induction Step

Example
Set: N = {1, 2, . . . } and property: P(k).
Basis: P(1).
Induction step: P(k)→ P(k + 1).

Basis: No need to start from one,
P(k) is called the induction hypothesis.

Strong:
∧

i∈{1,...,k}
P(i)
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Background: Definition, Theorem, and Proof

Example: The correctness of home mortgage formula.

Definition
P : principal (the amount of the original loan)
Pt: outstanding loan after the t-th month (P0 = P )
I: yearly interest rate
M = 1 + I/12: monthly interest rate
Y : monthly payment

Definition
1 Loan increases because of M
2 Loan decreases because of Y

Pt = MPt−1 − Y (19)
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Background: Definition, Theorem, and Proof

Theorem

Pt = PM t − Y
(
Mt−1
M−1

)
, t ≥ 0

Proof.

Basis: P0 = PM0 − Y
(
M0−1
M−1

)
= P.

Induction step:

Pk+1 = PkM − Y (20)

=

[
PM

k − Y

(
Mk − 1

M − 1

)]
M − Y (21)

= PM
k+1 − Y

(
Mk+1 − M

M − 1

)
− Y

(
M − 1

M − 1

)
(22)

= PM
k+1 − Y

(
Mk+1 − 1

M − 1

)
(23)

Mahdi Dolati (Sharif Univ. Tech.) TFLA February 15, 2025 32 / 36



Background: Definition, Theorem, and Proof

Binary tree:

root

leaf

level 0

level 3

Height = 3
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Background: Definition, Theorem, and Proof

Theorem
A binary tree of height n has at most 2n leaves.

Proof.
Notation: l(n): Maximum #leaves in a BT of height n.
Basis: l(0) = 1 ≤ 20

Induction hypothesis: l(k) ≤ 2k.
Induction step: Can create at most two leaves in place of each previous one.

l(k + 1) = 2l(k) ≤ 2× 2k = 2k+1 (24)
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Background: Definition, Theorem, and Proof

Theorem
Number of regions generated by n mutually intersecting straight lines is:

A(n) =
n(n+ 1)

2
+ 1. (25)

l1
l2 l3

ln

ln+1
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Background: Definition, Theorem, and Proof

Proof.
Basis: A(1) = 2, A(2) = 4.
Induction hypothesis: A(k) = k(k+1)

2 + 1.
Observation: A(k + 1) = A(k) + k + 1.
Induction step:

A(k + 1) =
k(k + 1)

2
+ 1 + k + 1, (26)

=
k(k + 1) + 2(k + 1)

2
+ 1, (27)

=
(k + 1)(k + 2)

2
+ 1. (28)
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