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Image Restoration Using Gaussian Mixture Models
With Spatially Constrained Patch Clustering

Milad Niknejad, Hossein Rabbani*, Senior Member, IEEE, and Massoud Babaie-Zadeh, Senior Member, IEEE

Abstract—In this paper we address the problem of recovering
degraded images using multivariate Gaussian Mixture Model
(GMM) as a prior. The GMM framework in our method for
image restoration is based on the assumption that the accumu-
lation of similar patches in a neighborhood are derived from
a multivariate Gaussian probability distribution with a specific
covariance and mean. Previous methods of image restoration with
GMM have not considered spatial (geometric) distance between
patches in clustering. Our conducted experiments show that in
the case of constraining Gaussian estimates into a finite-sized
windows, the patch clusters are more likely to be derived from the
estimated multivariate Gaussian distributions, i.e., the proposed
statistical patch-based model provides a better goodness-of-fit to
statistical properties of natural images. A novel approach for
computing aggregation weights for image reconstruction from
recovered patches is introduced which is based on similarity
degree of each patch to the estimated Gaussian clusters. The
results admit that in the case of image denoising, our method
is highly comparable to the state-of-the-art methods, and our
image interpolation method outperforms previous state-of-the-
art methods.

Index Terms—image restoration, Gaussian mixture models,
neighborhood clustering, linear image restoration.

I. INTRODUCTION

RESTORING degraded images has been widely targeted
by variety of methods in the field of signal processing

[1], [2], [3], [4], [5], [6], [7]. In many image restoration
tasks the degraded image y (in vectorized form) can be
mathematically modeled by

y = Hx + v (1)

where x is the clean image, H is a noninvertible linear
operator and v is the vector of independent Gaussian noise
with known variance σ2. H is modeled differently in different
image restoration tasks. For example, H is a subsampling
matrix for image interpolation, a bluring matrix for image
debluring and the identity matrix for image denoising. The
image restoration problem deals with restoring the clean image
x from the observed image y.

Among many methods proposed for the image restoration,
recent patch-based image restoration methods has offered
effective ways for restoring degraded images [1], [2], [3]. In
those methods, the image is divided into local
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overlapping patches in which each patch, denoted by yi ∈ Rn
in vectorized form, can be modeled by yi = Hixi+vi where
Hi and vi are degrading matrix and noise vector, respectively,
corresponding to the underlying clean patch xi. The clean
patches are estimated separately [2], or in collaboration with
other similar patches in non-local methods [3]. By returning
the estimated patches to their original positions in the image
and averaging overlapped patches, the recovered image is
reconstructed.

Non-local approaches have improved patch-based image
restoration tasks through exploiting intrinsic similarities ex-
isting in the image patches. This improvement has led to
development of several recent non-local image restoration
techniques, such as the methods proposed in [3], [8], [9], [10]
and [11]. On the other hand, many successful image restoration
methods are based on sparsity of image representations by suit-
able dictionaries. Consequently, many researches have been
focused on different approaches to solve the inverse problem of
various image restoration tasks based on promoting sparsity in
the representations (e.g. [2], [3], [12] for image denoising, [9]
for image interpolation and [13] for image super-resolution).
Majority of these methods are based on the combination of
using non-local restoration capabilities and the assumption
of sparsity in a tailored transform domain which leads to
applying nonlinear filters to similar grouped patches in the
image. However, the strict conditions for obtaining the exact
sparse representations in the sparsity promoting methods [14],
[15], [16], can be a drawback of these nonlinear methods for
the image restoration. This disadvantage is more noticeable
when the degrading operator H is not the identity matrix.
The reason is the deformation of the dictionary structure and
increasing the mutual coherence of dictionary which makes
meeting these conditions harder [17], [18].

Different Gaussian Mixture Models (GMM) have been
employed in various signal processing tasks such as audio
processing [19], video applications [20], image denoising
[21], and image segmentation [22]. Recently, GMM has been
used to overcome the mentioned recovery problem occurred
in sparse and nonlinear estimations in the image restoration
tasks, since GMM leads to a combination of linear esti-
mations. In [17], the authors proposed a method for image
restoration called Piecewise Linear Estimation (PLE) using a
multivariate GMM applied to image patches. Expected Patch
Log Likelihood (EPLL) is another method proposed in [23]
which is very similar to PLE with some differences in the
aggregation weights and the initialization. In [24] and [25],
generalizations of the PLE method, called SURE guided PLE
(S-PLE) for image denoising and Enhanced PLE (E-PLE)
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for image interpolation, which use a mixture of Gaussian
distributions to model each patch in the image, were proposed.
In some parts of this paper, we call the four mentioned
methods global GMM, since the clustering of the patches
in these methods is not spatially constrained. In many non-
local methods similar patches are categorized using k-Nearest-
Neighbor (kNN) in which similarity is measured based on
the distance defined by `2-norm of intensity level of pixels
in patches. However, in the global GMM image restoration
techniques, similarity of patches is measured by the Gaussian
probability density function value of the patch given the
Gaussian parameters estimated in the whole image. However,
global GMM methods fail to fully exploit the coherency of
nearby patches which can be imposed by constraining the
clusters of similar patches in finite-sized windows. In some
successful image denoising methods like non-local-means [1]
and bilateral filtering [26], geometrical distance is considered
by averaging pixels with the weights inversely proportional to
distance between pixels or patches, to exploit coherency of
nearby pixels or patches. On the other hand, in the context
of using GMM, we experimentally show that it is more likely
that clustered patches are derived from a multivariate Gaussian
distribution by constraining the estimation of distributions in
a finite-sized window in the image.

In this paper, we use the idea of applying GMM to nearby
patches in order to restore grayscale images which leads to a
LInear estimator with Neighborhood patch Clustering (LINC)
1. Previously, GMM with geometric distance constraints has
improved image segmentation results [27], [28]. In order to
apply this constraint on images for image restoration task, we
propose a model that uses a same multivariate Gaussian proba-
bility distribution for similar image patches in a neighborhood.
In other words, we assume that kNN patches with respect to
an exemplar patch are derived from a multivariate Gaussian
probability distribution with a specific covariance and mean.
An iterative clustering-restoration approach is used to obtain
accurate clustering of patches and estimating underlying co-
variances and means in the mixture distributions. Although
our method cluster kNN patches by a distance based on `2-
norm metric, we use similarity to Gaussian distributions in the
reconstruction of the image from patches through the assigning
averaging weights proportional to this similarity. To be more
precise, patches that are more likely to be generated from
the estimated Gaussian distribution of their cluster, benefit
from higher weights in the averaging of overlapped patches.
Similar to recently proposed methods in [9] and [29] for image
interpolation, we use a continuation approach which reduces
the regularization parameter along iterations of minimizing
the cost function to avoid local minima. This approach has
also been used in [30] and [31] under the name Deterministic
Annealing (DA). We show that our LINC algorithm can
highly compete with recent state-of-the-art image denoising
algorithms, and our method outperforms pervious state-of-
the-art methods in the case of image interpolation in both
randomly and uniformly sampled images. We also show that

1Although the method of clustering of patches in our proposed method is
not linear, our method uses a linear estimator given the clustered patches.

our method is successful in recovering underlying textures in
zooming which is an issue that many recent image zooming
methods are suffered from. We have already briefly described
the basis of our proposed image interpolation method, and
reported some limited experimental results in [32]. However,
in this paper we include solving both image denoising and im-
age interpolation problems with our method along with more
detailed descriptions, complementary formulas and extended
experimental results.

In the following sections, at first the structure of global
GMM methods as a motivation of our work is presented. In
Section 3, the way our method uses the GMM by considering
non-local neighborhood clustering is explained. Our method
is also discussed in details for both image denoisning and
inpainting tasks in two different subsections of Section 3.
Finally, in the results section, the result of our work is
compared with state-of-the-art image denoising and inpainting
algorithms.

II. IMAGE RESTORATION USING GLOBAL GMM

In this section, the general procedure of the previous global
image restoration methods using GMM is explained, and a
potential for improving it which leads to our proposed method
is discussed.

A. The structure of the global GMM methods

As mentioned, PLE and EPLL methods, which we call
global GMM methods in this paper, are very similar with
minor differences in the initialization and computing the
aggregation weights. Generally, these methods assume that
every patch in the image is independently derived from one
of the M finite multivariate Gaussian probability distributions
{N (µm,Σm)}1<m<M which is parameterized by the mean
vector µm and the covariance matrix Σm. So each patch xi
is independently drawn from one of these finite number of
Gaussians with the probability of

P (xi) =
1

(2π)
n
2 |Σm|

1
2

e−
1
2 (xi−µm)TΣ−1

m (xi−µm) (2)

Maximizing the above probability distribution for all patches
with the assumption of finite Gaussian distributions in the
whole image are obtained by the following steps in the global
GMM methods that are iteratively implemented after some
initial Gaussian distributions:
• The Gaussian probability that most likely generates each

patch is determined from {N (µm,Σm)}1<m<M . This
can be seen as clustering of patches and the similar-
ity is measured by (2), given the previously estimated
(µm,Σm)1<m<M . This introduces a model-based frame-
work for clustering of patches which assigns the restored
patch xi to one of the M estimated Gaussian distributions.

• The estimation of the covariance matrix and the mean
vector, (µm,Σm), for each 1 < m < M , are updated
based on the patches and the corresponding clusters. These
estimations are obtained by the sample mean and the
sample covariance of patches in each cluster.
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• The restoration of each patch is obtained by the Wiener
filter based on its allocated Gaussian distribution. The exact
formula of Wiener filter is mentioned in Section (III).

B. Pros And Cons

There is an advantage in using methods based on GMM
compared to popular transform-based sparse coding ap-
proaches such as [3] and [9], in the cases that linear degrading
operator Hi is not the identity matrix. Sparsity-based image
restoration techniques require a tailored dictionary D for
representing the image patches with sparse coefficient vector
αi. Generally, these methods lead to an optimization problem
of the form

α̂i = argmin
α
‖yi −HiDαi‖22 + λ‖αi‖0 (3)

where ‖.‖0 indicates the `0 pseudo-norm which counts the
number of non-zero and is used to promote sparsity in α̂i, and
λ is a regularization parameter that determines the tradeoff
between sparsity of the representation and the fidelity to
the observation. Then the recovered patch is obtained by
ŷi = Dα̂i. Minimizing the cost function with regularized
sparsity-promoting norms like (3) does not always guarantee
convergence to the global minimum since there are some
relatively strict conditions that guarantee the minimization of
these cost functions [15], [16]. One of the conditions can be
presented based on the mutual coherence of the dictionary
which is defined by the maximum of absolute inner product
of the dictionary atoms. The lower the mutual coherence of the
dictionary is, it is more likely to obtain the global minimum
of the cost function [33]. In the image restoration tasks in
which Hi is not the identity matrix, HiD plays the role of
the dictionary in the cost function (3). Multiplying Hi to the
dictionary D deforms the dictionary structure and leads to a
dictionary with a high mutual coherence. Some experimental
mutual coherence values for different dictionaries with the sub-
sampling matrix H are compared in [18]. In order to overcome
this problem, the authors in [18] used an autoregressive model,
and in PLE, a GMM leading to linear estimators is employed.
So, these explanations can justify why linear PLE method is
state-of-the-art for image interpolation and debluring, but in
the case of image denoising, which such degrading operator
does not exist, sparsity-based methods are more robust.

Global GMM methods, such as PLE and EPLL, assign
several patches from different parts of the image to one cluster.
In this paper, we show that better results can be obtained by
spatially constraining patches belonging to a cluster while us-
ing GMM. Fig. 1 illustrates clusters in the Lena image in PLE
method. In this figure, the same color of pixels indicates that
the patches of which the pixels in the center, are in the same
cluster. It can be seen that patches from very different parts of
the image are clustered into one group. This global clustering
prevents from fully exploiting the coherency of nearby patches
in the image. Some successful image denoising algorithms,
such as non-local means [1] and bilateral filtering [26], which
rely on averaging pixels, consider the coherency of nearby
patches through setting averaging weights inversely propor-
tional to geometrical distance between pixels or patches. Also,

Fig. 1. Illustration of clustering of patches in the PLE method for the Lena
image. LEFT: Original image; RIGHT: Clustered image; The pixels in the
same color indicate that 8×8 patches around them are in the same cluster. It
can be seen that patches from different parts of image are grouped into one
cluster [17].

some recent image denoising methods such as BM3D [3] and
NCSR [8], constrain grouping of similar patches in a window
of finite-size and then collaboratively denoise them. Specifi-
cally for the GMM, to show the effectiveness of constraining
GMM in a finite-sized window (a neighborhood of patches) in
the image, we conducted an experiment with both graphical
and numerical evaluations. We aggregated fully overlapped
patches restricted in different window sizes in a specific clean
image. For the obtained patches, we evaluate whether they
are extracted from specific number of normal distributions.
These distributions are estimated by the global GMM method
described in the preceding subsection excluding the restoration
step (the third step), which leads to a simple clustering method
based on GMM. Since PLE constrained the restoration process
in 128× 128 window sizes [17], we limit our experiments to
this window size as an upper bound, considering it as the
global window size. We also increased the number of clusters
R proportional to the size of constraining windows. In these
experiments, we show that by further constraining the window
sizes, the percentage of multivariate normality acceptance for
clusters of patches increases. To assess how likely datasets
(here groups of patches) are derived from multivariate nor-
mal distributions, two well-known normality tests were used.
Tests to assess multivariate normality are often based on a
univariate statistic derived from the multivariate data. One of
them is based on Mahalanobis distance or standard distance.
Mahalanobis distance is a well-known distance metric in the
multivariate Gaussian models which measures the distance
of an observation from a specific Gaussian distribution [34].
In the context of our experiment, for ith vectorized patch
yi as a multivariate sample in mth cluster, this distance is
measured by Di = (yi − µm)TΣm

−1(yi − µm) where µm
and Σm are estimated mean vector and covariance matrix of
the mth cluster, respectively. In [35] and [36], it has been
shown that the statistc ui =

nD2
i

(n−1)2 is well fitted to a beta
distribution with appropriate parameters, if the samples have
a multivariate normal distribution. In our experiment, these
parameters are obtained exactly as suggested in [36]. Fitting
to a particular distribution can be assessed by a graphical plot
known as Quantile v.s. Quantile (Q-Q) plot which plots the
ordered observed variable along the ordered expected quantile
of a particular distribution. Quantile, here, is a value blew
which a specific percentage of data in the particular probability
distribution are located. A Q-Q plot with a linear pattern
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(a)

(b)

Fig. 2. Q-Q plot of three obtained clusters for patches extracted from the
House image. (a) Patches constrained in a sample 128×128 sized window, (b)
Patches constrained in a sample 32× 32 sized window. Constrained patches
lead to more linear patterns which implies they are more likely to follow the
Gaussian distributions.

implies that dataset is very likely to be generated from the
assumed probability distribution. Since in our simulations the
statistic ui is compared to the beta distribution, the Q-Q plot
of observed statistic ui along quantiles of beta distribution is
illustrated in Fig. 2. Figure 2 (a) illustrates three Q-Q plot for
three samples of estimated Gaussian distributions in the house
image with global window size. Figure 2 (b) shows Q-Q plot
while the estimated Gaussian distributions are constrained in
a sample window of size 32 × 32 in the house image. As it
can be seen, estimated Gaussian distribution in a finite-sized
window leads to a more linear Q-Q plot rather than global
window size, which implies that patches in a cluster are more
likely to be derived from a Gaussian distribution.

To have a quantitative measure, our mentioned experiment
is evaluated with the Doornik-Hansen test which has been
shown to perform better for data with small number of
observations [37]. This test is a multivariate generalization of
univariate Shenton- Bowman test [38] in which p multivariate
observations, with the dimensionality of n, are transformed to
n independent univariate standard normals. A statistic based
on a combination of skewness and kurtosis of those standard
normals is compared to a critical value, corresponding to a
significant level, to accept or reject the assumption of multi-
variate normality. The exact formulas for the transformation
matrices and obtaining the statistic are out of scope of this
paper and we refer the reader to the original Doornik-Hormond
test paper [37] for complete descriptions and exact formulas.
Table I reports the percentage of acceptance of the normality
hypothesis for image patches extracted from different images
constrained in different windows sizes, based on the signif-
icance level of 5% deviation from normality of Doornik-

TABLE I
PERCENTAGE OF ACCEPTING MULTIVARIATE NORMALITY IN

DOORNIK-HANSEN TEST FOR OBTAINED GAUSSIAN CLUSTERS OF
PATCHES EXTRACTED FROM DIFFERENT IMAGES CONSTRAINED IN

DIFFERENT WINDOW SIZES. NUMBER OF CLUSTERS R IS PROPORTIONAL
TO WINDOW SIZES.

128× 128
R = 48

64× 64
R = 12

32× 32
R = 3

Lena 4% 8% 19%

Barbara 6% 15% 33%

House 2% 19% 21%

Boats 2% 4% 4%

Hansen test. In our experiment all windows with mentioned
constrained window sizes in the image without overlaps are
considered and each percentage in the table is reported for all
estimated Gaussian distribution in all constrained windows. As
it can be seen in Table I, in general, the percentage of accept-
ing the assumption of multivariate Gaussian distribution for
clustered patches increases as the dimensions of constraining
windows reduce. It is worth mentioning that the significance
level of 5% deviation from normality is the most common
in normality assessment tests and also is a precise measure
to evaluate normality. So, according to Table I, in the case
of estimation of Gaussian distributions in the global window
size (128×128), a few clusters in all tested images are highly
probable (i.e. with significance level of 5% deviation) to fit to
Gaussian distributions. By decreasing the size of constraining
windows, more clusters are accepted by the test to precisely
have multivariate Gaussian distributions.

A question that can be posed here is how to efficiently
develop an image restoration method benefiting the constraint
discussed above to improve the restoration task using GMM.
One may propose to constrain GMM into a square window
in different parts of image, and for each window, use the
global GMM approach described in previous section. At the
first glance, this suggestion seems convincing, but it suffers
from the problem of appearing block artifact. Constraining
denoising of global GMM methods in blocks of 32× 32 size
windows leads to block artifacts in boundaries of windows in
the restored image. Using excessive overlaps of windows in
this case to avoid the problem, increases the computational
complexity of algorithms. Note that these overlaps are for
N × N windows, and in each window the full-overlapped
patches should be considered.

III. OUR PROPOSED METHOD

In this section, our proposed method which uses GMM with
neighborhood patch clustering is explained. Also, in order to
overcome the problem of high memory cost, we describe an
online implementation of our method which requires storing
only one covariance matrix at a time. Then some specific
considerations for image denoising and image interpolation
are discussed separately.
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A. The Structure of Our Method

In order to apply a plausible spatial constraint on the
image and exploit the coherency of neighborhood patches,
our proposed method defines a new GMM framework for
image restoration in which similar patches in a neighborhood
are derived from a single multivariate Gaussian probability
distribution with a specific mean and covariance.

Our method, similar to non-local image restoration tech-
niques in [3], [12] and [9], collects exemplar patches chosen
uniformly with appropriate step size in the row and the
column of the whole image and groups similar patches in
the neighborhood of each exemplar patch. The neighborhood
for an exemplar patch is defined as N × N sized window
around that patch. The rth region related to the rth exemplar
patch is defined as k-Nearest Neighbor (kNN) [39] patches
with respect to that patch. An important issue here is finding
NN patches with respect to the exemplar patches in the image
while the observed patches are severely degraded. To cope
with this issue, some image restoration algorithms such as
BM3D [3], apply a pre-restoration step to achieve accurate
patch clustering. In our method, in order to determine kNN
patches while having degraded observations, we use an itera-
tive clustering-restoration algorithm. The approach is exactly
similar to the one used in [9], called Expectation-Maximization
like (EM-like) approach in which kNN patches are treated
as missing variables [40]. So, in the clustering step, kNN
patches are determined, and in the restoration step the image
is restored by assumption of multivariate Gaussian distribution
for the image patches. Let {xr}r=1,...R denotes the collection
of exemplar patches and let {µr}r=1,...R and {Σr}r=1,...R

denote the corresponding mean vectors and covariance matri-
ces, respectively. After initialization of X̂ = Ŷ, our method
iteratively implements the following steps:

1) Clustering step: By assigning kNN patches to the
exemplar patch xr as hidden variables, k patches in the
neighborhood of the exemplar patch which have the minimal
dissimilarity d from the exemplar patch are collected. In our
method, like BM3D, the dissimilarity is simply measured by
the l2-norm metric, i.e.,

d = ‖x̂i − x̂r‖22 (4)

for all x̂i’s in the neighborhood of x̂r. The dissimilarity
measure by l2-norm metric has generaly less computational
load compared to model-based clustering used in global GMM
methods. Note that x̂i’s and x̂r are estimated patches obtained
from the previous restoration step (or the initialization in first
step).

2) Restoration step: Based on the framework of our
method, this step is mainly comprised of the process of
restoring the image using the clusters obtained from the
previous clustering step. To achieve this, the parameters of
Gaussian distributions for each group of patches should be
estimated first. In order to obtain covariance matrix and mean
vector of each region, the Maximum Likelihood (ML) estimate
of the form

(µ̂r, Σ̂r) = argmax
µr,Σr

log p(x ∈ Sr|µr,Σr) (5)

is employed [17] where Sr denotes the set of k patches in
the rth region. Hence, the estimated Gaussian parameters
(µ̂r, Σ̂r) in the rth region are obtained by the sample co-
variance matrix and the sample mean vector, i.e.,

µ̂r =
1

k

∑
i∈Sr

x̂i, (6)

Σ̂r =
1

k

∑
i∈Sr

(x̂i − µ̂r)(x̂i − µ̂r)
T . (7)

It should be noted that in our implementation, the number
of patches in each region is less than dimensionality of patch
vectors. It is well-known that the sample covariance matrix is
not invertible in this case. In our method, similar to the PLE
method [17], we used an eigenvalue regularization which is
computed by Σ̂r = Σ̂r + δI where δ is a small constant
and I is the identity matrix. Having estimated parameters of
Gaussian distributions, in order to obtain the restored patch
x̂i in the rth region from the corresponding noisy observed
patch yi, a posteriori function of the form log p(x|yi, Σ̂r, µ̂r)
is maximized, i.e.,

x̂i = argmax
x

log p(x|yi, µ̂r, Σ̂r)

= argmax
x

log[p(yi|x, µ̂r, Σ̂r)p(x|Σ̂r, µ̂r)]

= argmin
x
‖yi −Hix‖22 + σ2(x− µ̂r)

T Σ̂−1r (x− µ̂r)

(8)

where the second equality is obtained by the Bayes rule
and the third equality is derived from the assumptions of
xi ∼ N (µ̂r, Σ̂r) and additive white Gaussian noise v ∼
N (0, σ2I). The convex optimization problem in (8) is solved
by setting its derivative to zero which leads to the linear
Wiener filter of the form

x̂i = (HT
i Hi + σ2Σ̂−1r )

−1
(HT

i yi + σ2Σ̂−1r µ̂r). (9)

The estimated patches should be returned to their original
positions to construct the whole restored image. In order to
improve the restoration performance, some methods such as
BM3D use weighted average of overlapped estimated patches
to construct the restored image [3]. To this end, in our method
we use Gaussian kernel which has been used for obtaining
weights to average pixels for image restoration in the methods
such as bilateral filtering [26] and non-local means [1]. The
non-normalized form of these weights, measuring similarities
between p and q pixels, can be formulated as

w(p,q) = e−
γ
2 d

2
(p,q) (10)

where γ is an appropriate constant which is set to achieve
proper scale of weights for averaging, and d is the distance
between the pixels p and q. In the non-local means, the weights
are indeed computed based on the distance between patches
whose central pixels are p and q [1]. The normalization is done
for each pixel by dividing the weight to sum of the weights
assigned to that pixel. Inspiring from the Gaussian kernel for
the averaging weights, we propose the aggregation weights
for patches based on the kernel in (10) in which d is the
Mahalanobis distance defined in Section II-B. This distance
has been used in GMM-based clustering methods in [41] and
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[42], as a criterion for measuring similarities to Gaussian
distributions for clustering. So, in our method the weight for
the patch xi derived from the rth Gaussian distribution is
obtained by

w(i,r) = e−
γ
2 (x̂i−µ̂r)

T Σ̂−1
r (x̂i−µ̂r) (11)

which will be normalized based on (12). Note that these
weights are assigned for the whole pixels of the patch rather
than the central pixels, like BM3D. In comparison to other
Gaussian kernel based methods such as non-local means,
the weights are measured based on patch-to-model similarity
rather than patch-to-patch similarity. By using Mahalanobis
distance, patches that are more similar to the estimated
Gaussian distributions are averaged with higher weights. This
approach can also be seen as using a learned metric distance
[43] rather than `2-norm metric.

By aggregation of patches at the lth iteration, our algorithm
obtains the estimation of the restored image. We define the
vector x̂iz with the size of the whole estimated image x (in
the vectorized form), which has the values of the restored
patch in the corresponding location of patch in the image and
zero-padded outside. Similarly, let w(i,r)z

be the weight vector
which has the weight obtained in (11) in the corresponding
locations of the patch xi in the image vectorized form, and
zero elsewhere. By these definitions, the whole image in the
vectorized form is constructed by

x̂ = (
∑
r

∑
i

wT
(i,r)z

x̂iz )./(
∑
r

∑
i

w(i,r)z
) (12)

where ./ indicates the element-wise division between two vec-
tors. By this, the weights are normalized, while constructing
the whole image. By transforming the vectorized form x̂ to
the two dimentional form, the restored image X̂l is obtained
at the lth iteration. Its patches, denoted by x̂i’s, are used at
the next clustering step.

Although our method of clustering with `2-norm distance
(defined in (4)) does not seem to lead to clustered patches
fitted to Gaussian distributions with high probability, by using
the aggregation weights based on similarity to Gaussian distri-
butions, we bring the Gaussian similarity to the spatial domain
on the image. So, as iterations proceed, the patches with more
similarity to Gaussian distributions are grouped together by
the `2-norm clustering. This indicates the importance of using
such weights for averaging in our method.

B. Implementation of our algorithm

The straightforward implementation of our algorithm, de-
scribed in this section, needs high memory usage for storing
numerous covariance matrices. However, our method similar to
BM3D benefits from the capability of online implementation
by allocating two buffers for the weighted restored patches
and the aggregation weights. The patches that are similar to an
exemplar patch in a finite-sized window are grouped together,
the mean and the covariance are estimated directly from
the grouped patches, and after the restoration, the restored
patches multiplied by weights and the obtained weights are
accumulated in the two buffers. This procedure repeats for all

exemplar patches respectively at each iteration. The restored
image is obtained by element-wise division of the two buffers.
Thus, our method only needs to store one covariance matrix
at a time.

Using kNN clustering leads to two simplifications compared
to the previous GMM based image restoration methods. One
of them is removing the need for careful initialization of the
covariance matrices, used in the PLE and S-PLE methods,
which are obtained with relatively high computations and with
the help of some empirical considerations [17], [24]. Another
advantage derived from the online implementation and kNN
clustering, is that our method reduces the memory usage by
obviating the need for storing multiple covariance matrices
with the dimensionality of n2×n2, required in other methods
for the clustering of the subsequent iteration.

Whereas several image degradation tasks can be modeled
by (1), in this paper we focus on denoising and interpolation
cases. In the following, the detailed implementations of these
two applications are discussed.

C. Image Denoising

In the case of image denoising, H in (1) and Hi in (9) are
both the identity matrices. Consequently, the Wiener filter in
(9) turns into the simpler form of

x̂i = (I + σ2Σ̂−1r )−1(yi + σ2Σ̂−1µ̂r). (13)

Figure 3 summarizes our proposed image denoising algorithm.

• Initialization: X̂0 = Y
• Main loop: for l = 1, . . . , L

– For each exemplar patch:
∗ cluster kNN patches corresponding to the ex-

emplar patch in a finite sized window with the
distance metric in (4)

∗ determine Gaussian parameters by (6) and (7)
∗ denoise the patches in the cluster by the Wiener

filter in (13)
– Obtain reconstructed image X̂l by weighted average

of denoised patches based on (12)
• Final restored image is X̂L.

Fig. 3. The proposed LINC algorithm for image denoising.

D. Image Interpolation

Image interpolation task addresses recovering the image
in which only a subset of its pixels is observed. So, in (8)
Hi is a diagonal matrix with one or zero diagonal entries
corresponding to the existing or missing pixels, respectively,
in the vectorized form of the patch.

In the case of image interpolation, some other important as-
pects should be considered. In the image denoising the value of
σ2 in MAP estimation (8) is known and is the Gaussian noise
variance. In the noiseless interpolation case, the Gaussian noise
variance can be considered as a small value [17] (for example
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this value is set to 3 in the PLE to correspond to typical noise
level existing in the images). The problem in (8) can also be
seen as the regularized form of the patch restoration problem in
which σ2 is the regularization parameter. Solving the overall
problem of clustering and estimating Gaussian distributions
for a set of data is nonconvex and may trap into several local
minima. As discussed in [31], the image interpolation is more
prone to this problem. A continuation method, which gradually
decreases the regularization parameter of a cost function along
iterations, has been successfully used in some recent image
interpolation techniques [30], [31], as a heuristic to avoid
local minima. A similar approach has also been applied to
EM algorithm, named Deterministic Annealing EM (DA-EM),
to avoid local minima while using EM [44]. Decreasing the
regularization parameter along iterations in most mentioned
algorithms has been determined heuristically by a linear or
an exponential decay. Starting from a high value of the
regularization parameter, in our method the exponential decay
is used [30], i.e., at the lth iteration this parameter is obtained
by σ2

l = (1− ε)σ2
l−1 where ε is a small constant.

Another issue in our image interpolation method is estimat-
ing the initial covariance matrix and the initial mean vector
while incomplete set of pixels in the patches are available. We
use List-wise Deletion (LD) estimation [45] for obtaining the
mean vector and the covariance matrix which obtains these
parameters by disregarding missing data and considering only
the observed data in the maximum likelihood estimation in
(6) and (7). The initialization of the mean vector and the
covariance matrix can mathematically be formulated by

µ̂rini = (
∑
i∈Sr

Hix̂i)./(
∑
i∈Sr

Hii) (14)

Σ̂rini = (
∑
i∈Sr

(Hix̂i − µ̂rini)(Hix̂i − µ̂rini)
T )./Wini.

(15)
where i ∈ Rn indicates the vector whose all entries are 1, and
Wini =

∑
i∈Sr (Hii)(Hii)

T . Note that Hii result in a vector
with the entiries corresponding missing or existing value of
pixels in xi. The notation ./ indicates element-wise division
of vectors and matrices, in (14) and (15), respectively. LD
estimate is simple and also is sufficiently effective to obtain a
proper initial value for parameter estimation and consequently
does not add computational burden to the image reconstruction
algorithm. So, in the first iteration of our interpolation algo-
rithm, which can be viewed as an initialization, the estimation
of covariance matrix and mean vector are estimated by LD
estimate and a proper initial estimation of the image based on
these estimated parameters is obtained.

The final algorithm of our LINC image interpolation is
presented in Fig 4.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the results of our algorithm
by comparing our method with the state-of-the-art methods
for image denoising and image interpolation. We consider
interpolating the image from both randomly observed pixels
and zooming which can be viewed as the interpolation from

• Initialization: Obtain initial estimation of X̂0 by the
following steps:
– Set starting regularization parameter to σ2 = c
– For each exemplar patch:
∗ cluster kNN patches corresponding to the exem-

plar patch
∗ determine Gaussian parameters by LD estimation

in (14) and (15)
∗ restore patches in the cluster by Wiener filter in

(8)
– Obtain reconstructed image X̂0 by weighted aver-

age of restored patches
• Main loop: for l = 1, . . . , L

– Determine the regularization parameter by σ2
l =

(1− ε)σ2
(l−1)

– For each exemplar patch:
∗ cluster kNN patches corresponding to the exem-

plar patch
∗ determine Gaussian parameters by (6) and (7)
∗ restore patches in the cluster by the Wiener filter

in (9)
– Obtain reconstructed image X̂l by weighted average

of restored patches
• Final restored image is X̂L.

Fig. 4. The proposed LINC algorithm for image interpolation.

uniformly observed pixels. So, in the following subsections
the results of the mentioned two image restoration tasks are
compared with the recent state-of-the-art methods. The results
for other methods are obtained by the report of the authors in
their papers or by their executable codes published online. Let
us first determine the constants values and the parameters we
used for both denoising and interpolation in our algorithms.
For each region, k = 37 nearest neighbor patches were
accumulated. The exemplar patches were chosen every 5 pixels
along both row and column directions of the image. Similar to
common patch-based image restoration methods such as [3],
[17] and [12], we used typical 8× 8 patch sizes. The size of
constraining windows around each exemplar patch was set to
32× 32, implied by Table I. The value of δ was set to 0.1 for
the eigenvalue regularization of the covariance matrix.

A. Image Denoising

In this subsection, first, we compare the performance of
our spatially constrained GMM method with the global GMM
methods. Then, we compare the proposed LINC method with
the recent state-of-the-art image denoising methods. We empir-
ically found that to achieve optimum denoising performance
in our method, a slight change in the value of γ in (11) is
needed for low and high noise levels. Empirically, we used
γ = .015 for σ <= 40 and γ = .01 for σ > 40. The results
are obtained by implementing 12 iterations of our method.

The main idea of our method was based spatially constrain-
ing patches grouped in a cluster used in each component of
GMM. In Table II, we compare the results of our proposed
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TABLE II
COMPARISON OF PSNRS (DB) OF DENOISING RESULTS FOR GMM-BASED METHODS. FROM LEFT TO RIGHT: PLE, EPLL, S-PLE, NL-BAYES,

PROPOSED LINC.

σ = 10 σ = 20 σ = 30

Dice 41.77 42.55 43.02 42.71 43.88 38.03 38.73 39.63 40.10 40.72 35.20 36.22 37.58 37.90 38.57

Girl 39.67 40.38 40.71 40.51 41.05 36.44 37.13 37.63 37.89 38.26 34.42 35.05 35.85 36.01 36.36

Traffic 31.01 33.15 33.04 33.21 33.07 27.83 29.34 29.24 29.31 29.28 26.38 27.42 28.06 27.33 27.75

valldem. 28.82 31.76 31.67 31.81 31.69 25.68 27.62 27.52 27.59 27.43 24.16 25.63 25.47 25.55 25.37

Average 35.32 36.96 37.11 37.06 37.42 31.99 33.20 33.50 37.73 33.92 30.04 31.08 31.74 31.70 32.01

TABLE III
PSNR (DB) VALUES OF DENOISING RESULTS FOR FOUR COMPETING STATE-OF-THE-ART IMAGE DENOISING METHODS. TOP LEFT: BM3D; TOP RIGHT:

LSSC; BOTTOM LEFT: CSR; BOTTOM RIGHT: LINC.

σ = 10 σ = 20 σ = 25 σ = 30 σ = 50 σ = 100

Peppers
34.68 34.80 31.29 31.37 30.16 30.21 29.28 29.38 26.41 26.62 22.91 23.00

34.64 34.63 31.25 31.28 30.14 30.13 29.22 29.46 26.49 26.86 22.34 23.26

House
36.71 36.96 33.77 34.16 32.86 33.15 32.09 32.46 29.37 30.04 25.50 25.83

36.88 36.76 33.86 33.93 32.98 33.07 32.11 32.23 29.39 30.04 25.37 25.99

Barbara
34.98 34.97 31.78 31.57 30.72 30.47 29.81 29.62 27.17 27.06 23.49 23.59

35.10 35.05 31.78 32.04 30.66 31.00 29.72 30.13 26.65 27.42 23.05 23.38

Man
33.98 34.06 30.59 30.64 29.62 29.63 28.86 28.77 26.59 26.69 23.97 24.00

33.96 33.90 30.56 30.61 29.56 29.62 28.75 28.76 26.68 26.67 23.87 23.94

Boats
33.92 34.02 30.88 30.89 29.91 29.87 29.12 29.02 26.64 26.74 23.74 23.84

33.88 33.78 30.78 30.72 29.78 29.81 28.94 28.93 26.67 26.69 23.58 23.59

Hill
33.62 33.67 30.72 30.71 29.85 29.80 29.16 29.05 27.08 27.05 24.45 24.44

33.66 33.53 30.65 30.56 29.75 29.64 28.97 28.99 26.90 26.93 24.14 24.21

Lena
35.93 35.83 33.05 32.9 32.08 31.87 31.26 31.19 28.86 28.87 25.57 25.82

35.90 35.87 32.96 33.09 31.98 32.17 31.16 31.48 28.79 29.04 25.33 25.81

Cameraman
34.18 34.21 30.48 30.57 29.45 29.51 28.64 28.64 25.84 26.42 22.81 23.08

34.06 34.07 30.49 30.36 29.48 29.22 28.64 28.44 26.27 26.35 22.61 23.28

Couple
34.04 33.98 30.76 30.69 29.72 29.61 28.87 28.71 26.38 26.30 23.37 23.28

33.95 33.88 30.60 30.61 29.52 29.65 28.62 28.83 26.20 26.32 23.20 23.10

Average
34.67 34.72 31.48 31.50 30.48 30.46 29.67 29.65 27.15 27.31 23.98 24.09

34.67 34.60 31.43 31.49 30.43 30.48 29.57 29.69 27.16 27.37 23.72 24.06

LINC denoising method with PLE, EPLL and S-PLE, which
we called them global GMM methods, and another GMM-
based method called Non-Local Bayes (NL-Bayes) [46]. The
results reported for NL-Bayes method are obtained by the
online implementation in the IPOL website [47], and the
images used in the table can also be found in this website.
Based on Table II, it can be easily seen that our spatially
constrained GMM outperforms the global counterparts in
which spatial constraint is not imposed in applying GMM.
Our method improves the other GMM-based methods nearly
1 db in some cases and performs better for all noise levels in
average. Although the mean vector µ has been considered in
the formulas of MAP estimates in (9) for theoretical inference,
like the approach used in global GMM methods, the mean
vector of each cluster can be subtracted from all observed
patches in the group, and then added to them after applying
the MAP estimate (denoising), in order to improve the speed

of the algorithm. Applying this, the implementation of our
algorithm takes about 140 seconds to denoise a 256 × 256
sized image on a 2.8 GHz Intel Core i7 CPU. This implies that
our algorithm has nearly the same computational complexity
of the PLE algorithm which takes about 150 seconds 2 and
EPLL algorithm which takes about 135 seconds. However,
due to online implementation of our algorithm, as image size
increases our method is more efficient, since it obviates the
need to store all overlapped patches in the image in a separate
variable which consumes memory usage.

Previous GMM-based methods for image denoising like
PLE and EPLL presented favorable results, but their perfor-
mances are lower than state-of-the-art sparsity-based methods.

2Since authors implementation of PLE code is not available online, the
reported result is based on our implementation (by using the same commands
of Matlab for the similar functions used in both algorithms). We do not claim
any comparison with the computational time of the code written by the authors
of PLE.
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TABLE IV
IMAGE INTERPOLATION PSNR (DB) VALUES FOR COMPETING METHODS

WITH DIFFERENT PERCENTAGES OF RANDOMLY OBSERVED PIXELS IN
SOME BENCHMARK IMAGES. THE BEST RESULTS ARE IN BOLD FONT.

Percentage
of

available
pixels

BP [48] KR [7] FOE
[49]

This
Work

(LINC)

Barbara

80% 40.76 37.81 38.27 43.92

50% 33.17 27.98 29.47 37.48

30% 27.52 24.00 25.36 33.68

Lena

80% 41.27 41.68 42.17 43.60

50% 36.94 36.77 36.66 37.98

30% 33.31 33.55 33.22 34.53

House

80% 43.03 42.57 44.70 45.21

50% 38.02 36.82 37.99 39.43

30% 33.14 33.62 33.86 35.16

Boats

80% 39.50 37.91 38.33 40.70

50% 33.78 32.70 33.22 34.58

30% 30.00 29.28 29.80 30.81

TABLE V
IMAGE INTERPOLATION PSNR (DB) VALUES FOR GMM-BASED METHODS

WITH DIFFERENT PERCENTAGES OF RANDOMLY OBSERVED PIXELS. THE
BEST RESULTS ARE IN BOLD FONT.

Percentage
of

available
pixels

EPLL
[23]

PLE
[17]

E-PLE
[25]

This
Work

(LINC)

Barbara

80% 40.17 43.85 42.56 43.92

60% 34.69 36.77 36.77 39.29

40% 29.44 27.62 30.18 34.57

Parrot

80% 36.09 36.76 36.53 36.56

60% 31.61 31.35 31.61 32.51

40% 28.58 27.38 28.13 29.64

Shapes

80% 39.18 40.52 38.02 40.71

60% 33.16 33.48 34.68 34.83

40% 28.49 27.15 29.24 29.36

In Table III, we compare our proposed LINC method denoising
results with BM3D [3], LSSC [12] and CSR [6] which are
among the best denoising algorithms so far. The best results
in each noise variance and each image are marked with the
bold font. It is worth mentioning that in many cases, LSSC
and CSR have provided better results than BM3D. It can be
seen that our denoising results, in average, outperforms the
mentioned methods from 25 to 50 noise standard deviation
range (medium noise levels). Some of the denoised image
examples are illustrated in Fig 5 and Fig. 6, in comparison
with the state-of-the-art image denoising methods.

B. Image Interpolation

In this subsection, we evaluate the results of image inter-
polation with the LINC method summarized in Fig. 4. In
our implementation for obtaining regularization parameter in

different iterations, the parameter c (the value of regularization
parameter for initialization) and ε are set to 120 and 0.1,
respectively. The value of γ is 0.01 in (11) for comput-
ing aggregation weights. In Table IV, PSNR results of our
proposed method are compared to some recent methods of
image interpolation, such as Beta Process (BP) [48], Kernel
Regression (KR) [7] and Fields Of Experts (FOE) [49]. The
different percentages of pixels available in the images is
considered. Considering Table IV, it can be seen that our LINC
method outperforms all other methods in all percentages. In
Table V, our proposed LINC method is compared to the
global GMM methods which are state-of-the-art in the image
interpolation case. It can be seen that our method outperforms
global GMM methods except in one case.

Figure 7 illustrates an example of interpolation results
for our method in comparison to the other methods for the
degraded Lena image in which 30% of pixels are randomly
available.

Figure 8 shows examples of image interpolation of some
image fragments for 30% of observed pixels. These fragments
are illustrated to focus on comparing the interpolation of both
smooth and textured fragments of images. It can be seen that
our method outperforms other method in both textured and
smooth regions.

A special case of image interpolation is zooming which
can be seen as the interpolation of uniformly sampled images.
However zooming is more challenging task than interpolation
from randomly observed pixels. Due to the regular sampling,
many algorithms proposed so far fail to recover true underlying
textures in images. As discussed in [9], more random sampling
achieves dramatically better results in the image interpolation.
We found that our algorithm is highly robust to the recovery
error caused by the uniform sampling. In Fig. 9, image
interpolations with different recent methods for a textured
image fragment are illustrated. It can be seen that our method
is noticeably successful to find true textures. In Fig. 10 an
example of zooming is illustrated for state-of-the-art methods.
Due to robustness of our algorithm to uniform sampling in-
terpolation error, our method dramatically improved zooming
performance. It also can be seen that EPLL, which is a global
GMM method, is also robust to the mentioned error. However
our algorithm outperforms this method in terms of PSNR.

V. DISCUSSION

As mentioned, there is a difference between assigning the
patches to the clusters in our model with the clustering
methods used in the previous image restoration algorithms
based on GMM like methods in [17] and [23]. In those
methods the similarity is measured by similarity to the Gaus-
sian distributions, which is unusable in our method due to
requiring to store many covariance matrices while spatially
constraining GMM. However, we considered similarity to
estimated Gaussian distributions in the aggregation weights
which brings this similarity in the spatial domain of the image
and consequently results in grouping more similar Gaussian
patches together by applying the l2-norm metric clustering.

Using (11), our method offers a more sophisticated way
of computing averaging weights than previous patched-based
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(a) (b)

(c) (d)
Fig. 5. Example of denoising results for the Barbara image at σ = 30: (a) Noisy image; (b) BM3D (PSNR=29.81 dB); (c) CSR (PSNR=29.72 dB); (d)
Proposed LINC (PSNR=30.13 dB).

(a) (b) (c) (d)
Fig. 6. Comparison of denoising results for a fragment of the Lena image: (a) noisy image (σ = 25); (b) BM3D (PSNR=32.08); (c) CSR (PSNR=31.98);
(d) Proposed LINC (PSNR=32.18)
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(a) (b)

(c) (d)

Fig. 7. Comparison of interpolation methods for the degraded Lena image: (a) Degraded image with 30% of randomly available pixels, (b) KR [7]
(PSNR=33.57); (c) EPLL (PSNR=33.28); (d) Proposed LINC (PSNR=34.53).

non-local image restoration methods such as [3] and [12] in
which one averaging weight is used for all patches in a cluster.
In our method, we benefit from using different weights for
each patch in a cluster based on similarity of that patch to its
corresponding Gaussian cluster, which plays an important role
in the improvement of our image restoration method.

It is worth mentioning that our method should not be
mistakenly assumed to be in contradiction of global image
denoising method recently proposed in [50], which uses all
pixels and patches in the image to improve local methods.
Although the method in [50] uses pixels and patches in the
whole image, the geometric distance between patches are
considered in obtaining the global kernel (filter) which is based
on non-local means kernel. So, in the mentioned method,

unlike global GMM methods, the geometric distance between
patches is considered.

VI. CONCLUSION

In this paper, we took some steps to improve the GMM-
based statistical modeling of image patches for image denois-
ing and interpolation applications. The main notion of our
method was based on spatially constraining GMM prior for
the image patches. In this work, the same multivariate normal
distribution for underlying similar patches in a neighborhood
is assumed, and a computationally efficient implementation
for the image restoration is proposed. We also proposed the
averaging weights computation for the pixel estimations based
on the similarity of the estimated patches to their correspond-
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Original Image Masked image:
30% of avail-
able pixels

KR [7]
PSNR=34.97

BM3D-
based [9]
PSNR=35.67

This Work
PSNR=36.61

Original Image Masked image:
30% of avail-
able pixels

KR [7]
PSNR=30.66

BM3D-
based [9]
PSNR=32.17

This Work
PSNR=33.43

Fig. 8. Examples of image fragments interpolation from 30% of available
data with different methods. Both smooth and textured areas are considered.

(a) (b) (c) (d)
Fig. 9. Ability to recover true textures in uniformly sampled images in our
method in comparison with other methods (zooming factor = 2):(a) Original
image; (b) NEDI [5]; (c) BM3d-based [9]; (d) Proposed LINC.

ing clusters. We showed that our image denoising algorithm
is favorably comparable to the state-of-the-art sparsity-based
methods and improves all methods in the case of image
interpolation. Using other multivariate distributions, such as
multivariate Laplacian [51], [52], [53], for adapting to image
patches, and different approaches for considering geometric
distance of patches in GMM could be the subjects for future
works.
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