
1

A new approach for graph signal separation based
on smoothness

Mohammad-Hassan Ahmad Yarandi, Massoud Babaie-Zadeh

Abstract—Blind source separation (BSS) is a signal process-
ing subject that has recently been extended to graph signals.
Graph signals that are smooth on their own graphs provide
an opportunity to separate them from their summation by
knowing their underlying graphs, which is different from the
conventional BSS that requires at least two mixtures of source
signals. In this paper, we introduce an approach to separate
smooth graph signals whose energy is concentrated on their first
frequency components. This approach tries to decompose the
summation signal into signals that are as smooth as possible on
their underlying graphs and non-smooth on the other graphs.
Moreover, in the case that the number of source signals is two,
the uniqueness of our separation approach is shown, up to the
uncertainty of the average value of the signals. Furthermore, we
interpret the solution of our approach in the case of complement
graphs by deriving exact error formulas. Finally, simulations
demonstrate the efficiency of the proposed approach and its
superiority over other approaches in this setting.

Index Terms—graph signal processing, graph signal separation,
blind source separation, smooth graph signal.

I. INTRODUCTION

GRAPH Signal Processing (GSP) [1] is an emerging field
that investigates signals arising from complex structures,

modeled by graphs. Compared with classic signal processing,
this graph structure can consider connections between every
pair of signal samples, which can improve the processing
of signals. In some applications, e.g. social networks and
transportation networks, the graph is known a priori, while in
other applications the graph is to be learned from a database
of signals according to the relations and similarities between
their samples [2].

Many topics in classic signal processing have been extended
to graph signal processing. A topic that has recently been
generalized to GSP is Blind Source Separation (BSS) [3].
The main goal of BSS is to recover statistically independent
source signals from their mixtures, and has a wide range of
applications from biomedical signals to stock prediction [3].
In classical BSS, the number of mixed signals is typically
assumed to be greater than or equal to the number of source
signals.

In [4]–[7], two BSS methods for graph signals, GraphJADE
and Graph Decorrelation, are proposed based on graph decor-
relation information along with conventional BSS objective
functions. Both methods require the underlying graphs as
prior information. In the case that the graphs are unknown,
the authors of [8] and [9] propose methods that learn the
underlying graphs and separate the graph signals simultane-
ously. In another approach in [10], the smoothness criteria
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of graph signals are used as regularization terms along with
a mutual information based cost function to separate smooth
graph signals. Similarly in [11], this method is extended to a
method that jointly learns the graphs and separates the graph
signals. In all the above mentioned methods, similar to most
classical BSS methods, the number of available mixed signals
is assumed to be equal to the number of source signals.

There are however papers that address the graph signal
separation problem in a different setting. In this setting, there
is only one mixture of source signals that is equal to their sum-
mation. These approaches impose other assumptions on source
signals, e.g. their smoothness or their generation process.
These assumptions distinguish each signal on their underlying
graph from other signals and enable the separation from only
one mixture. In [12], [13], the assumption is that each graph
signal is generated from a diffusion process with a sparse
input via a graph filter with unknown coefficients. In [14], the
assumption is that each graph signal is smooth on its graph or
has sparse frequency components. More precisely, consider
K unknown graph signals x1, . . . ,xK with corresponding
known graphs G1, . . . ,GK . The known graphs G1, . . . ,GK
have the same node set and are different only in their edge
sets and adjacency matrices. Each graph signal is assumed to
be smooth and approximately bandlimited on its graph.1 The
only observed signal is the summation signal x ,

∑K
i=1 xi

and the goal is to recover x1, . . . ,xK from x. Then, [14]
proposes separation methods by exploiting the smoothness
(or the sparsity) of each graph signal on its corresponding
graph. The closed-form solutions and estimation errors of the
methods in [14] are given in [17].

In this paper, a new separation approach is proposed to
enhance the quality of the separation methods of [14]. Our
approach is based on considering the smoothness of each
graph signal xi on both its corresponding graph Gi and the
graphs of the other signals Gj , j 6= i. Indeed, it is based
on the assumption that each graph signal is smooth on its
corresponding graph and non-smooth on the other graphs.
Therefore, this approach tries to recover the graph signals from
their summation x such that the obtained signals are as smooth
as possible on their own graphs and non-smooth on the other
graphs. The main contributions of this article are as follows:
• Based on additional consideration of the smoothness

criteria of graph signals on the graph of other signals
alongside their corresponding graphs, new methods are
proposed for both noiseless and noisy data, which out-
perform previous methods.

1Smooth and bandlimited graph signals appear in some applications like
graphs with k clusters, where the signals within each cluster are smooth [15],
[16].
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• In case of K = 2, the uniqueness of our separation
method with noiseless data is shown up to the indetermi-
nacy of the average values of the signals. Additionally, a
fixed point algorithm is proposed in this case.

• In case of complement graphs, closed-form formulas are
derived for the estimation error of both our method and
the method of [14].

In simulations, the performance of our methods is evaluated,
and they are compared with the methods of [14], which up to
our best knowledge is the only paper in the same problem
formulation as this paper.

The rest of the paper is organized as follows. In Section II,
a brief background on GSP is reviewed. In Section III, our
proposed approach is introduced in different cases along with
a uniqueness theorem. Estimation error formulas are provided
for the case of complement graphs in Section IV. Finally,
Section V is devoted to numerical experiments.

II. GSP BACKGROUND

An undirected graph with N nodes can be represented as
G = (V, E ,W), where V is the set of nodes (|V| = N ),
E ⊆ V × V is the set of edges, and W ∈ RN×N is the
weight matrix. For undirected graphs with no self-loop, W is
a symmetric matrix whose diagonal entries are equal to zero.
For binary graphs, the entries of W indicate the presence or
absence of the edge between each pair of the nodes and in
weighted graphs, they also determine the weight of each edge.
A graph signal x ∈ RN is a mapping from the node set to RN
that assigns a real value xi to the node i for i = 1, . . . , N .
In this paper, the problem consists of K known graphs Gi =
(V, Ei,Wi) for i = 1, . . . ,K that have the same node set, and
their difference is only in their edge set and weight matrix.
On each graph, there is a graph signal xi that has a specific
structure and the goal is to reconstruct these signals from their
summation x ,

∑K
i=1 xi.

Another matrix by which a graph can be described is the
Laplacian matrix, defined as L , D −W, where W is the
weight matrix and D is the degree matrix defined as D ,
diag(W1), in which 1 , [1, . . . , 1]T ∈ RN stands for the all-
one vector. Smoothness of a graph signal shows the variation
of the signal values on the graph and can be measured by the
graph Laplacian quadratic form as

xTLx =
∑

1≤i<j≤N

wij(xi − xj)2. (1)

From the above equation, it is obvious that L is a positive
semidefinite matrix, and its smallest eigenvalue is equal to zero
with the corresponding eigenvector 1 (for connected graphs,
only one of the eigenvalues is equal to zero [1]). Hence, it has
eigenvalues 0 = λ1 ≤ . . . ≤ λN and N orthonormal eigenvec-
tors v1, . . . ,vN and therefore, the eigenvalue decomposition
of L is in the form L = VΛVT , where Λ , diag(λ1, . . . , λN )
and V , [v1, . . . ,vN ]. For a graph signal x ∈ RN , the
Graph Fourier Transform (GFT) is defined as x̂ , VTx,
with respect to L as shift operator. Similarly, the Inverse
Graph Fourier Transform (IGFT) is defined as x , Vx̂. With
these definitions, noting that vTi Lvi = λi, the λi’s represent

frequencies in the GFT domain, i.e. the smaller λi’s shows
that the corresponding eigenvectors are smoother on the graph.
The following equation shows smoothness in the frequency
domain:

xTLx =
∑

1≤i≤N

λix̂
2
i , (2)

where x̂i is the i-th frequency component of x, corresponding
to the frequency λi. Since for smooth graph signals xTLx = ε
is small, |x̂i| < ε

λi
. Therefore, in the GFT domain, the

GFT coefficients of a smooth graph signal should be small
in high frequencies and can be large in lower frequencies.
In this paper, we consider smooth signals as signals with
GFT coefficients concentrated on the low frequencies, such as
the combination of a few first eigenvectors of the Laplacian
matrix.

According to the eigenvalue decomposition, the Laplacian
matrix can be written in the form L =

∑N
i=1 λiviv

T
i ,

and its Moore–Penrose pseudo inverse can be defined as
L† =

∑N
i=2

1
λi

viv
T
i . Since the Laplacian matrix of connected

graphs has exactly one zero eigenvalue, which corresponds
to the direction of the all-one vector, the system of linear
equations Lx = y has several solutions that differ only in the
average value of x, and L†x is the solution whose average is
equal to zero. In this paper, the average value of a graph signal
x is referred as its DC value, that is, x̄ , 1

N

∑N
i=1 xi = 1√

N
x̂1.

III. THE PROPOSED METHOD

In this section, the problem of graph signal separation in the
case of two graphs is considered. So, there are two unknown
graph signals x1 and x2 that are smooth on their known
graphs (having the same nodes), and the goal is to recover
these signals from their known summation x , x1 + x2. At
first, the methods of [14] are very briefly reviewed, and then
our proposed method in both noiseless and noisy settings are
stated. Finally, our method is generalized to the case of more
than two graphs.

A. A brief review on the methods of [14]

Consider two graphs G1 and G2 with the same nodes and
with corresponding Laplacian matrices L1 and L2. Suppose
that x1 and x2 are smooth signals on G1 and G2. For recovering
these signals from x = x1 + x2, the authors of [14] propose
the optimization problem

minimize
x1,x2

xT1 L1x1 + xT2 L2x2 s.t. x = x1 + x2. (3)

As stated in [14, Theorem 1], the solution of (3) is unique
up to the DC values of x1 and x2. Therefore, a unique solution
can be obtained without considering the DC values of the
signals. Thus, [14] proposes the following problem whose
solution is unique:

minimize
x1,x2

xT1 L1x1+xT2 L2x2 s.t.

{
z = x1 + x2 ,

x̄1 = x̄2 = 0 ,
(4)

where z , x− x̄1.
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As shown in [14], based on (2), problem (4) can be written
in the GFT domain as

minimize
x̂1,x̂2

N∑
i=2

λ1ix̂
2
1i+λ2ix̂

2
2i s.t.

{
z = V1x̂1 + V2x̂2 ,

x̂11 = x̂21 = 0 ,
(5)

where Lj = VjΛjV
T
j is the eigenvalue decomposition of Lj ,

j = 1, 2, x̂j = VT
j xj = [x̂j1, . . . , x̂jN ] is the GFT of xj

based on Lj , and λji is the i-th eigenvalue of Lj .
As discussed in [14], for two graphs with very different

eigenvalue distributions, problem (5) does not give the same
importance to the corresponding frequency components of two
signals and hence the solution of (5) may not be accurate
enough. So, [14] proposes to use the positive weights w2 <
. . . < wN instead of the eigenvalues of two graphs to give the
same importance to the frequency components in both graphs.
One suggestion for the weights in [14] is wi = (i−2)× s+ 1
for some s > 0. Hence, problem (5) is reformulated in [14]
as

minimize
x̂1,x̂2

N∑
i=2

wi(x̂
2
1i + x̂22i) s.t.

{
z = V1x̂1 + V2x̂2 ,

x̂11 = x̂21 = 0.
(6)

According to the description in [14], problem (6) can also be
used in the case of separating signals that are not necessarily
smooth but have the same known frequency support. In this
case, the weights w2, . . . , wN are chosen in a way that for
the support frequencies, the weights are small and for other
frequencies are large.

B. Our proposed approach

A common property in all the problems of [14] is that
the objective functions only focus on the smoothness of each
signal on its own graph. Therefore, the solutions of these
methods may be signals that are smooth not only on the
corresponding graphs but also on the graphs of the others.
However, if the graphs are different enough, it is reasonable to
assume that the source signals (assumed to be smooth on their
own graphs) are non-smooth on the graphs of the other signals.
This is because these smooth signals are concentrated in the
lower frequencies of their own graphs, which is likely to not
correspond to the lower frequencies of the other graphs (due
to the differences between the graphs. An extreme case will
be seen in Section IV). Therefore, to separate these signals,
the objective function would be better to take into account
the non-smoothness of each signal on the graphs of the other
signals along with its smoothness on its own graph. In this
paper, the proposed optimization problem is

minimize
x1,x2

xT1 L1x1 + xT2 L2x2

xT1 L2x1 + xT2 L1x2
s.t. x = x1 + x2. (7)

The purpose of this objective function is to find graph signals
x1 and x2 that are as smooth as possible on their own graphs
and non-smooth on the graph of the other one. This approach
is similar to Linear Discriminant Analysis (LDA) [18], which
is used to project data from multiple groups from a higher
dimensional space into a lower dimensional space such that

the data of one group are as close as possible to each other
and are far from the data of the other groups.

Similar to problem (3), it can be shown that problem (7) has
a unique solution up to the DC values of the signals under a
mild condition:

Theorem 1. If G1 and G2 are two connected graphs with the
same nodes, and if L1x 6= L2x, then the solutions of problem
(7) differ only in their DC values (i.e. they are unique up to
the DC values of x1 and x2).

The proof is left to Appendix A.
Therefore, when L1x 6= L2x, by constraining the DC values

of the signals equal to zero and defining z = x − x̄1, the
solution of the following problem is unique:

minimize
x1,x2

xT1 L1x1 + xT2 L2x2

xT1 L2x1 + xT2 L1x2
s.t.

{
z = x1 + x2 ,

x̄1 = x̄2 = 0.
(8)

Similar to problem (5), problem (8) can be written in the
GFT domain and the modification used in problem (6) can be
used here as well. To do so, instead of Li = ViΛiV

T
i , we use

L̃i = Vidiag(0, w2, . . . , wN )VT
i , which is not necessarily a

valid graph Laplacian matrix. However, it refines the drawback
of problem (8), which as stated for problem (5), happens in the
case of two graphs with very different eigenvalue distributions.
This technique also improves the separation performance in
cases that λmax(Li)/λ2(Li) is low. Therefore, problem (8)
can be represented as

minimize
x1,x2

xT1 L̃1x1 + xT2 L̃2x2

xT1 L̃2x1 + xT2 L̃1x2

s.t.

{
z = x1 + x2 ,

x̄1 = x̄2 = 0.
(9)

Remark 1: Similar to problem (6), problem (9) can also be
used in the case of separating signals with the same limited
known frequency supports that are not necessarily smooth.
In this case, the eigenvectors corresponding to the support
frequencies play the role of low-frequency eigenvectors, and
the problem becomes similar to the separation of smooth graph
signals.

Remark 2: The assumption L1x 6= L2x is necessary for
Theorem 1 since if L1x = L2x, then by simple calculations,
it can be seen that

(x∗1)TL1x
∗
1 + (x∗2)TL2x

∗
2 = (x∗1)TL2x

∗
1 + (x∗2)TL1x

∗
2,

where (x∗1,x
∗
2) are the source signals. Therefore, in this case,

the solution of the problem (8) is not unique.
Remark 3: Since in the proof of Theorem 1, only the

semi-positive definiteness property of the matrices and the
uniqueness of zero eigenvalue (which is equivalent to the
connectivity of the graphs) are used, the solution of problem
(9) is also unique when L̃1x 6= L̃2x.

C. A fixed point algorithm

By using Karush-Kuhn-Tucker (KKT) conditions [19] in
problem (7), a fixed point algorithm that has a fast convergence
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Algorithm 1 Fixed Point Algorithm for Problem (8)

INPUT: x1, z ∈ RN ,L1,L2

OUTPUT: x∗1,x
∗
2 ∈ RN

repeat
x1 ← (L1 + L2)† (L2−J(x1,z−x1)L1)z

1−J(x1,z−x1)
until convergence
If J(x1, z− x1) < 1 return x∗1 = x1,x

∗
2 = z− x1

If J(x1, z− x1) > 1 return x∗1 = z− x1,x
∗
2 = x1

rate can be obtained to solve problems (8) and similarly (9).
The KKT conditions of (7) are written as

2
L1x1 − J(x1,x2)L2x1

xT1 L2x1 + xT2 L1x2
+ µ = 0

2
L2x2 − J(x1,x2)L1x2

xT1 L2x1 + xT2 L1x2
+ µ = 0

x1 + x2 = x

, (10)

where µ ∈ RN is the vector of Lagrange multipliers and
J(x1,x2) denotes the objective function of (7). Combining
the first two conditions in (10) results in

L1x1 − J(x1,x2)L2x1 = L2x2 − J(x1,x2)L1x2. (11)

Now, using the third condition in the above equation leads to

x1 = (L1 + L2)†
(L2 − J(x1,x− x1)L1)x

1− J(x1,x− x1)
, f(x1). (12)

Therefore, the fixed-point iterative algorithm

x
(i)
1 = f(x

(i−1)
1 ), i = 1, 2, . . . ,

can be used to find x1. Due to the term (L1 + L2)† in f

for every starting point x
(0)
1 , the DC value of x

(i)
1 is equal to

zero in each iteration. In order to use this algorithm to solve
problem (8), it is enough to change x to z in f . Therefore,
in each iteration, x

(i)
1 and x

(i)
2 = z − x

(i)
1 are zero mean

vectors and x
(i)
1 + x

(i)
2 = z. Since x

(i)
1 may converge to the

maximum point, at the end, when x
(i)
1 converges to x1, it

should be checked that J(x1, z − x1) is greater than one or
not. If J(x1, z − x1) > 1, then (x1, z − x1) is declared as
the maximum point and (z − x1,x1) as the minimum point.
Putting these together results in an algorithm for solving (8),
which is summarized in Algorithm 1. Based on simulations,
this algorithm converges to the optimal point. For a faster
convergence rate it is better to consider the solution of problem
(4) as an initial point for x1, which is presented as a closed-
form solution in [17]. Moreover, to solve problem (9) by
Algorithm 1, it is enough to consider L̃1, L̃2 instead of L1,L2

as inputs.

D. Generalization to the case of noisy data and more than
two sources

In the case of the presence of noise in x, problem (7) can
be modified such that its constraints are added to the objective
function as a regularization term. Suppose that x = x1 +x2 +

n, where n is a noise vector. So, we propose to replace (7)
by

minimize
x1,x2

xT1 L1x1 + xT2 L2x2

xT1 L2x1 + xT2 L1x2
+γ‖x−(x1 +x2)‖22 , (13)

where γ is a regularization parameter that determines the
importance of the regularization term in the objective function.
In the same way, problems (8) and (9) can also be written in
the presence of noise. For example, (9) can be changed as

minimize
x1,x2

xT1 L̃1x1 + xT2 L̃2x2

xT1 L̃2x1 + xT2 L̃1x2

+ γ‖z− (x1 + x2)‖22

s.t. x̄1 = x̄2 = 0.

(14)

Moreover, problem (7) can be generalized to the case of K
graphs. Suppose that Gi, i = 1, . . . ,K are undirected graphs
with Laplacian matrices Li, and consider xi as a smooth graph
signal on Gi. Therefore, the optimization problem to separate
the signals is

minimize
x1,...,xK

∑
1≤i≤K

xTi Lixi∑
1≤i 6=j≤K

xTi Ljxi
s.t. x =

K∑
i=1

xi. (15)

However, for K > 2, there is no proof for the uniqueness of
the solution.

Similarly, problems (8), (9), (13) and (14) can be general-
ized to the case of K graphs.

IV. A CLOSED-FORM FORMULA FOR THE ESTIMATION
ERROR IN CASE OF COMPLEMENT GRAPHS

A type of two graphs that are appropriately different from
each other is complement graphs [20]. Since the original
signals x1 and x2 are assumed to be smooth on their own
graphs, it is expected that the more the two graphs spectrally
differ, the more likely that the signals are non-smooth on
the graphs of the other one, and hence a better improvement
in separation in both methods. This section is devoted to
complement graphs, which represent an extreme case where
two graphs differ completely in the spectral domain. In this
section, the graph G1 is assumed to be an undirected binary
graph and G2 is assumed to be its complement. In this case, a
closed-form formula for the estimation errors of both (6) and
(9) can be obtained in terms of the frequency components of
the source signals, which can provide an explanation for why
the separation methods work well for smooth and bandlimited
source signals.

The complement of an undirected binary graph G =
(V, E ,W) is the graph Ḡ = (V, Ē ,W), which has the same
set of nodes but its edge set Ē is the complement of E with
respect to the set of all unordered pairs V × V and therefore,
W +W = 11T − I. In other words, there is an edge between
two nodes in Ḡ if and only if there is not an edge between
those nodes in G [20].

If two graphs are complement, they will be structurally very
different. This is shown by the following lemma.

Lemma 1 ([20, Chapter 1]). Let G1 and G2 be two binary
complement graphs with N nodes. If vi is a Laplacian
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eigenvector of G1 with the corresponding eigenvalue λi and
if vi is orthogonal to 1, then vi will also be a Laplacian
eigenvector of G2 with the corresponding eigenvalue N − λi.

Therefore, the GFT basis of G1 corresponding to lower
frequencies is the GFT basis of G2 corresponding to higher
frequencies and vice versa. This would help the separation
processes that are based on the smoothness of signals on their
own graphs.

Now, let G1 and G2 be two connected graphs that are
complement and let 0 = λ1 < λ2 ≤ . . . ≤ λN be the
eigenvalues of L1 corresponding to the orthonormal eigen-
vectors 1√

N
1,v2, . . . ,vN . Based on Lemma 1 and definitions

V1 , [ 1√
N

1,v2, . . . ,vN ] and V2 , [ 1√
N

1,vN , . . . ,v2], the
eigenvalue decomposition of L1 and L2 can be written as
L1 = V1diag(0, λ2, . . . , λN )VT

1 and L2 = V2diag(0, N −
λN , . . . , N−λ2)VT

2 . The following two theorems express the
estimation errors of (4) and (8), respectively.

Theorem 2. Let x∗1 and x∗2 be two source signals on
complement graphs G1 and G2 whose GFT coefficients are
VT

1 x∗1 = [0, x̂∗12, . . . , x̂
∗
1N ]T and VT

2 x∗2 = [0, x̂∗22, . . . , x̂
∗
2N ]T ,

respectively. Moreover, let x , x∗1 + x∗2. If (x1,x2) is the
solution of (4) with z = x, then

‖x∗1−x1‖22 = ‖x∗2−x2‖22 =

N∑
i=2

(
λix̂
∗
1i − (N − λi)x̂∗2,N−i+2

N

)2

.

(16)

The proof is left to Appendix B.
There is a similar result for (9), which is provided in the

following theorem.

Theorem 3. Let x∗1 and x∗2 be as in Theorem 2. Let (x1,x2)
be the solution of problem (8), and J∗ be its optimum value.
If L1x 6= L2x, then

‖x∗1 − x1‖22 = ‖x∗2 − x2‖22 =(
1 + J∗

1− J∗

)2 N∑
i=2

(
(λi − J∗N

1+J∗ )x̂∗1i − ( N
1+J∗ − λi)x̂∗2,N−i+2

N

)2

.

(17)

The proof is left to Appendix C.
Remark: The proof techniques of Theorems 2 and 3 can be

applied to obtain the estimation error in case of two weighted
graphs with Laplacian matrices L1 and L2, in which L1+L2 =
NI− 11T , or any other cases in which both graphs have the
same set of Laplacian eigenvectors.

Similar equations can be derived for the estimation errors
of (6) and (9), which are presented in the following theorems.
Since their proofs are similar to Theorems 2 and 3, they are
left to the reader.

Theorem 4. Let x∗1 and x∗2 be as in Theorem 2. If (x1,x2)
is the solution of problem (6), then

‖x∗1−x1‖22 = ‖x∗2−x2‖22 =

N∑
i=2

(
wix̂

∗
1i − wN−i+2x̂

∗
2,N−i+2

wi + wN−i+2

)2

.

(18)

The above formula shows that the low-frequency com-
ponents of the source signals x∗1 and x∗2 appear with low
coefficients in the estimation error of problem (6). Therefore,
for smooth signals, for which only low-frequency components
have significant values, the error of problem (6) would be
small.

Theorem 5. Let x∗1 and x∗2 be as in Theorem 3. If (x1,x2)
is the solution of problem (9), then

‖x∗1 − x1‖22 = ‖x∗2 − x2‖22 =
N∑
i=2

(
(wi − J∗wN−i+2)x̂∗1i − (wN−i+2 − J∗wi)x̂∗2,N−i+2

(wi + wN−i+2)(1− J∗)

)2

.

(19)

From Theorems 4 and 5, it seems that in the estimation
error of (9) compared with (6), the weights corresponding to
the frequency components are changed in a way that the error
is reduced. This assertion is demonstrated in the simulations
of Section V.

V. SIMULATION RESULTS

In this section, our proposed methods are evaluated and
compared with the methods of [14], which, to the best of our
knowledge, are the only methods that separate smooth graph
signals from their summation. Simulations are presented in six
different experiments to investigate different scenarios. Graph
Signal Processing Toolbox (GSPBox) [21] is used to generate
different random graphs in each experiment.

A. Experiment 1: The separation performances of (8) and (9)

In this experiment, the performances of our proposed meth-
ods in (8) and (9) are compared with the methods of [14]
presented in (4) and (6). To generate a smooth signal xi on
graph Gi, the second and third eigenvectors of Li are linearly
combined with random coefficients chosen i.i.d. from uniform
distribution between 0 and 1. Then x = x1 + x2 is given to
the aforementioned methods to reconstruct the original smooth
signals x1 and x2.

To evaluate the separation performance, signal-to-noise ratio
(SNR) is used, which for the i-th estimated signal, xest

i , is de-
fined as SNRi , 20 log10(‖xi‖2/‖xi − xest

i ‖2). Then SNRi’s
are averaged over all sources, SNRavg , 1

K

∑K
i=1 SNRi. Fi-

nally, after repeating each simulation several times, SNRavg’s
are averaged over the simulations, and their average is denoted
by SNRavg, which is reported as the performance index.

At first, the performances of (8) and (4) are compared over
two random graphs with the same type, which are connected
Erdos-Renyi graphs [22] with N nodes and edge probability
p = 15/N . Figure 1 shows SNRavg of (8) and (4) over
200 different simulations versus the number of nodes. The
values of SNRavg in this figure indicate the superiority of our
proposed method in (8) compared with (4).

In another simulation, the performances of (6) and (9) are
evaluated over two different types of random graphs: a con-
nected Erdos-Renyi graph with N nodes and edge probability
p = 25/N and a connected sensor graph [23] with N nodes.
As in [14], the weights in these methods, wi’s, are chosen as
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Fig. 1: SNRavg of the methods (4) and (8) over 2 Erdos-Renyi
graphs with respect to the number of nodes.
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Fig. 2: SNRavg of the methods (6) and (9) over 2 different
graph types with respect to the number of nodes.

wi = (i−2)∗40+1 for i = 2, . . . , N . Figure 2 shows SNRavg

of methods (6) and (9) over 200 different simulations versus
the number of nodes. As seen in this figure, our proposed
method in (9) performs better than (6).

B. Experiment 2: The separation performance of (9) with
respect to the number of non-zero frequency components

In this experiment, the performance of our proposed method
in (9) is evaluated with respect to the number of non-zero
frequency components of the source signals and is compared
with (6). For this purpose, signals are generated similar to Ex-
periment 1 but with a different number of non-zero frequency
components. More precisely, xi with s non-zero frequency
components is set to be equal to the linear combination of the
first s eigenvectors of Li (except the first eigenvector) with
random coefficients chosen i.i.d. from uniform distribution
between 0 and 1. The graphs are a connected sensor graph
and a connected Erdos-Renyi graph with N = 250 nodes and
edge probability p = 0.1. The weights in (9) and (6) are chosen
similar to Experiment 1. Figure 3 shows SNRavg, averaged
over 40 different simulations, with respect to the number of
non-zero frequency components. As can be seen in this figure,
when the number of non-zero frequency components increases,

0 20 40 60 80 100
Number of Non-zero Frequency Components

0

10

20

30

40 solved by (6)
solved by (9)

Fig. 3: SNRavg of methods (6) and (9) with respect to the
number of non-zero frequency components.

SNRavg decreases due to the decrease in the smoothness of the
source signals. However, our proposed method still performs
better than (6). But when the number of frequency components
exceeds a limit (where the signals are not nearly smooth), the
performance of our proposed method becomes weaker than
(6).

C. Experiment 3: The separation performance of (14) in the
presence of noise

In this experiment, the performance of our proposed method
is evaluated in the presence of noise. As mentioned earlier, in
this case the optimization problem (14) can be used. Moreover,
our proposed method is compared with the method of [14],
which for two graphs in the presence of noise is

minimize
x1,x2

‖z− (x1 + x2)‖22 + γ1x
T
1 L1x1 + γ2x

T
2 L2x2

s.t. x̄1 = x̄2 = 0 ,
(20)

where γ1 and γ2 are regularization parameters. Similar to (14),
L1 and L2 can be replaced by L̃1 and L̃2, which are used in
this experiment. For simulation, the graphs are a connected
sensor graph and a connected Erdos-Renyi graph with N =
250 nodes and edge probability p = 0.1. After generating
smooth source signals x1 and x2 similar to Experiment 1,
the summation signal x1 + x2 is corrupted by adding a white
Gaussian noise n ∼ N (0, σ2I). Finally, methods (14) and (20)
are used to recover source signals from the noisy summation
signal x , x1 + x2 + n. In (14) and (20), the regularization
parameters γ and γ1 = γ2 are set equal to 0.0001 and 0.0025,
respectively. These values are empirically chosen based on
minimizing the error in the simulations. The weights in all
methods are chosen similar to Experiment 1. To solve the
optimization problem (14), the gradient descent method with
step size µ = 1

t is used, where t is the iteration number.
Figure 4 shows SNRavg, averaged over 100 different sim-

ulations, versus SNRinput, which is defined as SNRinput =
20 log10(‖x − n‖2/‖n‖2) and averaged over simulations. As
seen in Fig. 4, both (14) and (20) are robust against noise,
i.e. do not change significantly with respect to the noise
variance, and in lower input SNR’s they perform better than
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Fig. 4: SNRavg of methods (6), (9), (14) and (20) with respect
to SNRinput.

(6) and (9). Moreover, our proposed method in (14) has a
better performance compared with the other methods in lower
input SNR’s.

D. Experiment 4: The separation performance in the case of
compliment graphs

In this experiment, the performances of (6) and (9) are
evaluated in case of complement graphs, whose theoretical
results were provided in the previous section. For this purpose,
at first, a connected Erdos-Renyi graph is generated with N
nodes and edge probability p = 0.5 and then, its complement
graph is constructed. These two graphs are considered as
the main graphs in (6) and (9). Generation of xi’s and all
parameters are similar to Experiments 1 and 2. Figures 5a
and 5b show the performances of these methods with respect
to the number of nodes and the number of non-zero frequency
components, respectively. Both figures indicate that our pro-
posed method in (9) performs better than (6). Furthermore,
compared with Figs. 1 and 2, both methods perform better
in case of complement graphs. This is because, as explained
in the previous section, complementary graphs have different
spectral properties, ensuring that a smooth signal on one is
non-smooth on the other, and this helps the separation process.

E. Experiment 5: The separation performance of (15) in case
of more than two source signals

In this experiment, for the case of more than two source
signals, the performance of our proposed method, i.e. (15), is
evaluated and compared with the method of [14], which for
more than two source signals is

minimize
x1,...,xK

∑
1≤i≤K

xTi Lixi s.t. x =

K∑
i=1

xi. (21)

For simulation, four different types of random graphs with
N nodes are generated: an Erdos-Renyi graph with edge
probability p = 25/N , a sensor graph, a random regular
graph [24] with degree parameter 20, and a stochastic block

TABLE I: Image separation quality based on SNR (dB).

solved by (4) solved by (8)
SNR1 SNR2 SNR1 SNR2

set 1 16.0186 16.0682 16.0244 16.0739
set 2 10.0104 14.8041 10.0233 14.8170

model graph [25] with 2 clusters. After generating source sig-
nals x1, . . . ,x4 similar to Experiments 1 and 2, the summation
signal x , x1+. . .+x4 is given to (15) and (21) to reconstruct
the source signals. In both methods, L̃i’s are used instead of
Li’s with wi = (i − 2) ∗ 40 + 1 for i = 2, . . . , N (in the
simulation related to Fig. 6b, N is equal to 100). To solve
the optimization problem (15), the gradient descent method
with step size µ = 1.5 is used and after updating the signals
x1, . . . ,x4 in each iteration, they are projected onto the space
{(x1, . . . ,x4) ∈ RN : x1 + . . .+ x4 = x}. Figures 6a and 6b
show SNRavg, averaged over 20 different simulations, with
respect to the number of nodes and the number of non-zero
frequency components, respectively. As seen in Fig. 6a, the
results show again the superiority of our proposed methods.
Moreover, Fig. 6b indicates that in lower number of non-
zero frequency components, our proposed methods performs
better, but by increasing the number of non-zero frequency
components its performance drops faster.

F. Experiment 6: A proof of concept with real data

In this experiment, similar to Experiment 6 of [14], the
performance of our proposed method is evaluated in separation
of images. Since the graphs of images are often not available in
real-world applications, this experiment serves only as a visual
proof of concept. The procedure of this simulation is explained
in [14]. Briefly, at first a 64 by 64 pixel image is converted to
a vector with 4096 entries, which are between 0 and 255, as
a graph signal xi and then, a graph is assigned to the signal
so that the signal is approximately smooth on that graph. To
create such a graph for the signal xi, each pixel is connected
to its eight neighbours and the edge weight between the node
k and j is set equal to wkj = 1/(|(xi)k − (xi)j | + 0.001),
where (xi)k and (xi)j are the k-th and j-th entries of xi,
respectively. Finally, x , x1 + x2 and the graphs associated
to x1 and x2 are given to (8) and the estimated signals x̃1 and
x̃2 are obtained. To show the estimated images, after adding
127 as a constant to each estimated signal (because x̃1 and
x̃2 are zero mean), the values lower than 0 and greater than
255 are set equal to 0 and 255, respectively. Figure 7 shows
the original and estimated images for two different image
sets. As seen in this figure, the estimated images are almost
identical to the original images. Moreover, the SNR of each
estimated signal is shown in Table I, which for x̃i is defined
as SNRi = 20 log10(‖zi‖2/‖zi− x̃i‖2), where zi , xi− x̄i1.
The SNR values in this table indicate that the separation of the
images is done to an acceptable extent. But the SNR values are
lower than the previous experiments. This is because that, as
stated in [14], the frequency components of the graph signals
in this experiment are non-zero in a wide range, contrary to the
previous experiments in which only some of the first frequency
components were non-zero.
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Fig. 5: SNRavg of methods (6) and (9) in case of complement graphs (a) with respect to the number of nodes. (b) with respect
to the number of non-zero frequency components.
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Fig. 6: SNRavg of methods (15) and (21) in case of separation four graph signals (a) with respect to the number of nodes. (b)
with respect to the number of non-zero frequency components.
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Fig. 7: Separation results by using method (8) for two sets of images.

VI. CONCLUSION

In this paper, an approach was proposed to separate K
smooth graph signals from their summation. The objective

function of this optimization approach is based on finding
graph signals that are as smooth as possible on their corre-
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sponding graph and non-smooth on the other graphs. In the
case of K = 2, it was shown that the solution of the proposed
approach is unique up to the uncertainty of the average values
of the signals, and a fixed point algorithm based on KKT
conditions was introduced. Moreover, for complement graphs,
the exact error formulas were obtained for both our proposed
approach and the approach of [14], which, up to our best
knowledge, is the only approach in this setting. Simulations
demonstrated the efficiency of the proposed methods and its
superiority over the other methods in different experiments.

APPENDIX A
PROOF OF THEOREM (1)

To prove Theorem 1, we first prove the following lemma.

Lemma 2. If L1x 6= L2x, the optimum value of problem (7)
is strictly smaller than one.

Proof. Let J(x1,x2) and J∗ be the objective function and
the minimum value of problem (7). It is easy to see that
J(x2,x1) = (J(x1,x2))−1 so J∗ ≤ 1. If J∗ = 1, then

J(x1,x− x1) = 1 ∀x1 ∈ RN . (22)

Otherwise, if there exists x1 such that J(x1,x − x1) > 1,
then J(x− x1,x1) < 1, and this implies J∗ < 1, which is a
contradiction. Therefore, ∇x1

J(x1,x− x1) = 0 and

(L1+L2)x1−L2x−J(x1,x− x1)((L1+L2)x1−L1x) = 0. (23)

Since J(x1,x − x1) = 1, then L1x = L2x, which is a
contradiction with the lemma’s assumption. So, J∗ < 1.

Proof of Theorem 1: The Lagrangian function of problem (7)
is

L(x1,x2, µ) = J(x1,x2) + µT (x1 + x2 − x), (24)

where µ ∈ RN is the vector of Lagrange multipliers. There-
fore, ∇x1

L equals

2
L1x1(xT1 L2x1 + xT2 L1x2)− L2x1(xT1 L1x1 + xT2 L2x2)

(xT1 L2x1 + xT2 L1x2)2
+ µ

(25)

= 2
L1x1 − J(x1,x2)L2x1

xT1 L2x1 + xT2 L1x2
+ µ, (26)

and a similar equation holds for ∇x2
L. Suppose both (x1,x2)

and (x̃1, x̃2) are the solutions of problem (7). Hence, the KKT
conditions [19] imply that

2
L1x1 − J(x1,x2)L2x1

xT1 L2x1 + xT2 L1x2
+ µ = 0

2
L2x2 − J(x1,x2)L1x2

xT1 L2x1 + xT2 L1x2
+ µ = 0

x1 + x2 = x

, (27)



2
L1x̃1 − J(x̃1, x̃2)L2x̃1

x̃T1 L2x̃1 + x̃T2 L1x̃2
+ µ̃ = 0

2
L2x̃2 − J(x̃1, x̃2)L1x̃2

x̃T1 L2x̃1 + x̃T2 L1x̃2
+ µ̃ = 0

x̃1 + x̃2 = x

, (28)

where µ, µ̃ ∈ RN are the vectors of Lagrange multipliers.
Combining the first two equations of (27) and (28), and
considering J(x1,x2) = J(x̃1, x̃2) = J∗, leads to{

L1x1 − J∗L2x1 = L2x2 − J∗L1x2

L1x̃1 − J∗L2x̃1 = L2x̃2 − J∗L1x̃2

. (29)

By subtracting the first equation from the second one,

L1e1 − J∗L2e1 = L2e2 − J∗L1e2, (30)

where ei , xi− x̃i, i = 1, 2. From the third equations in (27)
and (28), e1 + e2 = 0. Therefore,

(L1 + L2)(1− J∗)e1 = 0. (31)

According to Lemma 2, J∗ < 1, so, (L1+L2)e1 = 0. Because
both graphs are connected, both L1 and L2 have only one zero
eigenvalue with corresponding eigenvector 1. Therefore, the
only possible values for e1 is the form e1 = c1, where c is
a scalar. And hence, e2 = −c1. This means that the possible
solutions of problem (7) only differ in their DC values. �

APPENDIX B
PROOF OF THEOREM (2)

According to [14, Eq. (16)], L1x1 = L2x2, which in the
GFT domain can be written as

N∑
i=2

λix̂1ivi =

N∑
i=2

(N − λi)x̂2,N−i+2vi, (32)

where VT
1 x1 = [0, x̂12, . . . , x̂1N ]T and VT

2 x2 =
[0, x̂22, . . . , x̂2N ]T . Since v2, . . . ,vN are orthonormal, (32) is
simplified to

λix̂1i = (N − λi)x̂2,N−i+2 i = 2, . . . , N. (33)

On the other hand, x1 + x2 = x∗1 + x∗2 and therefore, x̂1i +
x̂2,N−i+2 = x̂∗1i + x̂∗2,N−i+2, which together with (33) leads
to

x̂1i =
N − λi
N

(x̂∗1i + x̂∗2,N−i+2) i = 2, . . . , N , (34)

x̂2,N−i+2 =
λi
N

(x̂∗1i + x̂∗2,N−i+2) i = 2, . . . , N. (35)

Moreover, because v2, . . . ,vN are orthonormal,

‖x∗j − xj‖22 =

N∑
i=2

(x̂ji − x̂∗ji)2 j = 1, 2. (36)

Finally, by using equations (34) and (35) in (36), Theorem 2
is proved. �

APPENDIX C
PROOF OF THEOREM (3)

Based on (29), (L1−J∗L2)x1 = (L2−J∗L1)x2. So, similar
to Appendix B

N∑
i=2

(λi−J∗(N−λi))x̂1ivi =

N∑
i=2

((N−λi)−J∗λi)x̂2,N−i+2vi,

(37)
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where VT
1 x1 = [0, x̂12, . . . , x̂1N ]T and VT

2 x2 =
[0, x̂22, . . . , x̂2N ]T . This leads to the following equations for
i = 2, . . . , N :

x̂1i =
(N − λi)− J∗λi

N
(x̂∗1i + x̂∗2,N−i+2) , (38)

x̂2,N−i+2 =
λi − J∗(N − λi)

N
(x̂∗1i + x̂∗2,N−i+2). (39)

Using these equations in (36) proves the theorem. �
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