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On Blind Methods in Signal
Processing

Christian Jutten, Massoud Babaie-Zadeh, Shahram Hosseini

Abstract— Blind methods are powerful tools when
very weak information is necessary. Although many
algorithms can be called blind, in this paper, we fo-
cus on blind source separation (BSS) and indepen-
dent component analysis (ICA). After a discussion
concerning the blind nature of these techniques, we
review three main points: the separability, the cri-
teria, the algorithms.

I. Introduction

Basically, the term blind in signal processing is
associated to methods in which weak information
about the signal is required. The methods are then
efficient when no information is available. For in-
stance, blind equalization techniques avoid to regu-
larly send known sequences for identifying the chan-
nel; the blind techniques are then more efficient in
term of communication rate. Another point of view
is that blind techniques use criteria (or cost func-
tions) which can be directly computed from the
data. The algorithms are sometimes said unsuper-
vised. For instance, in Kohonen’s self-organizing
maps (SOM) [35], the criterion is a mean square
error of quantization, which only depends on the
data and on the quantifiers.

In this paper, we focus on recent 1 techniques
called blind source separation (BSS) or indepen-
dent component analysis (ICA)[10], [30]. The
main difference is that BSS concerns signals (with
time properties) while ICA concerns more gener-
ally data. Anyway, BSS as well as ICA are driven
by statistical independence which can be computed
from the observations (i.e. blindly). In the con-
text of signal processing, BSS is then a much more
natural concept, and leads to many applications.

BSS in instantaneous nonlinear mixtures con-
sists in estimating n unknown sources from p ob-
servations x(t) = [x1(t), x2(t), · · · , xp(t)]T , which
are an unknown mapping of n unknown sources
s(t) = [s1(t), s2(t), · · · , sn(t)]T viewed by a set of
p sensors:

x(t) = F(s(t)), t = 1, . . . , T (1)

where F is a one-to-one mapping. In the following,
for sake of simplicity, we consider n = p.
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ence [28] and then in a journal in 1991 [32], [19]

F G-- -s x y

Fig. 1. General mixture and separation models.

The main assumption is the statistical indepen-
dence of the sources. Although it is physically plau-
sible, it is often considered as a strong assumption.
In fact, it rather contests Gaussian assumption and
relevance of decorrelation which have been so usual
and convenient for many years, and are much more
simpler to handle than non Gaussian and indepen-
dence. The term blind emphasizes on the fact that
(i) the sources are not observed, (ii) source distribu-
tion is unknown and a priori non Gaussian. Often,
people claims that it is also blind since there is no
information concerning the mapping F . As we will
see in section II, strong assumptions on the map-
ping structure are used, and are actually necessary
for insuring separability. Finally, it is often inter-
esting to exploit very general signal properties, like
temporal correlation (colored signals)[50], [9], [29]
or non stationarity [38], [43].

In this review paper, we mainly discuss on three
points: separability, independence criteria, algo-
rithms.

II. Separability

The basic idea of BSS consists in estimating
some inverse mapping G (Figure 1) of the trans-
formation F such that each component of the
output vector y(t) = G(x(t)), where y(t) =
[y1(t), y2(t), · · · , yn(t)]T , is a function of one source.
In the general case, the goal of separation is to ob-
tain

yi(t) = hi(sσ(i)(t)), i = 1, . . . , n (2)

where hi is any invertible mapping which is associ-
ated to a residual distortion.

Since the main assumption is the source inde-
pendence, one suggests to estimate G, such that
the estimated outputs y(t) = Gx(t) become statis-
tically independent. The key question is the follow-
ing: does output independence always insure sepa-
ration, i.e. y(t) = s(t) ?
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A. Indeterminacies

First, recall briefly the definition of independent
random vector.

Definition II-A.1: A random vector x is statis-
tically independent if its joint probability density
function (pdf) px(u) satisfies px(u) =

∏
i pxi

(ui),
where pxi

(ui) are the marginal pdf of the random
variables xi.

Then, it is clear that the product of a permutation
matrix P by any diagonal mapping both preserves
independence and insures separability.

Definition II-A.2: A one-to-one mapping H is
called trivial, if it transforms any random vector
s with independent components into a random vec-
tor with independent components.

The set of trivial transformations will be denoted by
T. Trivial mappings are then mapping preserving
the independence property of any random vector.
One can easily show that a one-to-one mapping H
is trivial if and only if it writes as:

Hi(u1, u2, . . . , un) = hi(uσ(i)), i = 1, 2, . . . , n (3)

where hi are arbitrary functions and σ is any per-
mutation over {1, 2, . . . , n}.

This result establishes a link between the inde-
pendence assumption and the objective of source
separation. In fact, it becomes clear in the follow-
ing that the source separation objective is, using
the independence assumption, to impose that the
global transformation H = G ◦ F is trivial.

However, from (3) it is clear that sources can
only be separated up to a permutation and a non-
linear function. In fact, for any invertible mappings
F(x) = [f1(x), . . . , fn(x)]T whose each component
is a scalar nonlinear mappings fi(x) = fi(xi), i =
1, . . . , n, it is evident that if px(u) =

∏
i pxi(ui),

then pF(x)(v) =
∏

i pfi(xi)(vi). Moreover, this is
not possible without imposing additional structural
constraints onH, as we shall see in the next section.

B. Results from factor analysis

In the general case, i.e. the mapping H has
no particular form, a well known statistical re-
sult shows that the independence conservation con-
straint is not strong enough to insure the separa-
bility in the sense of equation (2). This result has
been established, early in the 50’s, by Darmois [21]
where he used a simple constructive method for de-
composing any random vector as a non trivial map-
ping of independent variables.

This result is negative, in the sense that it
shows the existence of non trivial transformations
H which still ”mix” the variables while preserving
their statistical independence. Hence, for general
nonlinear transformations and without constraints
on the transformation model, source separation is

simply impossible by only using the statistical in-
dependence.

In the conclusion of [21], Darmois clearly states:
”These properties [...] clarify the general problem of
factor analysis by showing the large indeterminacies
it presents as soon as one leaves the field, already
very wide, of linear diagrams.”.

B.1 A simple example

A simple example derived from [47] is the fol-
lowing: suppose s1 ∈ R+ is a Rayleigh distributed
variable with pdf ps1(s1) = s1exp(−s2

1/2) and s2 ∈
[0, 2π) is uniform and independent of s1. Consider
the nonlinear mapping

[y1, y2] = H(s1, s2)
= [s1 cos(s2), s1 sin(s2)] (4)

which has a non diagonal Jacobian matrix

J =
(

cos(s2) −s1sin(s2)
sin(s2) s1cos(s2)

)
. (5)

The joint pdf of y1 and y2 is:

py1,y2(y1, y2) =
ps1,s2(s1, s2)

|J|

=
1
2π

exp(
−y2

1 − y2
2

2
)

= (
1√
2π

exp
−y2

1

2
)(

1√
2π

exp
−y2

2

2
)

The previous relation shows that the two random
variables y1 and y2 are independent (although they
are completely different of the sources) and Gaus-
sian.

Other examples can be found in the literature
(see for example Lukacs [37]) or can be easily con-
structed.

C. Specific model

The previous negative result is due to the fact
that we assume no constraints on the transforma-
tion H. Constraining the transformation H in a
certain set of transformations Q can reduce these
large indeterminacies.

To characterize the indeterminacies for a specific
model Q, one must solve the independence preser-
vation equation which writes as:

∀E ∈ Mn∫
E

dFs1dFs2 · · · dFsn =
∫
H(E)

dFy1dFy2 · · · dFyn(6)

where Mn is a σ-algebra on Rn.
Let P denote the set :

P = {(Fs1 , Fs2 , . . . , Fsn), /∃H ∈ Q \ (T ∩Q) :
H(s) has independent components} (7)
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This set P contains all source distributions for
which there exists a non trivial mapping H belong-
ing to the model Q and preserving the indepen-
dence of the s components.

An ideal model will be such that P is empty and
T ∩ Q contains the identity as a unique element.
However, in general this is not fulfilled, we then say
that source separation is possible when the sources
distribution is in P̄, the complement of P, sources
are then restored up to a trivial transformation be-
longing to T ∩Q.

C.1 Example: Linear models

In the case of linear models, the transformation
F is linear and can be represented by an n × n
matrix A, the observed signals write then as e =
As. Source separation consists then in estimating a
matrix B such that y = Be = Hs has independent
components.

The set of linear trivial transformations T∩Q is
the set of matrices equal to the product of a per-
mutation and a diagonal matrix.

Considering two linear functions of n indepen-
dent random variables si, i = 1, . . . , n:

x1 = a1s1 + . . . + ansn

x2 = b1s1 + . . . + bnsn

the Darmois-Skitovich theorem [21] states that, if
aibi 6= 0, independence of x1 and x2 implies that si

is Gaussian. From this theorem, it is clear that the
set P contains the distributions having at least two
Gaussian components.

We then conclude that source separation is possi-
ble whenever we have at most one Gaussian source,
sources are then restored up to a permutation and
a diagonal matrix [17].

D. Separation of PNL mixtures

A postnonlinear model (PNL) consists in nonlin-
ear observations of the following form:

xi(t) = fi(
n∑

j=1

aijsj(t)), i = 1, . . . , n, (8)

Figure 2 shows what this model looks like. One
can see that this model is a cascade of a linear mix-
ture and a component-wise nonlinearity, i.e. acting
on each output independently from the others. The
nonlinear functions (distortions) fi are supposed in-
vertible.

Besides its theoretical interest, this model, be-
longing to the L-ZMNL2 family, suits perfectly for
a lot of real world applications. For instance, such
models can be found in sensors arrays [41], satellite
and microwave communications [46], and in a lot of
biological systems [36].

2L stands for Linear and ZMNL stands for Zero-Memory
NonLinearity.
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Fig. 2. The mixing-separating system for PNL mixtures.

As discussed before, the most important thing
when dealing with nonlinear mixtures is the sepa-
rability problem. First, we must think about the
separation structure G which has as constraints:
1. Can invert the mixing system in the sense
of equation (2): this constraint is quite obvious be-
cause that is what we want!
2. Be as simple as possible: In fact we want
to reduce, in case we are successful, the residual
distortions hi which are the blind spot of the inde-
pendence assumption.
By defining these two constraints, we have no other
choice that selecting for the separating system G the
mirror structure of the mixing system F (Fig. 2).

E. Other separable non linear mixtures

Due to the interesting Darmois’s result for linear
mixtures, it is clear that nonlinear mixtures which
could be reduced to linear mixtures with a simple
mapping would be separable.

E.1 A simple example

As an example, one can consider multiplicative
mixtures:

xj(t) =
n∏

i=1

sαi
i (t), j = 1, . . . , n (9)

where si(t) are positive independent sources. Tak-
ing the logarithm leads to:

ln xj(t) =
n∑

i=1

αi ln si(t), j = 1, . . . , n (10)

which is a linear model of the new independent
random variables (since ln is monotonous) ln si(t).
For instance, this type of mixtures can be used
for modeling the gray-level images as the prod-
uct of incident light and reflected light [25], or the
cross-dependency between temperature and mag-
netic field in Hall silicon sensor. Considering in
more details the latter example, the Hall voltage
[45] is equal to:

VH = kBTα (11)

where α depends on the semiconductor type, since
the temperature effect is related to the mobility of
the majority carriers. In fact, in this model, the
temperature T is positive, but the sign of the mag-
netic field B can vary. Then, using two types (N
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and P) of sensors, we have:

VHN
(t) = kNB(t)TαN (t) (12)

VHP (t) = kP B(t)TαP (t) (13)

For simplifying the equations, in the following, we
drop the variable t. Then, taking the logarithm:

ln | VHN |= ln kN + ln | B | +αN ln T (14)
ln | VHP

|= ln kP + ln | B | +αP ln T (15)

The above equations can be easily solved, even with
simple decorrelation approaches. However, in that
case, it is still simpler to directly compute the ratio
of the two above equations :

R =
VHN

VHP

=
kN

kP
TαN−αP (16)

which only depends on the temperature. Then,
since R is a temperature reference (up to a scale
factor), for separating the magnetic field, it is suffi-
cient to estimate the parameter k such that VHN

Rk

becomes uncorrelated with R. We then deduce B(t)
up to a mutiplicative constant. Finally, absolute es-
timations of B and T require calibration steps.

E.2 Generalization to a class of mappings

This extention of the Darmois-Skitovic theorem
to more general nonlinear functions has been ad-
dressed in beginning of 70’s by Kagan et al. [33].
Their results have recently been revisited in the
framework of source separation in nonlinear mix-
tures by Eriksson and Koivunen [25]. The main
idea is to consider particular mappings F satisfy-
ing an addition theorem in the sense of the theory of
functional equations. As a simple example of such
a mapping, consider:

x1 =
s1 + s2

1 + s1s2

x2 =
s1 − s2

1− s1s2

where s1 and s2 are two independent random vari-
ables. Now, with the variable transformations u1 =
tan−1 s1 and u2 = tan−1 s2, the above nonlinear
model becomes:

x1 = tan(u1 + u2)
x2 = tan(u1 − u2)

Then, applying again the variable transformation
on x1 and x2 leads to:

v1 = tan−1(x1) = u1 + u2

v2 = tan−1(x2) = u1 − u2

which is now a linear mixture of two independent
variables. As explained Kagan et al., the nice result

is due to the the fact that tan(a + b) is a function
of tan a and tan b:

tan(a + b) =
tan a + tan b

1 + tan a tan b
(17)

More generally, this property will hold provided
than we consider mappings F satisfying an addition
theorem like:

f(s1 + s2) = F [f(s1), f(s2)] (18)

Let the range of u ∈ S be in the range [a, b], the
basic properties required for the mapping (in the
case of two variables, but extension is straightfor-
ward) are the following:
• F is continuous at least separately for the 2 vari-
ables,
• F is commutative, i.e. ∀(u, v) ∈ S2, F(u, v) =
F(v, u),
• F is associative, i.e. ∀(u, v, w) ∈ S3,
F(F(u, v), w) = F(u,F(v, w))
• It exists an identity element e ∈ S such that
∀u ∈ S, F(u, e) = F(e, u) = u
• ∀u ∈ S, it exists an inverse element u−1 ∈ S
such that F(u, u−1) = F(u−1, u) = e

In other words, denoting u ◦ v = F(u, v), it means
that the set (S, ◦) is an Abelian group. Under this
condition, Aczel [1] proved that it exists a mono-
tonic and continuous function f : R → [a, b] such
that:

f(x + y) = F(f(x), f(y)) = f(x) ◦ f(y) (19)

Clearly, applying f−1 (which exists since f is mono-
tonic) to the above equation leads to:

x + y = f−1(F(f(x), f(y))) = f−1(f(x) ◦ f(y))
(20)

Using the above property (19), one can define a
product ? with integer and extend it to real:

f(cx) = c ? f(x) (21)

or, taking f−1 and denoting f(x) = u,

cf−1(u) = f−1(c ? u) (22)

Then, for any constants c1, . . . , cn and random
variables u1, . . . , un, the following relation holds:

c1f
−1(u1)+. . . cnf−1(un) = f−1(c1?u1◦. . .◦cn?un)

(23)
Finally, Kagan et al. stated the following theo-

rem:
Theorem II-E.1: Let u1, . . . , un be independent

random variables such that

x1 = a1 ? u1 ◦ . . . ◦ an ? un

x2 = b1 ? u1 ◦ . . . ◦ bn ? un

are independent, and where the operators ? and ◦
satisfy the above conditions. Then, denoting f the
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function defined by the operator ◦, f−1(ui) is Gaus-
sian if aibi 6= 0.

Practically, with such mixtures, the separation
can be done in 3 steps:
• Apply f−1 to the nonlinear observations for pro-
viding linear mixtures in si = f−1(ui)
• Solve the linear mixtures in si by any BSS
method
• Restore the actual independent sources by apply-
ing ui = f(si)

If the function f is known, it is very easy. If
f is not known, but if you suspect that the non-
linear mixtures has this particular form, you can
constraint the separation structure to consist of
identical nonlinear component-wise blocs (able to
approximate f−1) followed by a linear matrix B
able to separate sources in linear mixtures, and fol-
lowed itself by identical non-linear component-wise
blocs (which approximate f) for restoring the ac-
tual sources. We remark that the 2 first blocs of
the structure are identical (in fact, a little bit sim-
pler, since all the nonlinear blocs are the same) to
the separation structure of PNL mixtures. We can
then estimate the independent distorted sources si

with a PNL algorithm. Then, after computing f
from the nonlinear bloc estimations, one can restore
the actual sources.

Finally, one can remark that the PNL mixture is
close to these mappings. It is in fact more general
since the nonlinear functions fi can be different.
Other examples of such mappings are given in [33],
[25], but realistic mixtures belonging to this class
seems unusual.

III. Independence criterion

The previous section on separability points out
that output independence, under a few structural
constraints on the mixtures, is strong enough for
driving the estimation of the separating structure
G. In this section, we propose to study in more
details the key concept of source separation: the
statistical independence.

A. Kullback-Leibler divergence

Let y denote the output random vector, indepen-
dence of y is defined by:

py(u) =
∏

i

pyi(ui) (24)

but this relation between pdf’s is not easily
tractable. A more convenient (scalar) measure of
independence is derived from the Kullback-Leibler
divergence 3 which measures the similarity between
two distributions p and q of the same variable y:

KL(p ‖ q) =
∫

p(u) log
p(u)
q(u)

du (25)

3it is not a distance, since it is not commutative

It can be shown that KL(p ‖ q) is greater of equal
to 0, and the equality holds if and only if p = q.
Then, independence can be computed like the KL
divergence between py and

∏
i pyi :

KL(py ‖
∏

i

pyi) =
∫

py(u) log
py(u)∏
i pyi(ui))

du

(26)
which vanishes if and only if py =

∏
i pyi

, i.e. y
is independent. This quantity is often called mu-
tual information and denoted I(y) [20]. Defining
H(y) and H(yi) the joint and marginal entropies,
respectively:

H(y) = −
∫

py(u) log py(u)du

H(yi) = −
∫

pyi
(ui) log pyi

(ui)dui

the mutual information can be written:

I(y) = KL(py ‖
∏

i

pyi) =
∑

i

H(yi)−H(y) (27)

B. Estimating equations

Due to MI properties, estimation of the separa-
tion structure can then be obtained by minimiz-
ing MI. Although the general relation (27) can be
directly derived for providing the estimation equa-
tions, usually, this equation is simplified taking into
account the separation structure.

B.1 MI optimization for linear mixtures

For linear mixtures, F is a n×n invertible matrix
F = A, and the separation structure is constrained
to be a n × n invertible matrix B. Since y = Bx
and x = As, the relation between x and y pdf’s
writes:

py(u) = px(B−1u)/ | detB | (28)

and the MI becomes:

I(y) =
∑

i

H(yi)−H(x)− log | detB | (29)

Then MI optimization with respect to the sepa-
ration matrix B requires the gradient:

∂I(y)
∂B

=
∂

∂B

∑

i

H(yi)−B−T (30)

Finally, since yi =
∑

i bikxk, the derivative of MI
with respect to B is:

∂I(y)
∂B

= EΨyxT −B−T (31)

where E denotes mathematical expectation and
Ψy = [Ψy1 . . . Ψyn ]T , whose component Ψyi is the
score function of yi defined as:

Ψyi(yi) = −∂ log pyi(yi)
∂yi

= −p′yi

pyi

(yi) (32)
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After right multiplication by BT , one gets the esti-
mation equation:

EΨyyT − I = 0 (33)

where I is the n × n identity matrix. The expres-
sion (33) points out the relevance of score func-
tions. In fact, the complete knowledge on each es-
timated sources yi is summarized in the score func-
tion Ψyi . Moreover, the score functions are related
to the optimal statistics. In fact, if yi is zero-mean
Gaussian with unit variance, its score function is
Ψyi

(yi) = yi, and the estimating equation entries
reduce to Eyiyj = δij , i.e. simple decorrelation
equations (for i 6= j). Conversely, if yi is non Gaus-
sian, its score function is a nonlinear function and
estimating equation entries Eψyi

(yi)yj = δij in-
volve cancellation of higher (than 2) order statis-
tics.

B.2 MI optimization for nonlinear mixtures

For nonlinear mixtures, we assume that F and
G are both n-variate invertible mappings. Since
y = G(x) and x = F(s), the relation between x
and y pdf’s writes:

py(u) = px(G−∞(u))/ | detJG | (34)

and the MI becomes:

I(y) =
∑

i

H(yi)−H(x)− log | detJG | (35)

In the special case of PNL mixtures, MI simplifies
to:

I(y) =
∑

i

H(yi)−H(x)− log | Πig
′
i(xi) |

− log | detB | (36)

Consequently, MI minimization leads to two equa-
tions for estimating the nonlinear part and the non-
linear part of the separating structure. Equations
related to linear part is similar to (33). Conversely,
denoting zi = gi(xi), equations related to the non-
linear part is:

E[
∑

i

bijΨyi(yi) | zj ] = Ψzj (zj), j = 1, . . . , n (37)

Again, one remarks that optimal minimization of
MI requires knowledge of the score functions.

B.3 Direct MI optimization

One also can optimize directly the MI I(y) =∑
i H(yi)−H(y) with respect to B:

∂I(y)
∂B

= EΨyxT − EΦyxT = EβyxT (38)

where
• E denotes mathematical expectation,

• Ψy = [Ψy1 . . . Ψyn ]T whose component Ψyi is the
marginal score function of yi defined as in (32)
• Φy(y) = [Φ1(y) . . . Φn(y)]T whose component
Φi(y) is the joint score function of y defined as:

Φi(y) = −∂ log py(y)
∂yi

(39)

• βy , Ψy−Φy is the difference between marginal
and joint score functions of y, and we call it SFD
(Score Function Difference).

After right multiplication by BT , one gets the
estimation equation:

EΨyyT − I = 0 or EβyyT = 0 (40)

B.4 MI optimization for linear convolutive mix-
tures

For linear convolutive mixtures, F is a n× n in-
vertible matrix of filters F = A(z). For instance, if
A(z) is a finite impulse response filter of order L,
the observation is:

x(k) = [A(z)]s(k) =
L∑

l=0

Als(k − l) (41)

The separation structure is then constrained to be
a n× n invertible matrix of filters G = B(z):

y(k) = [B(z)]x(k) =
p∑

l=0

Blx(k − l) (42)

Unfortunately, due to the filter, there is no simple
relationship between x and y pdf’s. So, we have to
derive the basic MI equation

I(y) =
∑

i

H(yi)−H(y) (43)

In fact, it can be shown [5] that up to first order
terms, we have:

I(y + ∆)− I(y) = E∆T βy (44)

where ∆ stands for a ‘small’ random vector. This
equation proposes that SFD is the stochastic gra-
dient of the mutual information.

Moreover, it must be noted that signal indepen-
dence in convolutive mixtures means stochastic pro-
cess independence. Then, we have to take into ac-
count independence between delayed signals. For
sake of simplicity, consider only the above term
and derive it with respect to Bk. To do that, let
B̂k = Bk + ε, where ε represents a ‘small’ matrix.
Then we have:

ŷ(n) , [B(z)]x(n) = y(n) + εx(n− k) (45)

Now by combining the above equation with (44),
and doing a little algebra, we find that:

∂I(y(n))
∂Bk

= Eβy(y(n))xT (n− k) (46)

6
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However, we need the gradient of the MI of the
delayed versions of outputs, that is, the gradient of
I(y1(n), y2(n −m)) (in the case of 2 mixtures of 2
sources). This gradient can be found with a similar
approach, which is:

∂I(y1(n), y2(n−m))
∂Bk

= Eβm(n)xT (n− k) (47)

where β(n) is obtained by the following procedure:
(

y1(n)
y2(n)

)
Shift−−−→

(
y1(n)

y2(n−m)

)
SFD−−−→

(
β?

1(n)
β?

2(n)

)
Shift back−−−−−−−→

(
β?

1(n)
β?

2(n + m)

)
, βm(n)

(48)

Hence, the complete set of estimating equations is:

Eβm(n)xT (n− k) = 0 , ∀k, m (49)

It is equivalent to using the separation criterion:

J =
∑
m

I(y1(n), y2(n−m)) (50)

However, minimizing J is very cost consuming.
Hence, in practice, we use I(y1(n), y2(n−m)), but
in each iteration a (randomly chosen) different m is
used [3].

B.5 MI optimization for convolutive PNL (CPNL)
mixtures

The approaches of the sections III-B.2 and III-
B.4 can be combined for separating convolutive
PNL (CPNL) mixtures [4]. In these mixtures, a lin-
ear convolutive mixture is followed by component-
wise invertible non-linearities (corresponding to
sensors). The separation criterion is as (50). This
results in the same estimating equation (49) for es-
timating the convolutive part, and the estimating
equation:

E[αi | zi] = 0, i = 1, 2 (51)

for non-linear part. In this equation α = (α1, α2)T

is defined by:

α(n) ,
p∑

k=0

BT
k βm(n + k) =

[
BT

(
1
z

)]
βm(n)

(52)
where βm(n) is given by (48).

C. Criteria for constrained separation structures

As we explained, constraining the separation
structures can reduce the indeterminacies and even
insuring separability. It also can have a direct influ-
ence on the independence criterion. In this section,
we show how the MI is modified by two usual con-
straints.

C.1 Separating structure with pre-whitening

Many methods [15], [31] are based on the follow-
ing decomposition of the separation matrix B:

B = UW (53)

where W is a whitening matrix and U is an orthog-
onal matrix. Let us denote z = Bx, z is whitened
means that it satisfies EzzT = I. The decomposi-
tion also forces the output variance to be equal to 1
(since U is orthogonal, y = Uz satisfies EyyT = I)
which relaxes the scale indeterminacies. Then, the
MI of the outputs can be written:

I(y) =
∑

i

H(yi)−H(z)− log | detU | (54)

Moreover, after computing (at the second order)
the whitening matrix W, the joint entropy H(z) is
a constant and, since the determinant of an orthog-
onal matrix is equal to 1, MI reduces to:

I(y) =
∑

i

H(yi) + cst (55)

Minimizing the MI is then equivalent to minimiz-
ing the sum of the marginal output entropies. It
is well known that, for random variables with a
given variance, the entropy is maximal for Gaus-
sian variables. Consequently, since output variance
is constant EyyT = I, (55) can be seen as a mea-
sure of gaussianity. In other words, minimizing MI
is equivalent to minimizing the gaussianity of the
estimated sources.

C.2 Infomax

Another approach, initially proposed by Bell and
Sejnowski [7], consists in computing transformed
output signals z, obtained by component-wise in-
vertible nonlinear mapping Fyi :

zi = Fyi(yi), i = 1, . . . , n (56)

where Fyi is the cumulative probability density
function of the random variable yi. Since MI is not
modified by component-wise invertible mappings,
one can write:

I(z) = I(y) =
∑

i

H(zi)−H(z) (57)

Each transformed variable zi being uniformly dis-
tributed in [0, 1], MI becomes:

I(z) = I(y) = cst−H(z) (58)

Consequently, minimizing the MI is equivalent to
maximazing the joint entropy of the transformed
outputs z: the algorithm associated to this con-
straint is called Infomax.

7
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D. Estimating the estimation equations

As we explained after deriving the gradient of MI
for various mixtures in III-B, the key information
concerning the estimated sources is their score func-
tions, i.e the opposite of the derivatives of their log-
densities. If the score functions are a priori chosen,
the statistics involved in the estimating equations
are not optimal.

However, for estimating the separation matrix (in
linear mixtures), one can remark that a very accu-
rate estimation of score functions is not necessary.
In fact, the estimating equation (33) leads to the
set of equations:

Eψyi(yi)yj = 0, i 6= j (59)

since diagonal terms of (33) are only normalization
equations. If the yi’s are statistically independent
zero-mean variables (i.e. Eyj = 0, i = 1, . . . , n), it
is clear that:

Eψyi
(yi)yj = Eψyi

(yi)Eyj = 0, i 6= j (60)

even with a poor estimation equation of ψyi . How-
ever, a coarse estimation of the score function leads
to slower convergence or even to algorithm diver-
gence.

Conversely, solving equation (37), associated to
nonlinear part estimation, requires an accurate es-
timation of the score functions which appear both
in left and right side terms on the equation. A com-
parison between 4-th order estimations obtained
with a Gram-Charlier expansion and a MSE crite-
rion is presented in [47]. It emphasizes on the weak
accuracy of 4-th Gram-Charlier expansion, and ex-
plained the difficulties for separating hard nonlinear
mixtures when deriving MI with this expansion [53]
.

In any case, the score function estimation is very
important for determining the optimal statistics
and for designing efficient separation algorithms.

D.1 Estimating the score function from the density

Since the score function is related to the prob-
ability density function, a natural approach is to
first estimate the pdf (or the logarithm of the pdf),
and then to deduce the score function with:

ψ̂yi(yi) =
p̂′yi

p̂yi

(yi) (61)

Various methods for estimating pdf’s are very usual
in statistics. A first approach is based on Gram-
Charlier or Edgeworth expansions of the density
pyi around Gaussian [34]. Without considering de-
tails, we can note that these expansions explicitely
involve high-order cumulants.

Another approach is based on kernel estimator of
pdf’s [26]:

p̂X(u) =
1
T

T∑

i=1

Kh(u−Xi) (62)

where the Xi’s are samples of the random variable
X, and h is the bandwidth which determines the
width of each kernel. Larger is h, smoother is the
estimation. Of course, h depends on the sample
number T . Experimentally, it seems that an op-
timal choice of h, based on cost-computing cross-
validation, is not required, and a simple rule [47] is
efficient.

D.2 Direct estimation of score functions

Score functions can also be directly estimated for
minimizing a mean square error. In fact, denoting
ψ̂(w, u) a parametric estimation of ψ(u), and us-
ing the definition of the score function, the MSE
criterion:

J(w) =
1
2
E(ψ̂(w, u)− ψ(u))2 (63)

leads to the gradient:

∂J(w)
∂w

= E[ψ̂(w, u)
∂ψ̂

∂w
(w, u) +

∂2ψ̂

∂u∂w
(w, u)]

(64)
The above gradient can be used for estimating any
type of model, e.g. based on a basis of nonlin-
ear functions [44], [12], on neural networks [47], or
on other nonlinear models like splines, polynomials,
etc.

E. Contrast functions

Constrast functions, initially defined by Donoho
[24] for blind deconvolution, have been introduced
by Comon [16], [17] in the framework of blind source
separation.

E.1 Definition

Basically, a contrast function is a real function of
a distribution y, which should be minimal if y is
independent. For linear mixtures, the definition is
the following:

Definition III-E.1: A function φ[s] of the distri-
bution s is a contrast function if, for any matrix
C and any random variable s, φ[Cs] ≥ φ[s], with
equality if and only if C = PD, where P and D
are a permutation matrix and a diagonal matrix,
respectively.

The above definition has been extended to con-
volutive mixtures [18] or nonlinear mixtures, PD
being replaced by trivial filters PD(z) or by trivial
nonlinear mappings hi(sσ(i)). Contrast functions
are then good candidates for driving source sepa-
ration algorithms, since they should be minimum
when source separation is achieved.

8
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Then, a main issue is to find contrast functions as
simple as possible.

E.2 A few examples

First, it is easy to verify that MI is a con-
trast function. However, this function is complex
enough, since it requires the estimation of score
functions. Conversely, it is easy to see that EyyT

is not a contrast, which is not surprising since we
know that second order statistics does not gener-
ally insure independence. In fact, adding high or-
der statistics up to order 3 or 4, can lead to the
simplest contrast functions. However, these con-
trast functions are often associated to restrictive
conditions on the sources. For instance, the simple
function:

φ[y] = ε

n∑

i=1

| Cumyi, yi, yi, yi | (65)

is a contrast for sources with the same kurtosis
sign ε. If not, the algorithm diverges! Moreover,
simpler contrasts can be derived under structural
constraints. For instance, the decomposition of the
separation matrix B = UW leads to the class of
orthogonal contrasts. An detailed and very inter-
esting discussion on contrast functions can be found
in [10].

F. Performance

In the case of linear mixtures, the choice of the
contrast functions influence convergence speed, but
asymptotic performance is weakly dependent of the
contrast function, provided than the algorithm con-
verges. On the contrary, Cardoso proved [10] that
asymptotic performance is penalized by using a pre-
whitening.

IV. Using time structure

When the sources are time signals, they may con-
tain more structure than simple random variables.
This time structure (correlation, non-stationarity,
etc.) may be used for improving the estimation.
It may even make the separation possible in cases
where the basic ICA methods fail, for example, if
the sources are Gaussian but correlated or non-
stationary over time.

A. Correlated sources

The time dependence between successive samples
of the signals may be explored in different manners.
While simple second order approaches consider only
the time-lagged covariance matrices, more compli-
cated methods may consider the higher order time-
lagged statistics or even the joint pdf of successive
time samples, for example using Markov models.

A.1 Second order approaches

It is known that the instantaneous (zero-lagged)
covariance matrix does not contain enough param-

eters for solving the ICA problem up to classical
indeterminacies. If x(t) is the vector of observa-
tions (mixtures), there exists an infinity of different
matrices V so that the components of the vector
y(t) = Vx(t) are decorrelated. This is why in basic
ICA, we must use higher order statistics. However,
if the sources are correlated in time, using the time-
lagged covariance matrices,

Cx
τ = E

{
x(t)x(t− τ)T

}
, (66)

we can obtain the complementary information for
separating the sources without using higher order
statistics. In the simplest case, we can find a sep-
arating matrix which diagonalizes both the instan-
taneous and the first lagged covariance matrices. It
has been shown that such a matrix reconstructs the
sources up to classical indeterminacies, if the first
lagged covariances are different for all the sources.
The algorithms presented in [49] and [39] are exam-
ples of first lagged covariance diagonalization algo-
rithms. The method may be extended by using
the joint diagonalization of several time lagged co-
variances [9], [55], [22]. A good review about sec-
ond order approaches can be found in chapter 18 of
[30]. The main drawback of these methods is that
they are not able to separate the sources with same
power spectra.

A.2 Markov models

Another possibility is to exploit the complete
time dependence structure of the sources, which is
modeled as q-th order Markov sequences for sim-
plicity. Such models can be completely character-
ized by the joint probability density of q + 1 suc-
cessive samples of each source. Then, a quasi max-
imum likelihood (ML) method may be used for es-
timating the separating matrix B.

Basically, the ML method consists in maximizing
the joint pdf of all the T samples of all the compo-
nents of the vector x (all the observations), with
respect to B. We denote this pdf:

f(x1(1), · · · , xn(1), · · · · · · , x1(T ), · · · , xn(T ))
(67)

Under the assumption of source independence, this
function is equal to:

(
1

|det(B−1)| )
T

n∏

i=1

fsi(e
T
i Bx(1), · · · , eT

i Bx(T ))

(68)
where fsi(.) represents the joint density of T sam-
ples of the source si and ei is the i-th column of the
identity matrix. We suppose now that the sources
are q-th order Markov sequences, i.e.:

fsi(si(t)|si(t− 1), · · · , si(1)) =
fsi(si(t)|si(t− 1), · · · , si(t− q)) (69)

9
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Using (69), equation (68) reduces to:

(
1

|det(B−1)| )
T

n∏

i=1

[fsi(e
T
i Bx(1), · · · , eT

i Bx(q))

T∏
t=q+1

fsi
(eT

i Bx(t)|eT
i Bx(t− 1), · · · ,

eT
i Bx(t− q))] (70)

Taking the logarithm of (70), one obtains the log-
likelihood function which must be maximized to es-
timate the separating matrix B:

L1 = T log(| det(B)|) +
n∑

i=1

[log(fsi
(eT

i Bx(1), · · · ,

eT
i Bx(q))) +

T∑
t=q+1

log(fsi
(eT

i Bx(t)|eT
i Bx(t− 1)

, · · · , eT
i Bx(t− q)))]

(71)

In practice, the density functions of the true
sources, fsi in (71), are unknown and must be re-
placed with the estimated density functions of re-
constructed sources, fyi . Then, the criterion (71)
becomes asymptotically:

L2 = − log | det(B)| −
n∑

i=1

E[log fyi(yi(t)|yi(t− 1),

· · · , yi(t− q))]
(72)

To estimate the matrix B, we need to compute the
gradient of the criterion (72) with respect to B:

∂L2

∂B
= −B−T − E[

∂

∂B

n∑

i=1

log fyi(yi(t)|yi(t− 1)

, · · · , yi(t− q))]
(73)

Using some computations, the following estimating
equations can be derived (for i 6= j):

E[
q∑

l=0

ψ(l)
yi

(yi(t)|yi(t−1), · · · , yi(t−q))yj(t− l)] = 0

(74)
which determine B up to a scaling and a per-
mutation. In these equations, ψ

(l)
yi (yi(t)|yi(t −

1), · · · , yi(t − q)) = − ∂
∂yi(t−l) log fyi(yi(t)|yi(t −

1), · · · , yi(t−q)) is the l-th component of the condi-
tional score function, which is a vector of size q +1.
The conditional score functions are estimated using
a kernel method.

The algorithm is theoretically able to separate
every linear mixture unless there are at least two
Gaussian sources with same spectral densities. It

provides an asymptotically efficient (unbiased, min-
imum variance) estimation of the separating ma-
trix. It is however rather slow because estimating
the conditional score functions is time-consuming.

B. Non stationary sources

The non stationarity of the sources can be also
exploited to achieve separation. In particular,
the non stationarity of the source variances has
been used for separating Gaussian or non Gaussian
sources with no temporal correlation. The simplest
approach consists in considering the second order
statistics, i.e. correlation between different sources.
It has been shown [38] that if σ2

i /σ2
j are not con-

stant for ∀i 6= j, a matrix B so that the components
of y(t) = Bx(t) are uncorrelated at every time in-
stant t, is a separating matrix. A practical algo-
rithm consists in estimating the instantaneous co-
variance matrix on short time intervals over which
the signals are supposed stationary. Because of the
non stationarity of the sources, this matrix depends
on the interval label. Thus, an adaptive algorithm
may be used for diagonalizing this matrix on all
the intervals. Other algorithms based on the non
stationarity of the source variances can be found in
the literature [8], [43]. From a theoretical point of
view, in [43], Pham and Cardoso derived a Gaus-
sian form of the MI in that case and proved very
interesting properties of the criterion and of the
associated algorithms. Practically, the algorithms
are still based on joint diagonalization of covariance
matrices, computed on successive time windows.

V. Algorithms

Many algorithms have been developed in the lit-
erature since 1985 (see in [30] for a review and most
of the references). However, a few principles are
very important and will be pointed out in this sec-
tion.

A. Equivariant algorithms

The convergence speed of the first algorithms
[28], [14] was depending on the mixture A. For
overcoming this problem, Cichocki et al. proposed
the first robust (equivariant 4) algorithm [13]. Inde-
pendently, instead additive algorithms of the form
B ← B − µ∂J(y)

∂B , Cardoso introduced algorithms
(for separating linear mixtures) based on multi-
plicative updates: B ← (I − µOB(J))B. Left-
multiplying this relation by A leads to:

C ← (I− µOB(J(Cs))C (75)

which clearly does no longer depend on the mixing
matrix A. The algorithm is then based on the dif-
ferential of J((I+ε)y), which has been derived inde-
pendently by Cardoso and Laheld [11], and Amari

4The word ”equivariant” has been introduced later by Car-
doso and Laheld
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et al. [2], under different names, relative and natu-
ral gradients, respectively.

B. Joint diagonalization

In the previous section, we explained how, relax-
ing the i.i.d. assumption, with colored signals (first
”i” no longer holds) or with non stationary sources
(”i.d.” non longer holds), MI (or ML) criterion leads
to joint diagonalization of variance-covariance ma-
trices. Then, a special interest has been focused on
the designing of efficient joint diagonalization algo-
rithms [52], [42], [54]. We especially recommend the
algorithm proposed by Pham [42] for its simplicity,
its high speed and its performance.

C. Minimizing Mutual Information

Finally, deriving quasi-optimal 5 algorithms min-
imizing MI is possible. The algorithm is then based
on (i) the estimations ψ̂yi

of the score functions
of the estimated sources yi, (ii) the estimation of
the separation structure with estimating equations
where the true score functions ψyi are replaced by
the estimations ψ̂yi [44], [12], [47]. An interac-
tive demonstration of such algorithms, developed
in Java (and the Matlab codes), is available on the
Web page:

http://www.lis.inpg.fr/demos/sep_sourc/
ICAdemo/index.html.

It shows the efficacy of these algorithms for sepa-
rating linear as well as post-nonlinear mixtures and
for achieving blind deconvolution and blind inver-
sion of Wiener systems.

VI. Conclusion

In this paper, we reviewed a few key points on
the blind source separation and independent com-
ponent analysis.
Concerning the separability, one has to remember
that statistical independence cannot generally in-
sures separation. In fact, a large class of non diago-
nal mapping preserves independence, and adding
structural constraints is a good approach for re-
stricting the solutions to trivial mappings. The
methods are also strongly related to blind decon-
volution or blind inversion of Wiener (nonlinear)
systems: it is easy to see that the problems are
very similar to source separation in linear or post-
nonlinear mixtures, respectively [48].
These blind methods, based on statistical indepen-
dence, are driven by the minimization of the mutual
information (MI). Simple approximations of the MI
leads to algorithms generally having a few restric-
tions. Conversely, approximations based on score
function estimation can provide quasi-optimal al-
gorithms.

5’quasi’ since they used estimated score functions instead
the true (unknown) ones

However, this new and very active field of re-
search emphasizes still many challenging questions.
As examples, designing efficient methods for sep-
arating sources (i) from realistic MIMO convolu-
tive mixtures, (ii) from noisy mixtures, (iii) from
mixtures with more sources than sensors, (iv) from
nonlinear mixtures, are among the most relevant.
The development of independent component anal-
ysis (ICA) for sparsely representing complex data
like speech or images [23], [51] (with a basis whose
elements are as independent as possible) and for un-
derstanding how the brain could sparsely code such
complex signals [6], [27], [40], is also an promising
topics of research.
Finally, although promising applications has been
developed in many fields (EEG and MEG signal
processing, communications, smart sensor array de-
sign, ”cocktail party” processing, etc.), a lot of
works remains to do for considering these methods
as an usual tools in signal processing or statistics
toolboxes.

References

[1] J. Aczel. Lectures on functional equations and their
applications. Academic Press, New-York, 1966.

[2] S. Amari, A. Cichocki, and H. Yang. A new learn-
ing algorithm for blind signal separation. In Advances
in Neural Information Processing Systems, pages 757–
763, Denver (Colorado), December 1996.

[3] M. Babaie-Zadeh, C. Jutten, and K. Nayebi. Separating
convolutive mixtures by mutual information minimiza-
tion. In Proceedings of IWANN 2001, Granada, Spain,
2001.

[4] M. Babaie-Zadeh, C. Jutten, and K. Nayebi. Separating
convolutive post non-linear mixtures. In Proceedings of
ICA 2001, San Diego (California, USA), 2001.

[5] M. Babaie-Zadeh, C. Jutten, and K. Nayebi. Differen-
tial of mutual information function. IEEE Signal Pro-
cessing Letters, 2002. Submitted in May.

[6] H. B. Barlow. Unsupervised learning. Neural Compu-
tation, 1:295–311, 1989.

[7] A. Bell and T. Sejnowski. An information-maximization
approach to blind separation and blind deconvolution.
Neural Computation, 7(6), 1995.

[8] A. Belouchrani and M. Amin. Blind source separation
based on time-frequency signal representation. IEEE
Trans. on Signal Processing, 46(11):2888–2897, 1998.

[9] A. Belouchrani, K. Abed Meraim, J. F. Cardoso, and
E. Moulines. A blind source separation technique based
on second order statistics. IEEE Trans. on Signal Pro-
cessing, 45(2):434–444, 1997.

[10] J.-F. Cardoso. Blind signal separation: statistical prin-
ciples. Proceedings IEEE, 9(10):2009–2025, 1998.

[11] J.-F. Cardoso and B. Laheld. Equivariant adaptive
source separation. IEEE Trans. on SP, 44(12):3017–
3030, 1996.

[12] N. Charkani and Y. Deville. Optimization of the asymp-
totic performance of time-doamin convolutive source
separation algorithms. In Proc. ESANN, pages 273–
278, Bruges, Belgium, April 1997.

[13] A. Cichoki, Unbehauen R., and E. Rummert. Robust
learning algorithm for blind separation of signals. Elec-
tronics Letters, 30(17):1386–1387, 1994.
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grandeurs primitives dans un message composite par
une architecture de calcul neuromimétique en appren-
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