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Abstract. This paper is a survey of semi-blind source separation ap-
proaches. Since Gaussian iid signals are not separable, simplest priors
suggest to assume non Gaussian iid signals, or Gaussian non iid signals.
Other priors can also been used, for instance discrete or bounded sources,
positivity, etc. Although providing a generic framework for semi-blind
source separation, Sparse Component Analysis and Bayesian ICA will just
sketched in this paper, since two other survey papers develop in depth
these approaches.

1 Introduction

Source separation consists in retrieving unknown signals, s = (s1(t), . . . , sn(t))T ,
which are observed through unknown mixture of them. Denoting the observa-
tions x(t) = (x1(t), . . . , xp(t))T , one can write :

x(t) = F(s(t)), (1.1)

where F(.) denotes the unknown mixture, a function from R
n to R

p. If the num-
ber of observations p is greater or equal to the number of sources, n, the main
idea for separating the sources is to estimate a transform G(.) which inverses
the mixture F(.), and, without extra effort, provides estimates of the unknown
sources.

Of course, without other assumptions, this problem cannot be solved. Basi-
cally, it is necessary to have priors about

• the nature of the mixtures : it is very important to chose a separating
transform G(.) suited to the mixture transform F(.),

• the sources : sources properties - even weak - are necessary for driving the
G(.) estimation.

Because of the very weak assumptions, the problem is referred as blind source
separation (BSS), and the method based on the property of source independence
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has been called independent component analysis (ICA) [1, 2].

In fact, one often has priors on signals. A natural idea is to add these priors
in the model, for simplifying or improving the separation methods. This paper,
with its two companions, the Gribonval’s paper on sparse component analysis
(SCA) [3] and the Mohamad-Djafari’s paper on Bayesian ICA [4], constitute a
review of semi-blind methods in which various priors are used. For this reason,
Sparse and Bayesian ICA, although related to generic approaches for, will not
be developed in this paper.

This paper is organized as follows. In Section 2, we recall usual assumptions
in the so-called blind source separation. Section 3 is devoted to Gaussian non
iid sources. In Section 4, we show that prior like discrete-valued or bounded
sources leads to simple geometrical algorithms. In Section 5, we suggest other
priors, like video cue for enhancing speech separation, or positivity. Section 6
is a short conclusion, which briefly presents the papers of the special session on
semi-blind source separation (SBSS) of the conference ESANN 2006.

2 Blind source separation

Source separation methods have been developed intensively for linear mixtures,
instantaneous as well as convolutive, and more recently by a few researchers for
nonlinear mixtures. In the most general case, the only assumption done on the
sources is that they are statistically independent. From Darmois’s result [5],
one deduces that this problem has no solution for mutually independent sources
which are Gaussian, with (temporally) independent and identically distributed
(iid) samples. Then, since the Gaussian iid model has no solution, one must add
priors, which are threefold [6]:

• Non Gaussian iid,

• Gaussian but non temporally independent (first i of iid), i.e. temporally
correlated,

• Gaussian, but non identically distributed (id of iid), i.e. non stationary
sources.

Initially, even if it was not clearly stated [7], the problem has been related
to the non Gaussian iid model, and has been refered as blind source separation
(BSS). The non Gaussian property appears clearly in the Comon’s theorem [2]
for linear mixtures.

Theorem 2.1 Let x = As be a p-dimension regular mixture of mutually inde-
pendent random variables, with at most one Gaussian, y = Bx has mutually
independent components iff BA = PD, where P and D are permutation and
diagonal matrices, respectively.
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This theorem is only based on the independence of random variables. The
independence criterion involves (explicitly or implicitly) higher order (than 2)
statistics, but does not take into account the order of samples. It means that
the iid assumption is not required, it is just a default assumption: consequently,
it works for iid as well as for not iid sources, but it cannot work for Gaussian
sources.

The different (blind) ICA algorithms then use different ideas for achieving
the required higher order independences. Some of different ideas used for ICA
are:

• Non-linear decorrelation [8, 9, 10, 11].

• Methods based on Higher (than 2) Order Statistics (HOS)[12, 13]).

• Cancellation the mutual information (MI) of the outputs [2, 14, 15, 16,
17]. This approach may be shown to provide asymptotically a Maximum
Likelihood (ML) estimation of the source signals [18].

• Algorithms based on non-Gaussianity [19, 20]. These algorithms may be
shown to have a close correspondence to the algorithms based on MI min-
imization (refer to section 10.2 of [21]).

More complicated mixing systems have also been studied in the literature.
For example, in (linear) convolutive mixtures, the mixing model is x(n) =
B0x(n)+B1x(n−1)+· · ·+Bpx(n−p) = [B(z)]x(n), which has been shown [22] to
be separable. Non-linear mixtures are not in general separable (refer to chapter 3
of [23]). A practically important case of non-linear mixtures is Post Non-Linear
(PNL) mixtures [24, 23, 25], in which a linear mixture is followed by non-linear
sensors. It has been shown that PNL mixtures are separable, too [24, 23].

However, if some weak prior information about the source signals is available,
then the performance of the source separation algorithms may be significantly
improved. Thus, these methods are not ‘Blind’ but ‘Semi-Blind’. In the rest of
this paper, some of most frequently used priors have been considered. It should
be noted, however, that the ‘sparsity prior’ and ‘Bayesian approaches’ are mostly
considered in the two companions of this paper [4, 3].

3 Separation of non iid sources

Suppose that we know a priori that the source samples are not iid, i.e. if sources
are temporally correlated, or non stationary.

3.1 Separation of correlated sources

Several approaches had been proposed for separating correlated sources [26, 27,
28]. Pham and Garat [29] showed that time-correlated Gaussian sources can be
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separated provided than their spectra are different. In that case, the separation
can be achieve by estimating a separation matrix B which minimizes the criterion

C(B) =
L∑

l=1

wloff(BR̂(τl)BT ), (3.1)

where wl are weighting coefficients, off(.) is a measure of deviation from diago-
nality, which is positive and vanishes iff (.) is diagonal and which satisfies:

off(R) = D(R | diagR), (3.2)

where D(Ri | Rj) denotes the Kullback-Leibler divergence of two zero mean
multivariate normal densities, with variance-covariance matrices Ri and Rj,
and diagR is the diagonal matrice composed by diagonal entries of R and zeros
elsewhere.

The criterion (3.1) involves a set of variance-covariance matrices with various
delays τl : R̂(τl) = Ê[y(t− τl)y(t)T ], where Ê[.] is estimated using an empirical
mean. Basically, minimizing this criterion is equivalent to estimate the sepa-
ration matrix B which diagonalizes jointly the set of the variance-covariance
matrices. The advantages of this approache are:

• it only requires second-order statistics,

• it can then separate Gaussian sources,

• there exist many very fast and efficient algorithms for jointly diagonalizing
matrices [30, 31].

3.2 Separation of nonstationary sources

Source nonstationarity have been first used by Matsuoka et al. [32]. More
recently, Pham et Cardoso developed a rigourous formalization, and proved that
nonstationary Gaussian sources can be separated provided than the variance
ratios σ2

i (t)/σ2
j (t) are not constant. In that case, the separation can be achieve

by estimating a separation matrix B which minimizes the criterion

C(B) =
L∑

l=1

wloff(BR̂lBT ), (3.3)

where we use the same notations than in the previous subsection. In Eq. (3.3),
matrices R̂l are variance-covariance matrices estimated by empirical mean on
successive sample blocks Tl. Among a few algorithms, the separation matrix B
can be computed as the matrix which jointly diagonalizes the set of the variance-
covariance matrices Rl.

The method has the same advantages than the method exploiting the tem-
poral correlation.
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Fig. 1: Distribution of a) source samples, b) observation samples in linear mix-
tures, observation samples in Post Non-Linear (PNL) mixtures.

Moreover, it can be easily extended to linear convolutive mixtures, considered
in the frequency domain. In fact, after Fourier transform, in each frequency band
the signal tends to be close to a Gaussian signal, and consequently the method
based on non Gaussian iid model are not efficient. Conversely, if the source is
non stationary, one can extend the above algorithm in the frequency domain.
This idea provides a very efficient method for speech signal [33].

4 Geometrical methods for source separation

4.1 Bounded sources

Suppose we know a priori that the sources are all bounded. This simple prior
leads to simple geometrical interpretations and methods for source separation
(firstly introduced in [34]).

Consider, for example, separating two sources from two mixtures. Because
of the scale indeterminacy, the mixing matrix may be assumed to be of the form:

A =
(

1 a
b 1

)
(4.1)

where a and b are constants to be estimated from the observed signals. Since
the sources are bounded, the Probability Density Function (PDF) of each source
has a bounded support, i.e. pi(si) (the PDF of the ith source) is non-zero only
inside an interval αi < si < βi. Then, the joint PDF ps(s) = p1(s1)p2(s2) is
non-zero only in the rectangular region {(s1, s2) | α1 < s1 < β1, α2 < s2 < β2}.
Consequently, if we have ‘enough samples’ (s1(n), s2(n)) from the sources, they
form a rectangular region in the s-plane (see Fig. 1.a). This rectangle will be
transformed, by the linear transformation x = As, into a parallelogram and the
slopes of the borders of this parallelogram determine a and b (Fig. 1.b).

The above idea may be even generalized for separating PNL mixtures [35]: in
a PNL mixture, the parallelogram of Fig. 1.b is again transformed, by ‘component-
wise’ nonlinearities (corresponding to sensor nonlinearities), into a nonlinear
region (Fig. 1.c). It has been proved [35] that if this non-linear region is trans-
formed again into a parallelogram by ‘component-wise’ nonlinearities, the sensor
nonlinearities have been completely compensated. An iterative algorithm is then
proposed in [35] for estimating the borders and inverting them.
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Fig. 2: Distribution of a) two sparse sources, (b) mixture of two sparse sources,
(c) mixture of three sparse sources.

4.2 Sparse sources

Geometrical ideas are specially useful for separating sparse sources (‘sparsity
of sources’ is itself another prior which lets us to significantly improve the re-
sults [3]). Note that for sparse sources, the probability that a sample (s1(n), s2(n))
is observed at the borders of the rectangular region of Fig. 1.a is very low, and
hence we cannot rely on estimating the borders of the parallelogram of Fig. 1.b
for source separation. However, for these sources, two ‘axes’ (parallel to the
borders of the parallelogram) are easily visible, and their slopes again determine
the mixing matrix (see Fig. 2.a and2.b, obtained from synthetic sparse signals).
Moreover, for sparse sources, two new important advantages may be obtained:

1. Contrary to the traditional geometrical algorithm, it is easy to generalize
the above geometric idea to higher dimensions (separating N sources from
N mixtures) [36].

2. It enables us to estimate the mixing matrix (and even recovering the
sources) in the underdetermined case, that is, where there is less sen-
sors than sources [37]. Consider, for example, Fig. 2.c, for the case of 3
sources and 2 sensors. Three ‘axes’ are visible in this scatter plot, and
they correspond to the 3 columns of the mixing matrix. This is because
x = s1a1 + s2a2 + s3a3, where ai’s are the columns of the mixing matrix,
and consequently the axes of Fig. 2.c (which correspond to the instances
where 2 of 3 sources are nearly zero) are in the directions of ai’s. This idea
can be directly generalized to more number of sources and sensors.

A main restriction of the above idea for identifying the mixing matrix in
underdetermined case, is that it is implicitly assumed that most of times there
is just one ‘active’ (i.e. high-energy) source. The expected number of active
sources at each instant is Np, where N is the number of sources, and p is the
probability of a source being active (small by sparsity assumption). When Np
is large (e.g. because of a very large N) the above idea fails. A solution to this
problem has been proposed in [38].

Moreover, from the above geometric ideas, it is visually seen that for sepa-
rating sparse sources, the independence of source signals is of minor importance.
In fact, even this assumption may be dropped, leading to the name Sparce Com-
ponent Analysis (SCA).
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4.3 Discrete-valued sources

Another prior used in some papers [39, 40, 41, 42] is to assume that the sources
are discrete (e.g. binary or n-valued), and the observations are continuous mix-
tures of them. Since the discrete sources are also bounded, the methods for
separating bounded sources may be used for separating these mixtures, too.
However, they can be modified to gain more advantages (e.g. simplicity, accu-
racy, or considering noisy mixtures). Moreover, for underdetermined mixtures
of discrete sources, it is possible to identify and even recover the sources (much
easier than the case of sparse sources). This can be seen by having in mind a
geometrical interpretation like the previous section. Furthermore, for discrete
sources, even the independence assumption may be dropped [40].

In [40], a geometrical approach (similar to what is presented in the previ-
ous section) is presented for separating discrete (n-valued) sources, in which the
independence of the sources is not required. A Maximum Likelihood method
for separating these mixtures (which works for underdetermined mixtures, too)
has been proposed in [39], in which, it is assumed that the source distribution,
too, is known a priori. The case of binary valued sources has been considered
in [42] and a method based on creating virtual observations has been proposed.
The same authors have proposed a solution based on a polynomial criterion [43]
for PSK communication sources. In [41] the underdetermined BSS problem has
been considered in a general case, and then a solution has been proposed for the
case of discrete sources. An extension to the case of Post Non-Linear mixtures,
where the source alphabet (except its size) is not known a priori, is considered
in [44].

In the two previous subsections, sparsity is evidently a source property. More
generally, and it will be explained in details in [3], a pre-processing step can trans-
form (linearly for preserving the mixing model) the initial sources in new sparse
(or sparser) sources in the transformed domain1, so that methods exploiting
sparsity can be used.

5 Others priors

Outside the general framework of Bayesian approaches, many other priors can
be used for improving source separation methods. In this section, we show how
visual information can enhanced speech separation. We also consider positivity
constraints.

In the two next subsections, the speech (linear instantaneous or convolutive)
mixtures, x(t) are completed by the video recording of the speaker face, V (t′)
with a 20ms sampling period. Moreover, we consider extraction of one speech
signal2, the one associated to the visual cue.

1e.g. wavelet or time-frequency domains
2instead separation of all the sources as usual in source separation
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5.1 Extraction based on audio-video spectrum estimation

The basic idea is to use the simple visual information, V (t′) = [h(t′), w(t′)]T

associated to the height, h(t′), and width, w(t′), lip opening, for estimating a
rough estimation of the speech spectrum of the speaker. Since lip motions are
related to sounds but present ambiguities, from a set of audio-visual data, we first
estimated (learning) a probabilistic audio-visual model. Then, by maximizing
the audio-video likelihood by the EM algorithm, we can extract the audio source
associated to the video. This method have been compared to Jade [30] and is
much more efficient. It has mainly two advantages:

• it is very efficient for low SNR,

• it select the source of interest among all the sources.

The method can be extended for convolutive mixtures, in the frequency do-
main. In that case, a similar approach is done in each frequency band. Moreover,
the video information is also very efficient for cancelling the permutation inde-
terminacies. [45, 46]

5.2 Extraction based on voice visual activity (VVA) detection

Another idea is to use the video signal for detecting the voice activity. As a
simple idea, we claim that, on the frame t′, there is voice activity if the lip
motion is greater than a threshold, i.e. if:

vva(t′) =
∣∣∣∣∂h(t′)

∂t′

∣∣∣∣ +
∣∣∣∣∂w(t′)

∂t′

∣∣∣∣ . (5.1)

For avoiding noisy estimations, the actual VVA is decided after smoothing on
the T previous frames:

VVA(t′) =
T∑

k=0

akvva(t′ − k), (5.2)

where ak are the coefficients of a truncated first-order IIR low-pass filter. This
visual voice activity detector is very efficient for cancelling permutation inde-
terminacies in frequency domain source separation algorithms for convolutive
mixtures [47].

5.3 Positive and non independent sources

In many problems, observations are positive mixtures of positive data. It is
for instance the case of nuclear magnetic resonance spectroscopy of chemical
compounds [48], or of hyperspectral images [49]. Moreover, in these cases, the
spectra of the different species are basically non independent. Consequently,
using ICA for recovering the spectra generally fails, or provides spectra with
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spurious peaks. Taking into account the positivity of the mixture matrix en-
tries, improves the solution, but is generally not sufficient (due to the spectrum
dependence, ICA can fail). Currently, in such cases, Bayesian methods, able to
manage all the priors, are the most efficient [50].

6 Conclusion and introduction to the special session

Now, it must be clear that blind source separation does not exist. First, although
this point has not been adressed in this paper, it is important to have priors on
the mixture models, and to consider a suitable separation model. Second, prior
on sources are essential. From a statistical point of view, since the problem
has no solution for Gaussian iid signals, 3 types of priors are possible : sources
are non Gaussian iid, sources are Gaussian temporally correlated, sources are
Gaussian nonstationary. Remember that, in the 2 former cases, Gaussian means
that second order statistics is sufficient, and that it is then possible to consider
Gaussian sources, but the methods works for non Gaussian sources too.

Additionaly, other priors can provide original, simple and efficient algorithms.
For instance, bounded sources or discrete sources leads to geometrical algo-
rithms. It is also possible to exploit other informations like positivity of sources
and/or mixing entries, or to add a visual cue to enhance speech processing.

Two very interesting approaches, which provide a general framework, are
the Bayesian ICA which is able to take into account any priors, and the Sparse
Component Analysis, which both exploits the data sparsity and looks for sparse
representations. These two approaches are explained in details in the survey
papers of A. Mohammad-Djafari [4] and Gribonval and Lesage [3].

The rest of the special session on Semi-Blind Source Separation is a melting
pot of works illustrating the various priors that can be used: correlated sources
[51], bounded sources [52, 53], sparse sources [38, 54], Bayesian source separation
[55], prior on the source power spectral density [56], non-independent sources
which leads to independent subspaces instead to independent component [57, 58].
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[8] J. Hérault and C. Jutten. Space or time adaptive signal processing by neural networks
models. In Intern. Conf. on Neural Networks for Computing, pages 206–211, Snowbird
(Utah, USA), 1986.

[9] A. Cichocki, R. Unbehauen, and E. Rummert. Robust learning algorithm for blind sepa-
ration of signals. Electronics Letters, 30(17):1386–1387, 1994.

[10] J.-F. Cardoso and B. Laheld. An information-maximization approach to blind separation
and blind deconvolution. IEEE Trans. on SP, 44:3017–3030, 1996.

[11] S. I. Amari, A. Cichocki, and Yang H. H. A new learning algorithm for blind source
separation. Advances in neural information processing systems, 8:757–763, 1996.

[12] J.-L. Lacoume and P. Ruiz. Sources identification: a solution based on cumulants. In
IEEE ASSP Workshop, Mineapolis, USA, August 1988.

[13] P. Comon. Separation of sources using higher-order cumulants. In SPIE Vol. 1152 Ad-
vanced Algorithms and Architectures for Signal Processing IV, San Diego (CA), USA,
August 8-10 1989.

[14] D. T. Pham. Mutual information approach to blind separation of stationary sources. In
Proceedings of ICA’99, pages 215–220, Aussois, France, January 1999.
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