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Sparse Component Analysis (SCA) in Random-valued and Salt and 
Pepper Noise Removal   

 

Abstract: In this paper, we propose a new method for 
impulse noise removal from images. It uses the sparsity 
of images in the Discrete Cosine Transform (DCT) 
domain. The zeros in this domain give us the exact 
mathematical equation to reconstruct the pixels that are 
corrupted by random-value impulse noises. The 
proposed method can also detect and correct the 
corrupted pixels. Moreover, in a simpler case that salt 
and pepper noise is the brightest and darkest pixels in 
the image, we propose a simpler version of our method. 
In addition to the proposed method, we suggest a 
combination of the traditional median filter method with 
our method to yield better results when the percentage 
of the corrupted samples is high. 
 
Keywords: Image denoising, salt and pepper 
noise, sparse component analysis, median filter. 
 
1. Introduction 
 
Impulse noise is caused by malfunctioning pixels 
in camera sensors, faulty memory locations in 
hardware or transmission in a noisy channel. The 
salt and pepper noise and the random valued-noise 
are the two common types of impulsive noises. In 
the salt and pepper noise, the salt noise is assumed 
to have the brightest gray level and the pepper 
noise has the darkest value of the gray level in the 
image. This assumption can help us to know the 
corrupted pixels in the images. In these cases the 
only hard task is to recover the original pixel of the 
image. But, in the general case of random-valued 
impulse noise, there is not any pre-assumption 
about the value of the impulsive noise. Therefore, 
the image denoising task in these cases is to detect 
the corrupted pixels and then correct them by the 
original pixel of the image. So, image denoising 

for random-valued impulse noises is more difficult 
than fixed salt and pepper image denoising. In this 
paper, we focus on the random value impulsive 
noise. However, we also present a version of our 
method in the case of salt and pepper noise.  
The median filter is the most popular nonlinear 
filter for removing impulse noise [1]. However, 
when the noise level is high or when the random 
noise is available, some details and edges are 
smeared by the filter and the performance of the 
median filter decreases. Different remedies of the 
median filter have been proposed so far. They are 
the adaptive median filter [2], the median filter 
based on homogeneity [3], centre-weighted median 
filters [4] a generally family called decision-based 
methods. The so-called “decision-based” methods 
first identify possible noisy pixels and then replace 
them by using the median filter or its variants, 
while leaving all other pixels unchanged. Some of 
these two-stage methods deal with salt and pepper 
noise [5] and the others with the case of random-
valued impulse noises [6].  
In this paper, we do not separate the detection and 
correction steps similar to “decision-based” 
methods mentioned earlier. We use the 
compressibility of the images in the DCT domain 
which is used for image compression in JPEG 
standard. This compressibility gives us the 
necessary equation to exactly recover the 
impulsive noises or errors. Therefore, we use the 
transformed image to recover the noisy pixels. To 
recover the noisy pixels (or finding errors), we 
encounter an Underdetermined System of Linear 
Equations (USLE) whose sparse solution is to be 
found. This USLE problem can be solved by 
means of Sparse Component Analysis (SCA) 
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methods [7]. In the SCA context, m sparse sources 
(which the most of their samples are nearly zero) 
and n linear observations of them are available. 
The goal is to find these sparse sources from the 
observations. The relation between the sources and 
the observations are: 
 
x = As (1) 

where x is the 1n× observation vector and s is the  
1m× source vector and A is the n m× mixing 

matrix. m is the number of sources and n is the 
number of observations. In SCA, it is assumed that 
the number of sources is greater than the number 
of observations ( m n> ). So, the number of 
unknowns is larger than the equations. Therefore, 
this Underdetermined Linear System of Equations 
(ULSE) has infinite number of solutions. 
Fortunately, under conditions stated in [10], the 
sparsest solution of this problem is unique. This 
condition is that the number of active sources (non 
zero source) should be less than half of the number 
of observations ( || || 0.50 n<s ). By this assumption, the 
sparsest solution is unique and different algorithms 
to find this solution have been already proposed, 
including Basis-Pursuit (BP) [9], FOCUSS [10], 
smoothed- 0l [11] and EM-MAP method [12].The 
aim of this paper is to use the SCA methods in 
application of noise removal, especially for salt 
and paper noise and random-valued noise. The 
organization of the paper is as follows. Firstly, our 
SCA method is introduced in section 2, then this 
method in combination with popular median 
filtering is studied in section 3, and at last the 
simulation results will be discussed. 
 
2. The proposed SCA method 
 
2.1 Basic Idea 
 
The basic idea is that, the representation of the 
image in the DCT domain is sparse because the 
most of the coefficients in the DCT domain are 
zero or near zero. We assume the noisy model as: 
 

N N N N N N× × ×X = S + E  (2) 

where N N×S is the original image and N N×E is the 
impulsive noise and N N×X is the noisy image (sub 
image). If we apply the DCT transform to both 
sides of equation (2), we have: 
 

( ) ( ) ( )T T TX = S + E (3) 

where T is the DCT transform and has the 
following form: 
 

( 'T S) = TST (4) 
 
where T is the DCT transform matrix as defined 
below [1]: 
 

( , ) ( ) cos((2 1) )
2

1
0

( )
2

0

x
t x y x y

N

x
Nx

x
N

π
α

α

= +

=
=

≠







(5) 

We know that the block of ( )T S have many almost 
zero coefficients. To order this two dimensional 
matrix to a one dimensional vector with zeros at 
the end of the vector, we define the zigzag 
transform. This transform changes a two 
dimensional matrix to a one dimensional vector, 
similar to the JPEG standard. We assume that the 
coefficients of ( ( ))Z T X are zero from 1n + to m .
In this case m is the number of pixels in a sub 
image of size N and so is equal to 2m N= .
Moreover, n is determined with the compression 
ratio of the sub image. If the compression ratio of 
the sub image is defined as CR , then the value of 
n is equal to mn

CR
= . The general idea is to use this 

zeros to find the impulse noises (or errors). At first, 
we present the general case where the degraded 
pixels have random values and then switch to a 
simpler case where the salt and pepper assumption 
of noise are available. 
 
2.2 Random value impulsive noise 
 
By defining 1:( ( )) |n mZ T +X X% � , and the previous 
assumption that transformed original image in the 
DCT domain is sparse, i.e. 1:( ( )) | 0n mZ T + =S , we 
will have the following reconstruction formula to 
find the impulsive noises (or errors): 
 

( ( )) | 1:Z T n m= +X E% (6) 
 
If we are able to write the right hand of equation 
(6) in the linear form of 1:( ( )) | ( )n mZ T Z+ =E H E , then 
the problem of finding errors, converts to a 
classical SCA formulation as: 
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( )Z= ΗX E% (7) 
Solving this SCA problem leads to zigzag 
transform of the errors. Taking the inverse zigzag 
transform yields the error image (both its value and 
its position). After subtracting the error image from 
the noisy image, the estimation of the original 
image is obtained. We call this method as “SCA 
method”. The block diagram of this method is 
depicted in Fig. 1. 
 

Fig. 1 The block diagram of our method 
 

At first, we should find the matrix H in terms of 
the DCT transform. To compute the matrix H , we 
use the 2-D transform equation in the general form 
[1]: 
 

1 1
( ) | ( , ) ( , , , )( , ) 0 0

N N
T E x y t x y u vu v x y

− −
= ∑ ∑

= =
E (8) 

Note that the i ’th element of the ( ( ))Z T E equal to: 
 

( ( )) | ( ) |( ( ), ( ))Z T Ti u i v i=E E  (9) 

 
where we can imagine the [ ( ), ( )]u i v i as the inverse 
zigzag transform of the i ’th 1-D element. From 
equations (8) and (9), we can write: 
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(10) 
Therefore, ( ( ))Z T E can be written as ( )ZG E , where 
the matrix G is: 
 

( ( ), ( ), ( ), ( ))G t u j v j u i v iij = (11) 
 
From equations (6), (7), (9) and the preceding 
discussion, the matrix H is ( 1: ,1: )n m m= +H G  
where we use MATLAB matrix notation. The 
matrix G is obtained simply from equation (11) 
and knowing that the DCT transform is separable 
of the form ( , , , ) ( , ) ( , )t x y u v t x u t y v= . So, we have: 
 

( ( ), ( )). ( ( ), ( ))G t u j u i t v j v iij = (12) 
 

where ( ( ), ( ), ( ), ( ))t u j v j u i v i is defined in equation 
(5). Finally, the SCA problem in equation (7) can 
be solved by means of any SCA method such as 
MP, BP (or known as Linear Programming), 
smoothed- 0l or EM-MAP. Since we should divide 
the image into the sub images and then solve the 
correspondence SCA problem with different 
X% and H , so a fast method for SCA is a necessity. 
Among the various methods, BP (or equivalently 
LP) and EM-MAP is rather complicated. 
Moreover, the MP method does not yield the 
accurate sparse solution of a SCA problem. 
However, a recently developed method called 
smoothed- 0l [11] has the ability to provide a very 
fast and accurate estimation of the sparse solution. 
So, in our simulations we use this method. 
 
2.3 Salt and pepper impulsive noise 

 
In the salt and pepper impulsive noise, it is usually 
assumed that the salt noise is the maximum gray 
level (255) and the pepper noise is the minimum 
gray level (0) [5]. So, the places of noisy pixels are 
easily found by a simple comparison to these 
values (assuming that our image has not pixels 
with gray level 0 and 255). In [5], an adaptive 
median filter is used to detect the noisy pixels. But, 
in our paper, we assume that our image does not 
have pixels with gray level 0 and 255, and the 
noisy pixels are known by a simple comparison 
with the upper and lower gray levels. So, the only 
problem is to recover the original gray level of 
noisy pixels. Therefore, we propose a simpler 
version of our method. In this case we start from 
equation (7). Since the positions of errors are 
known, we can omit the columns of the matrix H
which we know that there is not any error at those 
places. So, equation (7) converts to the following 
formula: 
 

( )Z nonzerotruncated= ΗX E% (13) 

After solving the above equation which is equal to 
solving a linear system of equations, the nonzero 
errors are obtained. In this case, the number of 
errors must be less than the size of the X% vector 
which is equal to m n− . The solution in these cases 
can be obtained via pseudo-inverse (where the 
unknowns are smaller than equations). We call this 
method the “Salt-Pepper SCA method” (SP-SCA).   
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3. The combined median-SCA-median 
method 
 
Because of the good properties of the nonlinear 
filtering and especially median filtering in the 
image denoising applications, we suggest to use a 
combination of the traditional median filtering with 
our SCA method. When the noise level is low, the 
noisy pixels in a subimage are small and the 
median value of the sub image is not noisy. But, 
when the noise level is high the median value itself 
is a noisy pixel. So, the performance of the median 
filter is decreased. The median filter can be 
regarded as a pre-process to reduce the effect of 
the impulsive noise. After that, we can apply our 
SCA method. Moreover, in high level noise, this 
combination also cannot omit all the impulsive 
noises. Another median filter after our SCA 
method can omit the remaining impulse noises. So, 
the block diagram of this combination method is 
shown in Fig. 2. 

Fig. 2 The block diagram of combination of 
methods 

 
4. Experiments 
 
Three experiments were done to investigate our 
SCA method in image denoising when impulsive 
noise is present. In all experiments, the 
performance of our SCA method is compared with 
the median filter and also with the combination of 
methods. In the first experiment, we use the “SCA 
method” introduced in Sec. 2.2, and in the second 
and third experiments, we use the “salt-pepper 
SCA method” introduced previously in Sec. 2.3. 
Our performance measure is the Peak-Signal-to-
Noise Ratio (PSNR), defined as: 
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4.1 Random-valued impulsive noise 
 
In this experiment, random valued impulsive noise 
with different levels is added to the image. The 
results of the simulations are shown in Fig. 3. As 
we can see the combination of the methods has the 
best result in high level of noise (30% to 60% 

noise level). In addition to objective measures, the 
reconstructed images have good results up to 50% 
impulsive noise. Fig. 4 shows the corrupted image 
when 50% of pixels are corrupted with random-
valued noise. Fig. 5 shows the reconstructed 
image. 
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Fig. 3 The results for the random-valued noise  

Fig. 4 The 50% random-valued noisy image 

Fig. 5 The reconstructed image from 50% random-
valued noisy image 
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4.2 Fixed gray level salt and pepper noise 
 
In this experiment, it is assumed that only fixed 
gray level salt and pepper noise has corrupted the 
image (0 for pepper and 255 for salt). In this case, 
the image is reconstructed by the “salt-pepper SCA 
method” as introduced in Sec. 2.3. The results of 
various methods are depicted in Fig. 6. As it can be 
seen, our combination of methods has slightly 
better results especially at high noise levels. In this 
case, we can reconstruct the images ever it is 
corrupted by 60% salt and pepper noise. The noisy 
image and the reconstructed image in this case are 
shown in Fig. 7 and Fig. 8 respectively. 
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Fig. 6 The result for the fixed gray level salt and 
pepper noise 

 

Fig. 7 The 60% fixed salt and pepper noisy image 
 

Fig. 8 The reconstructed image from 60% fixed 
salt and pepper noise 

 
4.3 Missing sample 
 
In this experiment, we assume that some pixels of 
the image are missed. So, those pixels are dark and 
have zero gray level. Similar to the previous 
experiment, the reconstruction of image is done by 
the “salt-pepper SCA method” as introduced in 
Sec. 2.3. The result of the simulations is shown in 
Fig. 9. In this case, the reconstruction was done 
appropriately up to 40% of missed samples. The 
missed-sample image and reconstructed image are 
shown in Fig. 10 and Fig. 11 respectively.  
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Fig. 9 The result for the missing sample 
experiment 

 
5. Conclusion 
 
In this paper, a novel method is proposed to 
remove impulsive noise from images. This method 
is essentially based on the sparsity of the images in 
the DCT domain. Using the nearly zeros in the 
DCT domain, an exact equation is provided to 
recover the impulse noises (or errors). To solve 



communication 
 

305

this equation, the smoothed- 0l method [11] is 
utilized. In addition, in the simple case of fixed 
gray level salt and pepper noise, we present a new 
version of our method. To obtain better results 
when high level of noise is present, a combination 
of our SCA method with traditional median 
filtering is suggested. The simulation results show 
the efficiency of our method in the three cases of 
impulsive noise (random-value, fixed salt and 
pepper and missing sample).  

Fig. 10 The 40% missed-sample image  
 

Fig. 11 The reconstructed image from 40% missed 
sample image 
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