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Abstract 

 In this paper an Extended Kalman Filter (EKF) has been 

proposed for the filtering of noisy ECG signals. The method 

is based on a modified nonlinear dynamic model, previously 

introduced for the generation of synthetic ECG signals. An 

automatic parameter selection method has also been 

suggested, to adapt the model with a vast variety of normal 

and abnormal ECG signals. The results show that the EKF 

output is able to track the original ECG signal shape even in 

the most noisiest epochs of the ECG signal. The proposed 

method may serve as an efficient filtering procedure for 

applications such as the noninvasive extraction of fetal 

cardiac signals from maternal abdominal signals. 

1.  Introduction  

The extraction of high resolution ECG signals from 

noisy measurements is among the most tempting open 

problems of biomedical signal processing. Specifically, 

the extraction of ECG signals from low SNR 

measurements is the state of the art in applications such as 

the noninvasive extraction of fetal ECG signals, recorded 

from an array of electrodes placed on the maternal 

abdomen [1]. 

On the other hand, in recent years some research has 

been conducted towards the generation of synthetic ECG 

signals. Regarding the physiological bases of ECG 

signals, a true ECG model should consider the 

morphology of the PQRST complex, together with the 

RR-wave timing. In a previous work [2], a synthetic 

model has been proposed which has unified the 

morphology and pulse timing of the ECG signal in a 

single nonlinear dynamic model. Concerning the 

simplicity and flexibility of this model it is believed that 

it can be easily adapted to a broad class of normal and 

abnormal ECG signals. This model may be further used in 

dynamic adaptive filters, such as the Kalman Filter, for 

ECG filtering applications. Meanwhile, the dynamic 

model of [2] is nonlinear and requires the nonlinear 

counterparts of the conventional Kalman Filter. 

In a recent work [3], the authors have developed an 

Extended Kalman Filter (EKF) based on the mentioned 

dynamic model for noisy ECG filtering. In this paper, the 

synthetic ECG model has been further modified to fulfill 

the requirements of the EKF filter. The EKF model 

parameter selection has also been automated in order to 

adapt the method to different normal and abnormal ECG 

signals. The results show that the proposed method can 

fully track the ECG signal even in the noisy epochs, 

where the observed ECG signal is almost lost in noise. 
 

2.  Theory 

2.1.  Extended Kalman filter review 
The Extended Kalman Filter (EKF) is a nonlinear 

extension of conventional Kalman Filter that has been 

specifically developed for systems having nonlinear 

dynamic models [4]. For a discrete nonlinear system with 

the state vector xk and observation vector yk, the dynamic 

model may be formulated as follows:  =
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where wk and vk are the process and measurement noises 

respectively with covariance matrices Qk=E{wkwk
T
} and 

Rk=E{vkvk
T
}.  

The initial state estimate of the state x0 is defined as 
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In order to use a Kalman filter formalism for this 

system, it is necessary to derive a linear approximation of 

(1) near a desired reference point )ˆ,ˆ,ˆ( kkk vwx . This 

approximation will lead to the following linear estimate: 
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In order to implement the EKF, the time propagation is 

done using the original nonlinear equation, while the 

Kalman filter gain and the covariance matrix are 

calculated from the linearized equations. Further issues 

concerning the implementation of the EKF may be 

followed in [4] and [5]. 
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2.2.  Synthetic electrocardiogram  
MCSharry et al. [2] have proposed a synthetic ECG 

generator, which is based on a nonlinear dynamic model. 

This model has several parameters, which makes it 

adaptable to many normal and abnormal ECG signals. As 

it may be seen in (4) the dynamic model consists of a 

three dimensional state equation, which generates a 

trajectory with the coordinate (x,y,z). 
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In this equation 22
1 yx +−=α , 

)2mod()( πθθθ ii −=∆ , ),2(atan xy=θ  (the four 

quadrant arctangent of the real parts of the elements of x 

and y, with ππ ≤≤− ),2(atan xy , and ω is the angular 

velocity of the trajectory as it moves around the limit 

cycle [2]. The baseline wander of the ECG signal has 

been modeled with z0, which is coupled with the 

respiratory frequency f2: 

HzfmVAtfAz 25.0,15.0),2sin( 220 === π  (5) 

Some typical values of the parameters of (4) taken from 

[2] are listed in Table I. As it will be later seen, these 

variables may be assumed as random process noises for 

the proposed EKF model.  

The three dimensional trajectory which is generated by 

(4), consists of a circular limit cycle which is pushed up 

and down when it approaches one of the P, Q, R, S or T 

points. In fact, each of the components of the ECG 

waveform has been modeled with a Gaussian function, 

which is located at a specific angle. This may easily be 

viewed from (4), by neglecting the baseline wander term 

(z-z0) and integrating the z′ equation. The projection of 

the three dimensional trajectory on the z axis gives a 

synthetic ECG signal. 
 

3.  Method 

3.1.  Modification of the dynamic model  
The polar form of the dynamic equations (4) is: 
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These new set of equations have some benefits compared 

to the original equations. First of all, the polar form is 

much simpler and its interpretation is straightforward. 

Accordingly, the first equation will reach the limit cycle 

of 1=r  with any initial value of r ; but as it is further 

seen the second and third equations are independent from 

r . This means that the first differential equation may be 

totally omitted, since it doesn’t affect the synthetic ECG 

signal (the z state variable). Another benefit of this 

representation is that the phase parameter is an explicit 

state-variable; noting that this parameter indicates the 

angular location of the P, Q, R, S and T waves. This point 

is further used in the implementation of the EKF. 

Meanwhile the simplified discrete form of (6) is: 
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 where ∆ is the sampling time and 

)2mod()( πθθθ ii −=∆ . N is a random additive noise 

which has been placed instead of the baseline wander of 

(4) and to model other additive sources of process noise. 

3.2.  Linearization of the nonlinear 

dynamic model   
In order to set up an EKF model based on the 

nonlinear synthetic model of (7), it is necessary to have a 

linearized version of the nonlinear model. For this, the 

state-equation of (7) needs to be linearized using (2) and 

(3). In this procedure θ and z are the state variables, and ω, ai, θi, bi and N are assumed to be the process noises. 

By defining:   =+
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the following equations represents the linearized model 

with respect to the state variables θ and z. 

0=
∂

∂

z

F
 1=

∂

∂
=

∂

∂

z

GF

θ
 

∑
∈

∆
−

∆
−⋅∆−=

∂

∂

},,,,{
2

2

2

2

)
2

exp(]1[
TSRQPi i

i

i

i

i
bb

a
G θθ

θ
 

(9) 

Identically (10) is the linearization of (7) respecting the 

process noises. 

0=
∂

∂
=

∂

∂
=

∂

∂
=

∂

∂

N

FF

b

F

a

F

iii θ
 ∆=

∂

∂

ω

F
 

},,,,{),
2

exp(
2

2

TSRQPi
ba

G

i

i

i

i

∈
∆

−∆⋅∆−=
∂

∂ θ
θ  

)
2

exp(
2

2

3

3

i

i

i

i

i

i bb
a

b

G θθ ∆
−

∆
⋅∆−=

∂

∂  0=
∂

∂

ω

G  

)
2

exp(]1[
2

2

2

2

i

i

i

i

i

i bb
a

G θθ

θ

∆
−

∆
−⋅∆=

∂

∂  ∆=
∂

∂

N

G
 

(10) 

TABLE I. Typical parameters of the synthetic ECG model [2] 

Index (i) P Q R S T 

Time (Sec.) -0.2 -0.05 0 0.05 0.3 θi (rads.) -π/3 -π/12 0 π/12 π/2 

ai 1.2 -5.0 30.0 -7.5 0.75 

bi 0.25 0.1 0.1 0.1 0.4 
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In accordance with the notation of (1), the process noise 

vector may be defined as follows: 

with Qk=E{wkwk
T
}. 

The dynamic model is now ready to be used in an EKF. 
 

3.3. Construction of the EKF model 
Having linearized the ECG dynamic model, an EKF 

may be developed. The relationship between the state 

variables and measurements of the proposed EKF 

depends on the location of the electrodes and the origin of 

the measurement noise. For example motion artifacts, 

environmental noises or bioelectrical artifacts such as the 

Electromyogram (EMG) or the Electrogastrogram (EGG), 

may be assumed as the measurement noises. While the 

measurement noise can generally take a complex and 

nonlinear form, the results of this paper are based on a 

simple additive Gaussian noise.  

In addition to the ECG observations, the phase θ may 

also be added as a second observation. In fact by studying 

the values of Table I, it is seen that the R-peak is assumed 

to occur at θ=0. So by simply detecting the R-Peaks an 

additional observation is achieved. 

 Hence the phase observations (φk) and the noisy ECG 

measurements (sk) may be related to the state vector as 

follows: 

with Rk=E{[v1k, v2k].[ v1k, v2k]
T
}.  

 In the context of estimation theory, the variance of the 

observation noise in (12) represents the degree of 

reliability of a single observation. In other words, when a 

rather precise measurement of the states of a system is 

valid the value of Rk is low, and the Kalman filter gain is 

adapted such as to rely on that specific measurement. 

While for the epochs that the measurements are too noisy 

or there are no measurements available, the value of Rk is 

high and the Kalman filter tries to follow its underlying 

dynamics rather than relying on the observations. This 

point may be used for adding additional measurements for 

the angle θ. In fact, θ is a periodic value that starts from θ=0 at the R-peak and ends with the next R-peak. This 

means that even for the angles other than θ=0, it is 

possible to assign a phase measurement between 0 and 2π 

to each angle. Of course for these angles the variance of 

the measurement phase noise may be increased to 

encounter the more uncertainty in the phase value. This 

intuition about the observation noise will be further 

referred to in the following section. 
 

3.4. Automatic estimation of the EKF 

parameters 
Prior to the implementation of the EKF model, it is 

necessary to have an estimate of the values of the process 

and measurement noise covariance matrices. Generally, 

for the 17 noise parameters of (11) a 17x17 process noise 

covariance matrix (Qk) should be found; but if the noises 

are uncorrelated with each other, the matrix is simplified 

to a diagonal matrix. The measurement noise covariance 

matrix (Rk) has a similar case. 

In order to automate the parameter selection procedure 

for any given ECG signal, the parameters should be 

estimated from the signal itself. For this, the given noisy 

ECG signal is transformed to a three dimensional plot 

using a phase wrapping technique. In order to do so, the 

locations of the R-peaks are detected from the ECG signal 

by using a peak detector. These points correspond to θ=0 

in the synthetic dynamic model. Then the points lying 

between two R-peaks are linearly assigned a phase 

between 0 and 2π. The ECG signal may be plotted versus 

the assigned phases in polar coordinates on the unit circle 

(r=1). Figure (1) represents a typical phase-wrapped 

noisy ECG signal, using a sample signal taken from the 

PhysioNet database. 

It is now possible to estimate the dynamic model 

parameters for the given ECG signal. The values of Table 

I, which needed to be selected manually, may now be 

chosen as follows: The mean of the phase-wrapped ECG 

is calculated and five Gaussian signals, corresponding 

with the P, Q, R, S and T shapes, are fitted on this 

average. This gives the mean values of the process noises 

ai, bi and θi. Further more, by calculating the deviation of 

the signal around the mean phase-wrapped ECG, the 

covariance of each parameter may also be estimated. 

In order to estimate the angular frequency ω, a simple 

estimate would be ω=2π/T; where T is the R-R peak 

period in each ECG cycle. More generally, ω is related to 

the Heart Rate Variability (HRV) of the ECG signal and 

is known to be influenced by other physiological systems 

of the body. Some authors have worked on the spectral 

specifications of the HRV [2]; this suggests that ω itself 

may be assigned a dynamic model. Meanwhile the results 
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Figure 1. A phase-wrapped noisy ECG signal 
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of the present paper are based on the first method. 

The variance of the process noise N should also be 

estimated. Note that N is a parameter that represents the 

imprecision of the dynamic model, or the negligence of 

other physiological sources that influence the ECG signal. 

A simple estimate for this parameter would be a zero 

mean Gaussian noise, with an appropriate variance. 

There are also several ways to estimate the variance of 

the measurement noises of (12). One way is to estimate 

the noise power from the deviations of the whole signal 

around the phase-wrapped ECG, or from the portions of 

the ECG signal between two successive T and P waves; 

which corresponds to the bottom part of Figure (1). 

Another way is to use a frequency domain estimate of the 

noise. Apparently the selection of the method depends on 

the origin of the expected noise. The reported results of 

the following section are based on first approach. 
 

4.  Results 
The proposed EKF model was finally implemented in 

Matlab® based on an approach previously reported in [6].  

The noisy ECG signal consisted of a normal sinus 

rhythm, taken from the PhysioNet ECG database [7]. The 

sampling frequency of the dataset was 125Hz. The mean 

ECG pulse rate was 1.2Hz or 72 beats per minute (BPM), 

which is modeled with the ω parameter in the ECG model 

of (6) (divided by 2π). 

Figure (2) represents a sample portion of the ECG 

signal together with the output of the EKF model. As it 

may be seen, the EKF has followed the dynamics of the 

ECG signal, and has suppressed the noise.  

 

5.  Discussion and conclusions 
In this paper an Extended Kalman Filter (EKF) was 

designed for the filtering of ECG signals. The EKF’s 

dynamic model was based on a modified three 

dimensional nonlinear dynamic model previously 

introduced for the generation of synthetic ECG signals. 

This nonlinear model was linearized in order to be used in 

an EKF. The designed filter was later applied to noisy 

ECG signals, and the results show the filter’s capability in 

tracking and filtering noisy ECG signals. 

The evaluation of the EKF implemented in this paper 

was quite qualitative. In practical applications it is 

necessary to represent more quantitative measures, 

together with issues concerning the stability and 

convergence of the Kalman filter. 

The filtering performance is highly reliant on the 

underlying dynamics assumed for the ECG signal. It was 

shown that by using a flexible nonlinear dynamical 

model, together with the EKF, it is possible to construct a 

filter which can remove environmental noises and 

artifacts. The proposed method can serve as a base for the 

design of a robust ECG filter, with vast applications for 

low SNR ECG signals such as the noninvasive fetal 

cardiac signal extraction. 

Future works include the combination of the proposed 

EKF model with source separation techniques, for the 

extraction of maternal and fetal cardiac signals from 

multi-channel surface electrode recordings. 
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