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Abstract. Recently, there has been a growing interest in estimation of
sparse channels as they are observed in underwater acoustic and ultra-
wideband channels. In this paper we present a new Bayesian sparse
channel estimation (SCE) algorithm that, unlike traditional SCE meth-
ods, exploits noise statistical information to improve the estimates. The
proposed method uses approximate maximum a posteriori probability
(MAP) to detect the non-zero channel tap locations while least square
estimation is used to determine the values of the channel taps. Com-
puter simulations shows that the proposed algorithm outperforms the
existing algorithms in terms of normalized mean squared error (NMSE)
and approaches Cramér-Rao lower bound of the estimation. In addition,
it has low computational cost when compared to the other algorithms.

Keywords: Bayesian · Sparse channel estimation · Cramér-Rao lower
bound

1 Introduction

Fast and accurate channel estimation at the receiver is often of much impor-
tance due to the need for optimal demodulation and decoding in limited time.
Sparse channels, those whose time domain impulse response has much less non-
zero taps than their length, have been observed in many practical scenarios such
as acoustic underwater [1], ultrawideband propagation [2] and seismic explo-
ration [3]. Since traditional channel estimation methods, such as the least squares
method, fail to exploit sparsity of these channels, in the last decade, several
sparse channel estimation (SCE) methods have been proposed to improve the
estimates [4–10].

In [4,10], two iterative approaches called ITD-SE and MIDE are reported
which utilize thresholds to detect the channel support1 followed by a structured
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1 Non-zero channel tap locations.
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least square (LS) estimate to determine the values of the channel taps. Sim-
ple structure, low complexity and no dependency on the channel order along
with acceptable accuracy are the advantages of these threshold-based support
detection methods. Moreover, in [5], an iterative MAP-based approach is intro-
duced to jointly estimate the location and the values of the taps. For this
purpose, three algorithms have been examined: L2MAP with Threshold,
LASSO-MAP with Threshold and Backward-Detection MAP. These methods
have very low complexity and near-optimal performance at high SNRs; never-
theless they presume the channel sparsity level is known a priori while it’s rarely
known in practice. Furthermore, they have limitations on the sparsity rate of the
channel.

The algorithms mentioned above, neglect noise statistical information and
posterior information of the channel support, which can explain their limited
performance. In this paper, to overcome the problems mentioned, as in [4], we
present a two stage Bayesian procedure, based on support detection and then
channel estimation. For the former part, following [11], we propose a MAP-
based tap detection approach which not only considers sparsity of the channel
but also exploits noise statistics and posterior information of the channel support
to improve the estimates; and for the latter, a structured least square estimation
is applied. Unlike Bayesian approaches in SCE algorithms that usually assume
Gaussian distribution for the channel, regarding the procedure in [11], the chan-
nel distribution in our algorithm is arbitrary. Experimental results demonstrate
that our algorithm approaches the Cramér-Rao lower bound of the estimation
based on knowing the true channel support (called CRB-S in [4]) at high SNRs.
Besides, it has a low computational cost. Note that as our main contribution to
SCE algorithms is a support detection approach using approximate MAP, we
call it Support Detection using Maximum A posteriori Probability (SDMAP) in
this paper.

The paper is organized as follows: System Model and MAP Setup are given
in Sect. 2. In Sect. 3, SDMAP algorithm is proposed. Experimental results are
investigated in Sect. 4 in order to compare the performance of SDMAP with
existing algorithms in term of normalized mean square error (NMSE) and com-
putational complexity. Finally, we conclude the paper in Sect. 5.

Notation: Throughout the paper, we denote scalars with lowercase letters (e.g.,
x), vectors with lowercase boldfaced letters (e.g., x) and matrices with uppercase
boldfaced letters (e.g., X). xi stands for the ith column of the matrix X. Sets
are designated by uppercase calligraphic letters; the cardinality of the set S is
|S|. We use xS to denote the |S|- dimensional vector of the entries in the vector
x indexed by S. Also, for any m×n matrix X, we use XS to denote the m× |S|
matrix corresponding to the columns of X indexed by S and X(S1,S2) to denote
the |S1| × |S2| matrix corresponding to the rows and columns of X indexed by
S1 and S2 respectively. Im is denoted for the m × m identity matrix. ‖x‖ means
the 2-norm of the vector x. Finally, |x| stands for a vector whose elements are
the absolute values of the corresponding elements of x.
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Fig. 1. Time domain discrete impulse response of a sparse channel

2 System Model and MAP Setup

2.1 System Model

Typically, channel estimation is accomplished by sending a training sequence
and processing the channel output. Mathematically, let {un}Li=1, L ∈ N denote a
training sequence and h ∈ RN , N ∈ N be the finite discrete impulse response of
the channel (See Fig. 1). The resulting observations y ∈ RM ,M = L+N −1 are
the convolution of the training signal u = [u1, u2, u3, ..., uL]T and the impulse
response h = [h1, h2, h3, ..., hN ]T corrupted by an additive noise vector n. In
matrix form, we have

y = Uh + n = UShS + n, (1)

where, n ∼ N (0, σ2IM ) is an M ×1 Gaussian noise vector, S is the true support
set of h and U is the M × N training Toeplitz matrix with the first column
[u1, u2, u3, ..., uL, 0, ..., 0]T as in [4].

We assume that the sparse channel vector h is modeled as h = hB � hG, in
which � is element-wise Hadamard multiplication, hB is an N ×1 vector, whose
elements are independent and identically distributed (i.i.d) Bernoulli random
variables with success probability Pa = |S|

N and the elements of hG are drawn
from an arbitrary distribution. Clearly, hB models the support of h, with a
sparsity level equal to Pa.

2.2 MAP Setup

The goal is to estimate h from knowledge of the observation vector y and the
training signal u. To achieve this goal, first, we obtain an estimate of the channel
support, S, via MAP detection procedure, which is given by,

ŜMAP = argmax
S

P{y|S}P{S}, (2)
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in which, P denotes the probability distribution. Since each element of h is
active according to a Bernoulli distribution with success probability Pa, P(S) is
given by,

P{S} = Pa
|S|(1 − Pa)

N−|S|
. (3)

Rather than obtaining the probability of y conditioned on the support, P{y|S},
directly, we serve the approach in [11] to make our algorithm independent of
the channel distribution. For this purpose, we project y onto the orthogonal
complement of US via multiplying (1) by Π⊥

S = IM − US(USTUS)−1UST

which leads to Π⊥
S y = Π⊥

S n ∼ N (0, σ2Π⊥
S ). Ignoring constant multiplicative

factors, we have,

P{y|S} ∝∼ P{Π⊥
S y|S}

∝∼ exp
(

− 1
2
(Π⊥

S y)T (σ2Π⊥
S )−1(Π⊥

S y)
)
, (4)

in which, ∝∼ denotes approximate proportion2. Since evaluation of the sup-
port in (2) leads to prohibitive computational task, alternatively, we propose a
support detection procedure in the next section that requires a fitness function
which is defined by,

μ(S) � ln
(
P{y|S}P{S}

)

= ln
(
exp(− 1

2σ2
(yTΠ⊥

S y))
)

+ ln
(
Pa

|S|(1 − Pa)
N−|S|

)

∝ 1
σ2

(
yTUS(UT

SUS)−1UT
Sy

)
+ 2|S| ln

( |S|
N − |S|

)
. (5)

After finding dominant channel support using the SDMAP scheme of the next
section, it only remains to determine the values of the channel taps at the obtained
support. To accomplish this, structured least square estimation is applied as
follows,

ĥ = (UT
SUS)−1UT

Sy. (6)

3 Proposed Algorithm for Support Detection (SDMAP)

In this section, we introduce our algorithm to detect the channel support. This
algorithm is presented in two steps, first support candidates selection and then
estimation of the channel order.

3.1 Support Candidates Selection

To obtain support candidates, first, we compute unstructured least square esti-
mate, ĥ = (UTU)−1UTy, and sort the absolute value of the elements in ĥ, |ĥ|,
in descending order and keep the respective indices S.
2 A justification of (4) for Gaussian channels is given in [11].
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3.2 Order Estimation Procedure

To obtain the channel order, first, we initialize the channel order by,

P = #{|ĥi| >
max(|ĥ|)

2
, 1 � i � N, i ∈ N}, (7)

in which, max(|h|) stands for the largest element in the vector |h|. Regarding the
initial order P , we determine the direction toward which the current support,
SP = {S(i), i = 1, ..., P}, is inclined. In this regard, to determine the move
direction we use some criteria which will be discussed further. After finding the
direction toward which the current support tends to move, the support order
changes until some stopping criteria are satisfied or the number of maximum
move steps is exceeded.

Forming the direction and stopping criteria suitably, requires the knowledge
of the noisy part of the fitness function (5). To choose suitable stopping rules,
we can exploit the pure noisy part of the fitness function which is given by,

μn(S) =
1
σ2

(
nT US(UT

SUS)−1UT
S︸ ︷︷ ︸

H

n
)
. (8)

Since H in (8) is a symmetric, idempotent matrix with rank(H) = |S|, μn(S)
is chi-squared distributed with ν = |S| degrees of freedom, i.e. χ2(ν), in which
ν is the parameter of the chi-squared distribution [12, Theorem A.87]. As the
mean and variance of this chi-squared distributed random variable are ν and 2ν,
respectively, we can obtain tolerance limits3 of μn(S) as follow,

Lower-bound: lb(ν) = ν − α
√

2ν;

Upper-bound: ub(ν) = ν + β
√

2ν, (9)

in which, α and β are chosen such that about 10% of the distribution occurs
outside the bounds in (9). In our simulations, we used α = 1.1 and β = 1.3.
Considering the effect of noise on the fitness function (5) and trying to reduce
it, we define the direction criterion as follows,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Move backward (i.e. keep P − 1) if,
μ(SP−1) − μ(SP ) > lb(P − 1) − ub(P ) &
μ(SP+1) − μ(SP ) < ub(P + 1) − lb(P ); (10a)
Move forward (i.e. keep P + 1) if,
μ(SP−1) − μ(SP ) < lb(P − 1) − ub(P ) &
μ(SP+1) − μ(SP ) > ub(P + 1) − lb(P ); (10b)
Don’t move if,
neither of the two above is satisfied. (10c)

3 Tolerance limits are the bounds that the probability of random variable occurrence
outside them is a certain value.
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Qualitatively spoken, moving backward simultaneously requires that the ten-
dency of the current support to change to the previous support (i.e. μ(SP−1) −
μ(SP )) be greater than the lower limit of the noisy part and the tendency to
change to the next support (i.e. μ(SP+1) − μ(SP )) be less than the upper limit
of the noisy part. Likewise, moving forward simultaneously requires that the
tendency to change to the previous support be less than the lower limit of the
noisy part and the tendency to change to the next support be greater than the
upper limit of the noisy part.

After finding the direction using (10), the algorithm moves in the obtained
direction until approximately no change is observed in the fitness function. This
is accomplished by using a stopping rule which is given by:

μ(SPnew) − μ(SPpre) < ub(Pnew) − lb(Ppre), (11)

Algorithm 1. SDMAP Algorithm
1: procedure SDMAP(U, y, σ2)
2: corr = yTU, A = UTU
3: ĥ = A−1corr
4: Sort the elements in |ĥ| in descending order and save the respective indexes in

Sc

5: Pinit ← #{|ĥi| > max(|ĥ|)
2

, 1 � i � N, i ∈ N}
6: if (10a) is satisfied then
7: P ← Pinit

8: μnew ← μ(SP−1)
9: repeat

10: P ← P − 1
11: μold ← μnew

12: μnew ← μ(SP−1)
13: until μnew − μold < ub(P − 1) − lb(P ) ∨ P = 1
14: else if (10b) is satisfied then
15: P ← Pinit

16: μnew ← μ(SP+1)
17: repeat
18: P ← P + 1
19: μold ← μnew

20: μnew ← μ(SP+1)
21: until μnew − μold < ub(P + 1) − lb(P ) ∨ P = N
22: end if
23: Sf = Sc(1 : P )
24: ĥf = A(Sf , Sf )−1corr(Sf )
25: function μ(S)

26: F = 1
σ2 (corr(S)A(S, S)−1corr(S)T ) + 2|S| ln( |S|

N−|S| )
27: return F
28: end function
29: Output ĥf

30: end procedure
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in which, Ppre and Pnew are the previous and new orders, respectively. (11) qual-
itatively expresses that the algorithm stops when the tendency of the previous
support SPpre to change to the new support SPnew (i.e. μ(SPnew) − μ(SPpre)) is
less than the upper bound of the noisy part. The final pseudocode form of our
algorithm is given in Algorithm 1.

4 Computer Simulations

In this section, we investigate the performance of our algorithm (SDMAP) in
comparison with five algorithms: L2MAP [5], Backward-MAP [5], LASSO-MAP
[5], MIDE [10] and ITD-SE [4]. For this purpose, we consider a sparse channel
with length N = 30 and support size |S| = 5 (see Fig. 1) and draw the elements
of the training matrix, UM×N ,M = 50, from a zero-mean i.i.d. Gaussian distri-
bution (N (0, 1

N )). The estimation efficiency is evaluated using normalized mean
squared error (NMSE) which is defined as,

NMSE =
1

NMC

NMC∑
n=1

‖h − ĥn‖2

‖h‖2 , (12)

where, NMC is the number of Monte Carlo iterations, ĥn is the channel estimator
in the nth experiment and h is the true channel. To compare computational
complexity of the proposed algorithm with other methods, we use CPU time
as a simple metric. Our simulation is implemented using MATLAB 2012 on a
laptop computer with 2.4 GHz Intel i5 processor and 4 GB memory running the
Windows 7 64 bit operating system.

From Fig. 2(a), we observe that SDMAP algorithm outperforms all the other
compared algorithms in the sense of NMSE and approaches the theoretic lower
bound CRB-S at high SNRs. Figure 2(b) demonstrates the computational effi-
cacy of our algorithm over the other methods.

Fig. 2. Performance comparison. (a) NMSE versus SNR. (b) Computational complex-
ity versus SNR
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5 Conclusion

In this paper, we proposed a new Bayesian strategy for channel estimation called
SDMAP. As it can be seen from simulation results, SDMAP has strengths in
terms of NMSE and low computational cost. The reason is that our algorithm
utilizes a priori information of noise in the support detection stage. The use of
noise statistics provides the posterior information of the channel support, and
finally leads to reducing the misdetection.
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