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1Institut National Polytechnique de Grenoble (INPG), Laboratoire des images et

des signaux (LIS), Grenoble, France
2Electrical engineering department, Sharif University of Technology, Teheran, Iran
3Signal Processing Group, Universitat de Vic, Sagrada Família 7, 08500, Vic, Spain
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ABSTRACT

A Wiener system is a linear time-invariant filter,
followed by an invertible nonlinear distortion. As-
suming that the input signal is an independent and
identically distributed (iid) sequence, we propose
an algorithm for estimating the input signal only
by observing the output of the Wiener system. The
algorithm is based on minimizing the mutual infor-
mation of the output samples, by means of a steep-
est descent gradient approach.

1. INTRODUCTION

When linear models fail, nonlinear models are power-
ful tools for modeling practical situations. Many re-
searches have been done in the identification and/or
the inversion of nonlinear systems. These works usu-
ally assume that both the input and the output of the
distortion are available, and are based on higher-order
input/output cross-correlation [1] or on the application
of the Bussgang and Prices theorems [2, 3] for nonlin-
ear systems with Gaussian inputs. However, in a real
world situation, one often does not have access to the
distortion input. In this case, the blind identification
of the nonlinearity becomes the only way to solve the
problem. This paper is concerned by a particular class
of nonlinear systems, composed by a linear subsystem
followed by a memoryless nonlinear distortion (see
Fig. 1). This class of nonlinear systems, also known as
Wiener systems, is a nice and mathematically attract-
ing model, but also an actual model used in various
areas, such as biology [4], industry [5], sociology and
psychology (see also [6] and the references therein).
Despite its interest, at our knowledge, it only exist two
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h f(�)-- -
s(t) v(t) e(t)

Fig. 1. A Wiener system consists of a linear filter fol-
lowed by a nonlinear distortion.

g(�) w-- -

e(t) x(t) y(t)

Fig. 2. A Hammerstein system consists of a nonlinear
distortion followed by a linear filter.

completely blind procedures for inverting such sys-
tems [7, 8]. As in these two mentioned procedures,
the basic idea of the method is based on source sep-
aration techniques. It consists in changing the spatial
independence of the outputs - required for inverting
nonlinear mixtures - into a time independence of the
output - required for inverting the filtered observation,
i.e. the blind inversion of Wiener system.

2. PRELIMINARY ISSUES

2.1. Mutual Information

For designing a system which generates an output with
independent samples, we need a criterion for measur-
ing the independence of different samples. A conve-
nient independence measure is mutual information of
yi’s, denoted byI(y):

I(y) =

Z
y

py(y) ln
py(y)QN

i=1 pyi(yi)
dy (1)

It is well-known that this quantity is always non-
negative, and vanishes if and only if theyi’s are inde-
pendent. Consequently, the parameters of the inverse
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system (the functiong and the coefficients of the in-
verse filterw, see Fig. 2) can be found based on mini-
mization of the mutual information of the output sam-
ples.

To do this minimization, knowing an expression
for the “gradient” of the mutual information is help-
ful. Such an expression, which has been already pro-
posed [9], requires multivariate score functions.

2.2. Multivariate Score Functions

In this section, we recall the definitions of multivariate
score functions [10]. For the scalar case, we know the
following definition from the statistics literature:

Definition 1 (Score Function) The score function of
a scalar random variabley is the opposite of the log
derivative of its density:

 y(y) = �
d

dy
ln py(y) = �

p0y(y)

py(y)
(2)

wherepy(y) denotes the probability density function
(PDF) ofy.

Similarly, for a random vectory = (y1; : : : ; yN)
T

we define two different kinds of score functions. Let
py(y) andpyi(yi) denote the joint and marginal PDFs,
respectively.

Definition 2 (MSF) The marginal score function (MSF)
ofy is the vector whose thei-th component is the score
function of thei-th random variable, i.e. :

 
y
(y) = ( 1(y1); : : : ;  N (yN ))

T (3)

where:

 i(yi) = �
d

dyi
ln pyi(yi) = �

p0yi(yi)

pyi(yi)
: (4)

Definition 3 (JSF) The joint score function (JSF) of
y is the gradient of� ln py(y), i.e. :

'
y
(y) = ('1(y); : : : ; 'N (y))

T (5)

where:

'i(y) = �
@

@yi
ln py(y) = �

@
@yi

py(y)

py(y)
(6)

The difference of these two score functions contains
information about the independence of the components
of y, and hence it is convenient to define it.

Definition 4 (SFD) The score function difference (SFD)
of y is the difference between its MSF and JSF:

�
y
(y) =  

y
(y) �'

y
(y) (7)

The following theorem relates the independence of the
components of a random vectory to its SFD [11].

Theorem 1 The components of the random vectory

are independent, if and only if, its SFD is zero,i.e.:

'
y
(y) =  

y
(y) (8)

2.3. “Gradient” of mutual information

The variations of mutual information resulting from a
small deviation in its argument (the “differential” of
mutual information), is given by the following theo-
rem [9]:

Theorem 2 Let � be a ‘small’ random vector, with
the same dimension than the random vectory. Then:

I(y +�)� I(y) = E
n
�T�

y
(y)

o
+ o(�) (9)

whereo(�) denotes terms in� of order higher than
1.

Note that for any multivariate differentiable function
f(y), we have:

f(y +�)� f(y) =�Trf(y) + o(�) (10)

A comparison between (9) and (10) shows that SFD
can be called thestochastic gradientof the mutual in-
formation.

3. INVERSION CRITERION

From the previous section, the general idea for deter-
mining the inverse system is to take the mutual infor-
mation of the output samples as the inversion crite-
rion, and then to use a gradient based algorithm for
minimizing it. This gradient algorithm is based on the
“gradient” of mutual information as proposed by (9).

However, usingI(y(0); y(1); y(2); : : : ) as indepen-
dence criterion, is computationally too expensive. This
is due to the fact that SFD (which is the gradient of mu-
tual information) requires the estimation of multivari-
ate densities, and the computational load of this esti-
mation increases when the number of samplesy(i) in-
creases. Practically, we approximate the independence
of the whole sample sequence with independence of
sample pairs:

J =

pX
m=1

I(y(n); y(n�m)) (11)

wherep denotes the degree of the separating filterw.
This criterion (11), although requiring only the es-

timation of bivariate PDFs, is still expensive. For im-
plementing it, we use a stochastic manner, that is, we
takeI(y(n); y(n�m)) as the inversion criterion but at
each iteration we use a different randomm between1
andp. With this trick, on the average, we are minimiz-
ing the criterion (11) but with much less computation
(note that the information in different terms of (11) are
not totally independent, and hence it can be intuitively
seen that this trick does not highly affect the number
of required iterations for convergence). The same idea
is used in [8] for blind inverting Wiener systems, and
a similar method is used in [11] for blind separating
convolutive mixtures.
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4. ESTIMATING EQUATIONS

The gradient based approach for minimizing the crite-
rion (11) is:

wk  wk � �1
@J

@wk

k = 0; : : : ; p (12)

g  g � �2
@J

@g
(13)

wherewk are the coefficients ofW (z), the filter asso-
ciated tow in the discrete time representation). Note
that @J

@g
is itself a function. For using the above ap-

proach, the gradients ofI(y(n); y(n � m)) with re-
spect towk andg must be calculated. For obtaining
these gradients, the idea is to let a small deviation in
the desired parameter, and then to compute the influ-
ence of this deviation inI(y(n); y(n � m)) by using
(9), which gives the desired gradient.

Before proceeding, let define a notation. For any
signalx(n), byx(m)(n) we denote the vector signal:

x(m)(n) ,

�
x(n)

x(n�m)

�
(14)

With this notation, we can now derive the gradients
of I(y(m)(n)) with respect towk ’s andg.

4.1. Gradient with respect towk

For calculating the gradient ofI(y(m)(n)) with re-
spect towk, assume a small deviation� in this param-
eter:

ŵl =

�
wl + �; l = k

wl; l 6= k
; l = 1; : : : ; p (15)

Then the new output will be:

ŷ(n) =

pX
l=0

ŵlx(n� l) = y(n) + � x(n� k) (16)

Consequently:

ŷ(m)(n) = y(m)(n) + �x(m)(n� k) (17)

Hence from (9) we have (up to first order terms):

I
�
ŷ(m)(n)

�
� I

�
y(m)(n)

�
=

= E
n
�?m(n)

T �x(m)(n� k)
o (18)

where�?m(n) stands for the SFD ofy(m)(n). This
equality can be simplified as:

�I = �E
n
�?m(n)

Tx(m)(n� k)
o

= �E
�
�?m;1(n)x(n� k)

	
+ �E

�
�?m;2(n)x(n� k �m)

	
= �E

�
�?m;1(n)x(n� k)

	
+ �E

�
�?m;2(n+m)x(n� k)

	
= �E f�m(n)x(n� k)g

(19)

where:

�m(n) , �?m;1(n) + �?m;2(n+m) (20)

Note that in the simplification (19) the signals are as-
sumed to be stationary. Finally, from (19) we deduce:

@

@wk

I
�
y(m)(n)

�
= E f�m(n)x(n� k)g (21)

In other words, the derivatives ofI(y(n); y(n � m))
with respect to the coefficients of the filterW (z) are
obtained by the cross-correlation coefficients between
x(n) and�m(n). The procedure of estimation of�m(n)
from x(n) can be depicted as:

x(n)!

�
x(n)
x(n)

�
Shift
���!

�
x(n)

x(n�m)

�
SFD
���!�

�?m;1(n)
�?m;2(n)

�
Shift back
������!

�
�?m;1(n)

�?m;2(n+m)

�
Sum
���! �m(n)

4.2. Gradient with respect tog

Here, the calculation of the ‘gradient’ ofI(y(m)(n))
with respect to the ‘function’g is considered. This
‘gradient’ is itself a function.

To obtain this gradient, let a small deviation in the
functiong of the form:

ĝ = g + � Æ g (22)

where�(�) is a ‘small’ function. The above equation is
equivalent to:

x̂ = x+ �(x) (23)

By definingÆ , �(x), the output ofW (z) becomes:

ŷ(n) = y(n) +
�
W (z)

�
Æ(n) (24)

Let �(n) ,
�
W (z)

�
Æ(n). Then, from the above equa-

tion:
ŷ(m)(n) = y(m)(n) + �(m)(n) (25)

Now, by using (9) we have (up to first order terms):

�I = E
n
�?m(n)

T�(m)(n)
o

= E f�m(n) �(n)g
(26)

where a simplification similar to (19) is used for writ-
ing the second equality. Now, we write the above equa-
tion as:

�I = E f�m(n) �(n)g

= E

(
�m(n)

pX
k=0

wkÆ(n� k)

)

=

pX
k=0

wkE f�m(n)Æ(n� k)g

=

pX
k=0

wkE f�m(n+ k)Æ(n)g

= E fÆ(n)�(n)g

(27)
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where:

�(n) ,

pX
k=0

wk�m(n+k) =

�
W

�
1

z

��
�m(n) (28)

Consequently:

�I = E fÆ�g

= Ex fE fÆ� j xgg

= Ex fE f�(x)� j xgg

= Ex f�(x)E f� j xgg

=

Z +1

�1

�(t)E f� j x = tg px(t) dt

(29)

The above equation shows that the (relative [12]) ‘gra-
dient’ of I(y(n); y(n �m)) with respect to the func-
tiong via the weighting functionpx(x) is the function:

(rgI)(�) = E f� j x = �g (30)

which is the regression function [13] fromx to �. In
other words, (29) shows that taking�(�) equal to the
opposite of the above function, insures a reduction in
I(y(n); y(n�m)), i.e.�I < 0.

In our simulations, (30) is estimated using smooth-
ing splines [14],i.e. (rgI)(�) is the cubic spline which
fits on the(x; �) data points. In MATLAB’s spline
toolbox, it is computed with the ‘csaps ’ function.

5. THE ALGORITHM

Having calculated the gradients of the inversion crite-
rion with respect to the parameters of the inverting sys-
tem (wk’s andg), the final algorithm is nothing but ap-
plying a steepest descent gradient algorithm on these
parameters.

However, some other points must be taken into ac-
count. First, it must be noted that there are mean and
scale indeterminacies inx(n). Consequently, for re-
moving their effects, at each iteration, the mean of
x(n) is removed and its energy is normalized. Another
indeterminacy is the energy ofy(n), and it is removed
by normalizing its energy at each iteration.

Another important issue is the initialization of the
algorithm. As the starting point of the algorithm, we
use the approach proposed in [15]. The idea of this
approach is as follows:

1. Because of the central limit theorem [13], the
outputv(t) of the filterh is a weighted sum of
iid samples tends to have a Gaussian distribu-
tion, which is then distorted by the nonlinear
functionf . As a starting estimate ofg, we use
the nonlinear function which enforcesx to be
similar tov, i.e. a Gaussian. It can be seen [15]
that this is achieved with:

g = ��1 Æ Fe (31)

� Initialization: g = ��1 Æ Fe, x = g(e), W (z) =
lpc(x; p), y(n) = [W (z)]x(n).

� Loop:

1. Choose a random1 � m � p.

2. Estimate the SFD ofy(m) and�m(n) (see (14)
and (20)).

3. Estimate @I
@wk

and(rgI)(�) from (21) and (30),
respectively.

4. Let:

wk  wk � �1
@J

@wk

; k = 0; : : : ; p

x x� �2(rgI)(x)

5. Remove the mean ofx and normalize its energy.

6. Lety(n) = [W (z)]x(n).

7. Normalize the energy ofy: (a) Let�y = E fyg,
(b) y  y=�y, (c)wk  wk=�y; k = 0; : : : ; p.

� Repeat until convergence

Fig. 3. Gradient based algorithm for blind inversion of
Wiener systems.

whereFe is the Cumulative Density Function
(CDF) ofe and��1 is the CDF of a (zero mean
and unit variance) Gaussian distribution.

2. Since we are looking for an output with inde-
pendent samples, as an initial estimate for the
filter W (z) a filter which creates output with
decorrelatedsamples may be used. Such a fil-
ter is given by the Linear Predictor Coefficients
(LPC) of thex sequence. In MATLAB it can be
obtained by thelpc function.

The final inversion algorithm is given in Fig. 3. In
this figure,p denotes the order of the inverse filter.

6. EXPERIMENTAL RESULTS

Here, for checking the efficacy of the proposed algo-
rithm, we present an experimental result using uniform
random sources and a saturating nonlinear distortion.

In this experiment, the source signal is a uniform
random source with zero mean and unit variance. The
filter h is the low-pass filterH(z) = 1 + 0:5z�1 �
0:2z�2, and the nonlinear distortion function isf(x) =
tanh(3x). Then, the algorithm of Fig. 3 is used to ob-
tain the inverse system. The parameters of the algo-
rithm are:T = 1000 (number of observed samples),
p = 15 (order of then inverse filter),�1 = �2 = 0:2
(step sizes). For estimating the SFD, a method pro-
posed by D.-T. Pham for estimating conditional score
functions is used [16].
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Fig. 5. The coefficients of the global filterw(k)?h(k).

As performance criterion, we have used the output
Signal to Noise Ratio (SNR), defined by:

SNR (in dB)= 10 log10
E
�
s2
	

E f(y � s)2g
(32)

The averaged output SNR obtained in this experi-
ment is between18 and20 dB .

The distribution ofx samples versuse andv sam-
ples is shown in Fig. 4. These distributions show the
estimatedg and the compensated functiong Æ f . Then
the efficacy of the algorithm in compensating the non-
linear distortion is demonstrate.

Finally, Figure 5 shows the coefficients of the filter
W (z)H(z). The result is almost a Dirac function: it
then indicates that the inverse of the linear part is well
estimated.

7. REFERENCES

[1] S.A. Bellings and S.Y. Fakhouri, “Identification
of a class of nonlinear systems using correlation
analysis,” Proc. IEEE, vol. 66, pp. 691–697,
1978.

[2] E.D. Boer, “Cross-correlation function of a band-
pass nonlinear network,”Proc. IEEE, vol. 64, pp.
1443–1444, 1976.

[3] Jacoviti G., A. Neri, and R. Cusani, “Meth-
ods for estimating the autocorrelation function of
complex stationary process,”IEEE Trans. ASSP,
1987.

[4] I.W. Hunter, “Frog muscle fibber dynamic stiff-
ness determined using nonlinear system identifi-
cation techniques,”Biophys. J., pp. 49–81, 1985.

[5] R. Bars, I. Bzi, B. Pilipar, and B. Ojhelyi, “Non-
linear and long range control of a distillation pi-
lot plant. in identification and syst. parameter es-
timation,” in EUSIPCO, Budapest, 1990, pp.
848–853.

[6] I.W. Hunter and M.J. Korenberg Korenberg,
“The identification of nonlinear biological sys-
tems: Wiener and hammerstein cascade models,”
Biol Cybern., pp. 135–144, 1985.

[7] A. Taleb, J. Sol´e-Casals, and C. Jutten, “Quasi-
nonparametric blind inversion of Wiener sys-
tems,” IEEE Trans. on Signal Processing, vol.
49, no. 5, pp. 917–924, 2001.

[8] M. Babaie-Zadeh, J. Sol´e-Casals, and C. Jut-
ten, “Blind inversion of wiener system using
a minimization-projection (MP) approach,” in
ICA2003, Nara, Japan, April 2003, pp. 681–686.

[9] M. Babaie-Zadeh, C. Jutten, and K. Nayebi,
“Differential of mutual information function,”
IEEE Signal Processing Letters, 2003, accepted.

[10] M. Babaie-Zadeh, C. Jutten, and K. Nayebi,
“Blind separating Convolutive Post-Nonlinear
mixtures,” in ICA2001, San Diego, California,
December 2001, pp. 138–143.

[11] M. Babaie-Zadeh, C. Jutten, and K. Nayebi,
“Separating convolutive mixtures by mutual in-
formation minimization,” in Proceedings of
IWANN’2001, Granada, Spain, Juin 2001, pp.
834–842.

[12] J.-F. Cardoso and B. Laheld, “Equivariant adap-
tive source separation,”IEEE Trans. on SP, vol.
44, no. 12, pp. 3017–3030, December 1996.

[13] A. Papoulis,Probability, Random Variables, and
Stochastic Processes, McGraw-Hill, 1991.

[14] R. L. Eubank,Spline smoothing and nonparanet-
ric regression, Dekker, 1988.
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