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Abstract—We explore the dictionary learning problem for
sparse representation when the signals are dependent. In this
paper, a first-order Markovian model is considered for depen-
dency of the signals, that has many applications especially in
medical signals. It is shown that the considered dependency
among the signals can degrade the performance of the existing
dictionary learning algorithms. Hence, we propose a method
using the Maximum Log-likelihood Estimator (MLE) and the
Expectation Minimization (EM) algorithm to learn the dictionary
from the signals generated under the first-order Markovian
model. Simulation results show the efficiency of the proposed
method in comparison with the state-of-the-art algorithms.

Index Terms—Dictionary, sparse representation, Markovian
model, state, Markov matrix

I. INTRODUCTION

Dictionary learning for sparse representation has many sig-

nal processing applications such as classification [1], compres-

sion [2], denoising [3], and so on. The goal of dictionary learn-

ing is factorizing the matrix of signals X = [x1 x2 ...xT ] ∈
R

M×T into the dictionary D = [d1 d2 ...dN ] ∈ R
M×N with

unit norm columns (atoms), and the matrix S = [s1 s2 ... sT ] ∈
R

N×T with sparse columns. Each column of the dictionary is

usually called an atom. The matrices D and S can be estimated

by solving the constrained optimization problem

{D,S} = argmin
D∈D,S∈S

‖X−DS‖2F , (1)

where D and S respectively show the set of matrices with

unit norm atoms, and the set of matrices with sparse columns,

and ‖.‖F denotes the Frobenius norm. This problem is usually

solved using alternating minimization. This means that (1) is

alternately minimized with respect to D (D-Update) and S
(S-Update) until convergence of the parameters.

Most dictionary learning algorithms differ in performing

the D-Update. Some of the algorithms estimate all atoms of

the dictionary simultaneously [4], [5], while some others find

the atoms consecutively [6]–[8]. Method of Optimal Direction

(MOD) [5] is one of the well-established methods from the

first category that considers the following closed form solution

for the D-Update:

D = XS† (2)

followed by normalizing the atoms, where “†” denotes the

pseudo inverse. K-Singular Value Decomposition (K-SVD) [8]

is one of the well-known methods from the second category

that updates each atom and the corresponding non-zero entries

of S using SVD by keeping all other atoms and entries of S
intact. In fact, the following constrained optimization problem

is solved for updating each atom and the associated non-zero

entries of S:

{dn, s
r
[n]} = argmin

dn,sr[n]

‖Er
n − dn(s

r
[n])

T ‖2F

s.t. ‖dn‖2 = 1, En = X−
∑
i �=n

di(s[i])
T (3)

where s[i] shows the ith row of S, sr[n] represents the non-zero

entries of s[n], and Er
n consists of the columns of En which

are corresponding to the non-zero entries of s[n].
The S-Update is divided into T different sparse recovery

problems from the signals, i.e., the columns of X, which

can be solved by any of the sparse recovery algorithms

such as Basis Pursuit (BP) [9], Orthogonal Matching Pursuit

(OMP) [10], Smoothed l0 (SL0) [11], and so on. Since there

is no information about the dependency of the columns of

X, they are assumed to be independent, and the S-Update
decouples to T different sparse recovery problems. However,

in some applications in medical signals and images, e.g., elec-

troencephalography recordings in some specific diseases or

diffusion weighted images [12]–[14], the signals are dependent

and hence, the current strategy in the S-Update degrades the

dictionary learning performance. In this paper, we consider a

well-known model, especially in medical signals [14], [15],

for the dependency of signals and explain how to perform the

dictionary learning when the signals are generated under this

model.

II. PROPOSED MODEL

We assume that there are Q states that are activated under

the first-order Markovian model with a fixed Markov matrix

P ∈ R
Q×Q. Each sample of the signals is associated with

one of these states. Hence, we can assign a sequence of states

{q1, q2, ..., qT } to the signals, where qt ∈ {1, 2, ..., Q} for

t = 1, 2, ..., T . Each state has its own dictionary D(q) =

[d
(q)
1 d

(q)
2 ...d

(q)
L ] ∈ R

M×L with L atoms. In fact, the con-

catenation of the dictionaries in different states makes the

main dictionary, i.e., D = [D(1) D(2) ...D(Q)] ∈ R
M×N
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Fig. 1. Considered model for M = 3 dimensional signals when there are Q = 3 states with L = 2 atoms in each one.

(N = LQ). It should be noted that the dictionaries D(q)

for q = 1, 2, ..., Q have no common atoms. When a state is

activated, a sparse linear combination from the atoms of the

corresponding dictionary generates the signal. The considered

model is schematically shown in Fig. 1 when M = Q = 3
and L = 2.

As shown here, similar to the main dictionary, the matrix

S ∈ R
N×T is divided into L submatrices, S(q) ∈ R

L×T

for q = 1, 2, ..., Q, corresponding to the states. Also, the

contribution of the qth state for the generation of xt, or in

other words, the tth column of S(q) is shown by s
(q)
t .

The set of unknown parameters is

Ω = {D,S,P︸ ︷︷ ︸
Θ

} ∪ {q1, q2, ..., qT }, (4)

which must be estimated from the signals. According to the

dictionary learning problem and the considered model, the

following constraints must be considered for the elements of

Θ:

D ∈ D, S ∈ S, P ∈ P → Θ ∈ Λ (5)

where P shows the set of matrices with each row summing to

one and positive entries, and Λ represents the feasible space

for Θ. Here, the model definition is complete.

Now, using a simple example, we show why the S-Update
cannot be decoupled into T independent sparse recovery

problems in the considered model. Assume that we are in

the S-Update, and we want to find the activated state for

xt, and then, select the proper atoms from the dictionary

corresponding to the activated state. Due to the presence of

the first-order Markovian model, the following optimization

problem must be solved for finding qt:

qt = argmax
q

p(qt = q|xt, qt−1) (6)

where the objective function shows the probability of being

in state q, given the sample xt and the previous activated

state qt−1. According to the first-order Markovian model, the

objective function can be written and simplified as

p(qt = q|xt, qt−1) =
p(xt, qt = q, qt−1)

p(xt, qt−1)

=
p(xt|qt = q) p(qt = q|qt−1)

p(xt)
(7)

where p(qt = q|qt−1) is the (qt−1, qt)
th entry of the Markov

matrix. Therefore, estimating the activated state for the tth

sample depends directly on the activated state for the (t−1)th

sample, and we cannot apply the sparse recovery algorithms

on each of the samples independently form other samples in

the considered model.

It is worth noting that the decision making for qt also

depends on the probability of observing xt given qt, according

to (7). Based on this observation, it can be easily shown

that when the signal to noise ratio increases, the effect of

the considered model in the dictionary learning procedure

decreases.

III. PROPOSED METHOD

We first estimate Θ using the Maximum Log-likelihood

Estimator (MLE) and the Expectation Minimization (EM)

algorithm. Then, we find the sequence of states using Viterbi

algorithm [15].

Each sample of the signals is expressed as

If qt = q → xt = D(q)s
(q)
t + nt, (8)

where nt ∈ R
M shows the additive noise with N (0, σ2

0I)
distribution. The noise vectors for t = 1, 2, ..., T are indepen-

dent and identically distributed (i.i.d). Hence, the following

objective function must be maximized for finding the MLE

solution:

g(Θ) = log(f(X|Θ)) =
T∑

t=1

log(f(xt|Θ)). (9)

Since the activated state for the tth sample is unknown, we

express the probability density function (pdf) of xt given Θ
as

f(xt|Θ) =

Q∑
q=1

p(qt = q)f(xt|qt = q,Θ), (10)

where the pdf of xt, given qt = q and Θ, can be written as

follows according to (8):

f(xt|qt = q,Θ) = (
1√
2πσ2

0

)M exp(−‖xt −D(q)s
(q)
t ‖22

2σ2
0

).

(11)
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By substituting (11) in (10), and the obtained result in (9), we

get

g(Θ) =
T∑

t=1

log
( Q∑
q=1

p(qt = q)f(xt|qt = q,Θ)
)
. (12)

Optimizing g(Θ) is difficult due to the presence of the term

“log
∑Q

q=1”. Since the summation over q is like an expectation

operator, we consider the following lower bound for the

objective function according to the Jensen’s inequality:

g(Θ) ≥
T∑

t=1

Q∑
q=1

p(qt = q) log
(
f(xt|qt = q,Θ)

)
. (13)

By substituting (11) in the obtained lower bound, it can be

shown that the following constrained optimization problem

must be solved for estimating Θ:

Θ = argmin
Θ∈Λ

h(Θ)

h(Θ) =
T∑

t=1

Q∑
q=1

p(qt = q) ‖xt −D(q)s
(q)
t ‖22. (14)

Since both Θ and p(qt = q) are unknown, we use the EM

method to estimate the parameters, i.e., the following two

steps are alternately performed until the convergence of the

parameters.
1) Expectation Step: In this step, we assume that Θ is fixed,

and estimate p(qt = q) for t = 1, 2, ..., T and q = 1, 2, ..., Q.

Since Θ is known, the Markov matrix and the conditional

pdf of the signals f(xt|qt = q,Θ) for t = 1, 2, ..., T and

q = 1, 2, ..., Q are known according to (11). Hence, we can

use the forward-backward procedure for estimating p(qt = q)
as explained with details in [15] for the first-order Markovain

model. It should be mentioned that p(qt = i, qt+1 = j) that

shows the probability of being in state i for the tth sample

and bing in state j for the (t+ 1)th sample is also calculated

during the forward-backward procedure, which will be used

in the next step to estimate the Markov matrix.
2) Minimization Step: In this step, we assume that p(qt =

q) is fixed, and estimate Θ. We first show how to estimate P,

and then D and S.

The (i, j)th entry of the Markov matrix can be estimated as

[P]i,j = pij → pij =

∑T−1
t=1 p(qt = i, qt+1 = j)∑T−1

t=1 p(qt = i)
. (15)

Now, we back to (14) for estimating D and S. Since the

parameters of the states appear in h(Θ) independently from

each other, the following constrained optimization problem can

individually be solved for all of the states (i.e., q = 1, 2, ..., Q)

to find D and S:

{D(q),S(q)} = argmin
D(q)∈D,S(q)∈S

T∑
t=1

p(qt = q)‖xt −D(q)s
(q)
t ‖22.

(16)

The objective function has a weighted least square form which

can be solved using alternating minimization. In fact, due

to the similarity of (16) and (1), any dictionary learning

algorithms, e.g. MOD or K-SVD, can be employed for solving

(16) following the S-Update and the D-Update.

The noticeable point is the presence of p(qt = q) in (16)

that acts as a weight and causes a minor modification in the

D-Update and does not change the S-Update.

If we use MOD for solving (16), the following closed form

solution is obtained in the D-Update:

D(s) = (
T∑

t=1

p(qt = q) s
(q)
t s

(q)
t

T
)−1(

T∑
t=1

p(qt = q)xts
(q)
t

T
),

(17)

followed by normalizing the atoms. We call the proposed

method as “New MOD” when (16) is solved using MOD.

We can also use K-SVD for solving (16). We define ẋt =√
p(qt = q) xt and ṡ

(q)
t =

√
p(qt = q) s

(q)
t , and consider

them as the columns of Ẋ and Ṡ(q), respectively. Hence, the

following constrained optimization problem must be solved

for updating each atom and its associated non-zero entries:

{dn, ṡ
r
[n]} = argmin

dn,ṡr[n]

‖Ėr
n − dn(ṡ

r
[n])

T ‖2F

s.t. ‖dn‖2 = 1, Ėn = Ẋ−
∑
i �=n

di(ṡ[i])
T , (18)

where ṡ[i] represents the ith row of Ṡ (i.e., the vertical

concatenation of Ṡ(q) for q = 1, 2, ..., Q), ṡr[i] shows the non-

zero entries of ṡ[i], and Ėr
n consists of the columns of Ėn

which are corresponding to the non-zero entries of s[n]. It is

worth noting that when (18) is solved and ṡr[i] is obtained, the

corresponding sr[i] is also calculated according to the definition

of ṡ
(q)
t . We call the proposed method as “New K-SVD” when

(16) is solved using K-SVD.

By performing a few iterations between the expectation and

the minimization steps, Θ is estimated. By determination of Θ,

we can use Viterbi algorithm [15] to find the sequence of states

{q1, q2, ..., qT }. Once the sequence of states is determined, we

apply a minor modification on each column of S. We keep the

entries corresponding to the activated state, and make the other

entries equal to zero. Hence, the final values of the parameters

are determined.

IV. EXPERIMENTAL RESULTS

We compare the performance of MOD and K-SVD with

“New MOD” and “New K-SVD” in recovering a known

dictionary in this Section.

A. Data Generation

We assume that there are Q = 3 states which are activated

under the first-order Markovian model with a fixed Markov
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matrix P ∈ R
3×3. We consider two different Markov matrices

to present the results:

P1 =

⎡
⎣0.34 0.33 0.33
0.33 0.34 0.33
0.33 0.33 0.34

⎤
⎦

P2 =

⎡
⎣0.70 0.15 0.15
0.10 0.80 0.10
0.05 0.05 0.90

⎤
⎦ (19)

The states are approximately activated independently from

each other in P1, while they are highly dependent in P2. Then,

a sequence of Markovian states {q1, q2, ..., qT } with length of

T = 3000 samples is generated according to the considered

Markov matrix. The MATLAB function “hmmgenerate” can

be employed for generating the sequence.

Then, the sparse matrix S ∈ R
60×3000 is produced. For

generating each column of S, k non-zero entries are randomly

chosen from s
(qt)
t , then, their values are selected from zero-

mean and unit variance Gaussian variables.

Then, the dictionary is generated by a random matrix

D15×60 with zero-mean and unit variance Gaussian entries

which are i.i.d, followed by normalizing the columns. The

dictionary is partitioned into three matrices of size 15× 20
which are corresponding to the dictionaries of the states.

Finally, the signals are generated as follows:

xt = Dst + nt

t = 1, 2, ..., 3000, (20)

where the noise vectors for t = 1, 2, ..., T , are i.i.d with

N (0, σ2
0I) distribution. We can adjust σ2

0 to achieve the desired

signal to noise ratio (SNR), which is defined as follows:

SNR =
‖DS‖2F

‖X−DS‖2F
. (21)

B. Results

We use the correct recovery rate, which is the number of

correctly estimated atoms divided by the number of atoms, for

presenting the results [8]. The average of the correct recovery

rate over 100 trails, in different SNRs and for different

sparsity levels, are reported in Table I and Table II when we

respectively consider P1 and P2 as the Markov matrices.

As shown in Table I, the results of MOD and K-SVD are

respectively similar to ones in New MOD and New K-SVD.

The reason is that the states are activated independently from

each other. Hence, decoupling the S-Update to T different

sparse recovery problems is a correct strategy.

On the other hand, when the states are highly dependent,

the new versions of MOD and K-SVD perform better than the

initial versions, especially in low SNRs, as shown in Table

II. As mentioned before, it can also be seen that whatever

the SNR increases, the effect of the Markovian model in the

dictionary learning procedure decreases.

TABLE I
PERCENTAGE OF CORRECT RECOVERY RATE WHERE THE STATES ARE

ACTIVATED ALMOST INDEPENDENTLY FROM EACH OTHER.

SNRdB Algorithm k = 3 k = 4 k = 5

7

MOD 78.7 70.5 2.5
New MOD 79.4 70.6 2.6

K-SVD 81.3 79.7 10.6
New K-SVD 81.3 80.4 12.2

15

MOD 84.6 83.5 75.6
New MOD 84.9 83.9 75.8

K-SVD 86.1 85.6 81.6
New K-SVD 86.9 86.4 81.9

30

MOD 87.3 84.2 81.3
New MOD 87.4 86.6 83.2

K-SVD 88.4 87.8 84.3
New K-SVD 89.5 88.6 84.8

60

MOD 90.3 88.6 85.9
New MOD 90.8 88.9 86.7

K-SVD 91.5 90.1 89.4
New K-SVD 92.7 91.2 89.6

TABLE II
PERCENTAGE OF CORRECT RECOVERY RATE WHERE THE STATES ARE

DEPENDENT.

SNRdB Algorithm k = 3 k = 4 k = 5

7

MOD 68.7 61.4 � 0
New MOD 78.3 69.5 2.2

K-SVD 73.2 67.6 1.7
New K-SVD 81.9 80.3 12.3

15

MOD 73.1 66.6 49.3
New MOD 85.5 82.8 75.1

K-SVD 77.4 74.3 70.6
New K-SVD 86.9 84.3 79.3

30

MOD 83.4 82.1 78.4
New MOD 86.3 85.1 84.2

K-SVD 87.6 84.3 81.5
New K-SVD 90.4 89.7 83.5

60

MOD 87.3 86.4 83.5
New MOD 88.8 86.5 84.1

K-SVD 91.3 89.2 87.2
New K-SVD 92.6 92.4 88.3

V. CONCLUSION

We explored the dictionary learning problem for sparse

representation when the signals are activated under the first-

order Markovian model. We showed that the considered de-

pendency among the signals can degrade the performance of

the existing dictionary learning algorithms especially when

1) the Markovian states are highly dependent and 2) the

SNR is low. Then, we proposed a method using MLE and

EM to learn the dictionary from signals generated under the

first-order Markovian model. Simulation results verified the

efficiency of the proposed method in comparison with state-

of-the-art dictionary learning algorithms in recovering a known

dictionary.
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