METHODS AND APPLICATIONS
_SHIE QIAN E DapaNG CHEN

niplexity o
t later rog sS in-the area o

* Short-Time Fourier Transform (STFT) and Gabor Expansion
¢ Wavelets for JTFA
. ® Wigner-Ville Distribution and Cohen’s Class
e szaptlve Representation
¢ Time-Variant Filtering
® STFE, Gabor-Wigner-, and Adapt;ve Represenfation-Based Spectrogram

Also included are two floppy disks containing a limited version of the Joint Time-
Frequency Analyzer developed by National Instruments Corporation. Together with
the dozen examples found in the book, the reader can quickly learn and experience
different JTFA algorithms discussed in this book.

System Requirements:

Operating systems: Windows 3.1™, Windows® 95 and Windows NT™. Minimum hardware
syc‘('zﬁ(‘llﬁml IBM PC or compatlble 486, 33 MHz, 8M Ram, 240M HD, SVGA monitor.

PRENTICE HALL 1 g BN o

Upper Saddle River, NJ 07458 ,' i E » B
i
|
| 5
5438 2

htig://www.prenhail.com % 91780132

For book and bookstore information §
i i
1

J

ININOHIA-TNLL INTOL

r
L

int Time-Frequency Representation

Power Spectrum

SHIE QIAN
DAPANG CHEN




Library of Congress Cataloging-in-Publication Data
Qian, Shie, 1949-
W Joint time-frequency analysis: methods and applications / Shie 5 2
Qian, Dapang Chen.
X p. cm.
. . Includes bibliographical references and index.
. ISBN 0-13-254384-2 (alk. paper)
¢ 1. Signal processing. 2. Time series analysis. 3. Frequency
.=+ . spectra. I. Chen, Dapang. IIL. Title.
<% TK5102.9.053 1996 gt
621.,382.23--dc20 . 96-13535 H n
TP

Editorial/production supervision: Diane Heckler Koromhas
Cover director: Jerry Votta

Cover design: Talar Agasyan

Manufacturing buyer: Alexis R. Heydt

Acquisitions editor: Bernard Goodwin

Editorial assistant: Diane Spina

Editorial Liaison: Patti Guerrieri

| To Jun, Nancy, and his parents
= e : -SQ

= A Simon & Schuster Company
SEE  Upper Saddle River, NJ 07458

The publisher offers discounts on this book when ordered in bulk quantities. 3 * 4

For more information, contact; $ T 0 H lS f amlly
Corporate Sales Department 1 ]
Prentice Hall PTR ] -DC

One Lake Street

Upper Saddle River, NJ 07458

L Phone: 800-382-3419; Fax: 201-236-7141
e-mail: corpsales@prenhall.com

The curved line in the “joint time-frequency representation” depicts a radio signal received by the DOE Alexis Satel-
lite. This radio signature is typical of many scientific signals that are hidden by manmade carrier interference and
natural noise, which are seen as horizontal lines and periodic marks. JTFA is a vary efficient way to indentify these
signals, because neither the “time waveform” nor “power spectrum” reveals the presence of the signal curve seen in
the JTFA plot. Screen courtesy of Los Alamos National Laboratory, Group NIS-1.

All other products or services mentioned in this document are the trademarks or service marks of their respective
companies or organizations.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America TK
10987654321 5'02_

()9
Prentice-Hall International (UK) Limited, London Q 3
Prentice-Hall of Australia Pty. Limited, Sydney ‘ q (‘ é
Prentice-Hall of Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

ISBN 0-13-254384-2




Contents

Preface ix
Disk Loading Instructions x
Mathematical Conversions xii

Part 1 Root
Chapter 1 Why Do We Want Joint Time—Frequehcy
Analysis? k|
Chapter 2 Review of Signal Analysis 13

2.1 Signal, Expansion, and Inner Product 14
2.2 Fourier Transform 21 ’
2.3 Relation of Time and Frequency Representations 29
2.4 Time Duration and Frequency Bandwidth 31
2.5 Uncertainty Principle 36
2.6 Discrete Poisson-Sum Formula 38
Summary 38

Part 2 Joint Time-Frequency Analysis

‘Chapter 3 Short-Time Fourier Transform and Gabor

Expansion
/3.1 Short-Time Fourier Transform (STFT) 46
/3.2 Gabor Expansion - Inverse Sampled STFT 52
3.3 Gabor Expansion for Discrete Periodic Samples 56
3.4 Discrete Gabor Expansion 61
3.5 Orthogonal-Like Gabor Expansion 66
3.6 Fast Algorithm of Computing Dual Functions 71
Summary 73

45



vi Contents

Chapter 4 Wavelets ‘ 75

v/ 4.1 Continuous Wavelet Transform 76
4.2 Piecewise Approximation 81
4.3 Multiresolution Analysis 87
4.4 Discrete Wavelet Transformation and Digital Filter Banks 94
Summary 99

Chapter 5 Wigner-Ville Distribution 101
5.1 Time-Dependent Power Spectrum 102
5.2 General Properties of Wigner-Ville Distribution 107
5.3 WVD of Sum of Multiple Signals 112
5.4 Wigner-Ville Distribution, STFT Spectrogram, and Scalogram 118
5.5 Smoothed WVD and WVD of Analytical Signals 121
5.6 Discrete Wigner-Ville Distribution 125
Summary 129

Chapter 6 Cohen’s Class

6.1 Ambiguity Function 132

6.2 Cohen’s Class 139

6.3 Some Members of Cohen’s Class 142
6.3.1 Choi-Williams Distribution 144
6.3.2 Cone-Shape Distribution 146
6.3.3 Signal-Dependent Time-Frequency Representations 149

Summary 153 5

-
W
-

Chapter 7 Time-Frequency Distribution Series 156
7.1 Decomposition of the Wigner-Ville Distribution 157
7.2 Time-Frequency Distribution Series 160
7.3 Discrete Time-Frequency Distribution Series 168
7.4 Selections of A[i ] and 4[i ] 170 ’
7.5 Time-Frequency Distribution Series and Cohen’s Class 173
Summary 178

Chapter 8 Adaptive Representation and Adaptive

Spectrogram 181

8.1 Adaptive Expansion and Adaptive Spectrogram 185

8.2 Adaptive Gabor Representation (AGR) 189

8.3 Estimation of the Optimal hy(t ) of AGR 190

8.4 Comparison of AGR and Other Time-Frequency Representations 193
Summary 197

Contents vii
Chapter 9 Time-Variant Filter . 199
9.1 LSE Filter 200
9.2 Iterative Time-Variant Filter 204
Summary 208

Part3 Applications of JTFA

Chapter 10 Applications of JTFA to Radar Image
Processing
Victor Chen, Luiz Trintinalia, and Hao Ling 213
10.1 Radar Range-Doppler Imaging 214
10.1.1 Synthetic Aperture Radar Imaging of Moving Objects 216
10.1.2 Motion-Compensation and Residual Phase Errors 222
10.1.3 Motion-Induced Time-Varying Doppler Spectrum 224
10.1.4 JTFA for Radar Range-Doppler Imaging 226
10.1.5 Summary 228
10.2 Backscattering Feature Extraction 229
10.2.1 ISAR Algorithm and Effects of Non-Point Scattering Mechanisms
on ISAR Imagery 230
10.2.2 Time-Frequency Processing of ISAR Images 233
10.2.3 Adaptive Joint Time-Frequency ISAR 234
10.2.4 Examples 236
10.2.5 Summary 239

Chapter 11 Localization of Brain Functions b y Joint Time-
Frequency Representations
Mingui Sun and Robert Sclabassi 241
11.1 Biological Background of the Brain 242
11.2 The Need for Signal Processing 243
11.3 Joint Time-Frequency Analysis and Synthesis 245
11.4 Model-Based Source Localization 247
11.5 Experimental Results 248
Conclusion 251




{ :

viii Contents

Chapter 12 Economic Data Analysis Ping Chen 253
12.1 Trend-Cycle Decomposition 255
12.2 Extraction of Characteristic Period via Time-Variant Filter 258
12.3 Economic Diagnosis of Historical Events 260
12.4 Time-Frequency Analysis for Detecting Deterministic Chaos 262
Conclusion 264

Appendices ' 265

A. Critical Sampling Discrete Gabor Expansions 265
B. Optimal Dual Functions 271
C. Existence of Adaptive Representations 275

Joint Time-Frequency Analyzer 281
Bibliography 287
Index 297

Preface

The need to analyze a signal in time and frequency domains simultaneously was
recognized long ago. But the topic of joint time-frequency analysis (JTFA) other
than short-time Fourier transform (STFT) has been largely limited to academic
research because of the complexity of the algorithms and the limitations of com-
puting power. Before the '90s, very few modern JTFA methods ran well on the
PC.

During ICASSP 91 in Toronto, Canada, advances in the area of JTFA
prompted us to develop a software-based joint time-frequency analyzer that
would allow one to examine a signal’s time and frequency properties together.
One year later, in ICASSP 92, San F rancisco, National Instruments introduced
its first PC-based joint time-frequency analyzer”. Besides the STFT-based time-
dependent spectrum, the early joint time-frequency analyzer also included sev-
eral other members of Cohen’s class, the Gabor and Wigner-Ville distribution-
based time-dependent spectrum (also known as the Gabor spectrogram), and the
adaptive representation-based time-dependent spectrum (adaptive spectro-
gram). Although it was a “Jurassic” version, the first joint time-frequency ana-
lyzer attracted a great deal of attention in the industry. Since then, National
Instruments’ joint time-frequency analyzer has been successfully applied in
many areas, such as biomedical engineering, economic data analysis, non-
destructive evaluation, radar, RF detection, speech processing, etc. The number
of people using this product and the feedback received from users have exceeded
our wildest expectation. In retrospect, we completely underestimated the com-
plexity and the level of difficulty in this project. As more and more practicing
engineers/scientists explore JTFA, the demand for some comprehensive materi-
als on this subject has become overwhelming. It was this demand that drove us
to take on this arduous book project.

Brief Overview of Book

The primary objective of this book is to serve as a professional technical refer-
ence and as a senior undergraduate or first-year graduate advanced signal pro-
cessing textbook. We start each chapter with a discussion of motivation, then
theoretical analysis, and end with numerical implementations. All algorithms
presented in this book were extensively tested and are suited to student com-
puter projects.

The book contains three parts. In Part 1, we briefly review classical signal
analysis that is fundamental for JTFA. The theoretical developments are pre-
sented in Part 2. In parallel to the classical Fourier analysis, our presentations
are partitioned into linear and bilinear methods. The linear JTFA includes the

* It was at ICASSP '92 that we, for the first time, presented the Adaptive Representation.
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Gabor transform (or sampled STFT) in Chapter 3, and the wavelet in Chapter 4.
While the Gabor transform and wavelet are evolutions of the linear Fourier
transformation, the time-dependent spectrum can be thought of as a counterpart
to the classical power spectrum. In Chapters 5 to 8, we discuss several members
of Cohen’s class, time-frequency distribution series, and adaptive spectrogram.
Besides signal analysis, JTFA has also been widely used for detection and esti-
mation of wideband or non-stationary signals. In Chapter 9, we briefly discuss
Gabor expansion-based time-variant filtering.

Part 3 contains discussions of three real applications of JTFA, in the areas
of radar image processing, biomedical signal processing, and economy and ecol-
ogy data analysis. All these examples are directly contributed by experts in their
fields.

At the end of the book, we have included a demonstration disk for the joint
time-frequency analyzer developed by the National Instruments Corporation.
The software runs for PC Windows 3.1, Window NT, and Windows 95. The
installation procedure is

»Start Microsoft Windows;

eInsert Disk 1 in Drive A;

*From Program Manager, select File menu and choose RUN;
*Type a:\setup and press ENTER.

Unlike the Fourier analysis taught by almost every university, the concepts
of JTFA are relatively new and involve some fundamental issues of physics for
which no common conclusions have been reached yet. Consequently, the tech-
niques used to achieve JTFA are not standardized. From the application point of
view, we have chosen only practically useful techniques. All algorithms intro-
duced in the book were carefully evaluated by authors and National Instruments
customers. We omit treatment of some theoretically excellent algorithms that
currently are not practical for digital implementations.

Many algorithms introduced in this book rely on advanced levels of mathe-
matics to reach their conclusions. While maintaining the mathematical preci-
sion, we have tried to write this book in a style that appeals to the reader’s
intuition. To achieve this, mathematical rigor and len.gthy derivations have been
sacrificed in some cases. Hopefully, this style will not unduly offend purists.

We understand that every reader has a different opinion on what he/she
reads. Some may find what we have written here to be elementary while others
find it overwhelming. Taking this into account, we, as authors, will feel satisfied
if our ardor for joint time-frequency analysis rubs off on at least some of those
who read this book.
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Mathematical Conversions

xii

Continuous and Discrete Variables: We use “( )” and “[ }” to distinguish con-
tinuous and discrete variables. For example, WVYD[%,6) implies that the
variable k is discrete and 6 is continuous.

Dual Functions: In most cases, except for the Gabor expansion, we use “” to
represent the corresponding dual function (e.g., ¥ (¢)/ §,[k] is the dual
function of v, (H)/y,[k]).

Periodic Sequence: We use “~” to represent periodic sequence (e.g., flnl).
Fourier Transform: We use the capital letter functions to denote the Fourier
transforms (e.g., S(w) and S (k] denote the Fourier transform of s(¢) and
s[z], respectively).

Integrals/Summations: All integrals/summations without limits imply inte-
gration/summation from minus infinite to plus infinite, i.e.,

o o0

I =] 3 =3

—oo
—oco

All multiple integration/summation are assumed exchangeable.

Matrix Notations: When a capital letter is used to denote a matrix (e.g., A
and H), the corresponding lower case letter with subscript ij refers to the
(z,7) entry (e.g., a; j and A; ;). We also use the notation ¥ to designate a vec-
tor, whose ith element is v; .
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CHAPTER1

Why Do We Want Joint Time-
Frequency Analysis?

F rom a mathematical point of view, we can
describe a given signal in many different ways. For instance, we can write the
signal as the function of time, which shows how signal magnitude changes over
time. Alternatively, we can also write the signal as the function of frequency by
performing a Fourier transformation, which tells us how quickly signal magni-
tude changed. In real applications, frequency presentations, such as the power
spectra, usually have simpler patterns than time waveforms. For example, the
complex sinusoidal function corresponds to one pulse in the frequency domain.
Therefore, the power spectrum can serve as the “finger print” that proves the
existence of some event in which we are interested. To better appreciate the sig-
nificance of frequency analysis, let’s look at a simple example: tuning the piano.

Traditionally, piano technicians use their ears to adjust the difference
between the sound generated by a piano and pitch instruments. The calibration
results thereby are rather subjective, which largely relies on the technicians’
experiences. By the “frequency analysis,” however, we could do a much better
job. i

Fig. 1-1 plots time waveforms of middle C played by a YAMAHA console
piano and chromatic pitch instruments. Obviously, in this case, time waveforms
do not provide useful information for tuning pianos. From time waveforms, there
is no way to tell whether we should tighten or loosen the string. Fig. 1-2 depicts
power spectra corresponding to the sound produced by a piano and chromatic
pitch instruments. The power spectrum generated by pitch instruments (see Fig.
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1-2b) indicates the correct fundamental frequency and harmonics for the stan-
dard middle C tone. By comparing it with that produced by a piano (see Fig. 1-
2a), the piano technician knows immediately what he should do next. If the fun-
damental frequency and harmonics are lower than that suggested by pitch
1pstruments, then tighten the string, or vice versa. Because spectra describe rela-
t%ve magnitudes of harmonics, using that information, we can further quantita-
tively evaluate the quality of music instruments. The computerized tuning not
only guarantees the quality, but also is less subject to human experiences.

. Tuning most musical instruments now could be accomplished by commer-
cial digital tuners that automatically detect the offset between the standard fun-
Flamental frequency (the first harmonic) and sound plied by musical
nstruments. The standard frequency is directly produced by an electronic signal
generator inside of the digital tuner rather than the acoustic pitch instruments.
Therefore, it has very high accuracy. With the advent of modern personal com-
futfers and cheaper electronics, even musical novices can perform the black art of

uning.

T - T T T
000 050 100 150 200 236(sec) QU0 020 040 060 080 100 120 144 (sec)
(a) YAMAHA console

(b) Chromatic pitch instruments

Fig. 1-1 Time waveform of middle C tone

| | | .
80 05 10 15 20 25KHJ 00 05 10 15 20  25(KHZ

(a) YAMAHA console (b) Chromatic pitch instruments

Fig. 1-2 Power spectrum of middle C tone

_ Tuning piano is one of many applications of the signal frequency represen-
tation. The reader may name many others. Although frequency representations
contain the same amount of information as time waveforms (transformations
b.etween the time and the frequency are complete), the frequency representa-
tions (e.g., power spectra) are much more useful for piano calibration and many
other applications.

_ A typical goal in signal processing is to find a representation in which cer-
tain attributes of the signal are made explicit. In principle, there is an infinite
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number of ways of describing the given signal. The most important and funda-
mental variables in signal processing are time and frequency. A signal’s time and
frequency representations have been found to be the two most useful signal rep-
resentations. However, we traditionally have studied signals either as a function
of time or as a function of frequency, not both. For instance, we usually run the
power spectrum analysis independently of the time factor. This, in spite of the
fact that the majority of signals encountered in the real world have time-depen-
dent spectra, such as tones of music that vary with time. In nature, very few sig-
nals have frequency contents that do not change over time. In many real
applications, it is far more useful to characterize the signal in time and fre-
quency domains simultaneously.

5.00-
| 4.00-
3

Y 3.00-
1200~

1.00-]

6.00
kHz

0000 0100 0200 0300 0400 0500 0600 0700 0.813(sec)

Fig. 1-3 “Hood” (Data courtesy of Y. Zhao, the Beckman Institute at the University of
Illinois)

One of the most popular applications of the joint time-frequency analysis
(JTFA) may be speech signal processing. Fig. 1-3 shows graphs of a speech sig-
nal. The plot at the bottom of the figure is the time waveform of the word “hood”
spoken by a five-year-old boy. The plot on the right is the standard power spec-
trum, which reveals four frequency tones. From the spectrum alone, however, we
cannot tell how those frequencies evolve over time. The larger plot in the upper
left is the time-dependent spectrum, a function of both time and frequency,
which clearly reveals the pattern of the formants. From it, not only can we see
how the frequency changed, but we also can see the intensity of the frequencies
as shown by the relative brightness levels of the plot. Consequently, by using
JTFA, we can better understand the mechanism of human speech.

Recently, it was found that JTFA can also be used to study economical phe-
nomena. Traditionally, economic behavior is considered to be unpredictable. Eco-
nomic data are commonly treated by techniques developed through probability
theory, which essentially declines any possible economic cycles. On the other
hand, looking at history, it is not too hard to discover some cycles, though they
are changed over time. This observation inspires the researcher to apply JTFA to
study economical movements.
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Fig. 1-4 depicts the monthly record of S&P 500 from 1947 to 1993. The bot-
tom figure plots the Index against time and indicates that the S&P 500 steadily
grew in the last fifty years. We could well approximate the trend by the conven-
tional polynomial curve-fitting algorithm, as shown by the smooth line.

The trend is useful for long-term prediction. But most investors are more
interested in short-term behaviors. Therefore, we first compute the fluctuation,
the difference:k between the raw data and the trend, which describes the short-
term changes . Then, we compute its standard power spectrum as illustrated in
the right plot. Although the standard power spectrum shows that S&P 500 has a
four-year cycle (the length of one term of the U.S. presidency), it is not clear
whether or not this cycle constantly appears over the entire last half century.
From the power spectrum alone, we could not determine if the U.S. economy has
been dominated by four-year cycles.

475+ .00
400-| 7 per/year

e
200- A

'
i AT e
T T T T Y T T

4750 5 80 8 70 75 8 6 9 9

Fig. ?_4 The time-dependent spectrum indicates that the fundamental cycle of S&P
500 is four years, which extends over last the five decades. This reveals the fact that
the; U.S. economy is strongly influenced by political changes. (Data courtesy of Ilga
Prigogine Center, University of Texas at Austin)

Now, let’s examine the time-dependent spectrum, the larger plot in the
upper left. It indicates that the fundamental cycle is four years, which extends
over last the five decades. This reveals the fact that the U.S. ecoﬂomy is strongly
influenced by political changes. Economists have for a long time been trying to
discover the relationship between the events of the economic system and corre-
sponding outcome. JTFA seems a very promising alternative for analysis meth-
ods currently used in the economic society.

In addition to being used for studying the time-dependent spectra, JTFA is
also a very powerful tool for removing noise and interference from a signal. In
general, random noise tends to spread evenly in the joint time-frequency domain,
while the signal itself concentrates in a relatively small range. Consequently, the

" The kgy' of applyl'ng JTFA in economic data analysis is the way of detrending. We shall dis-
cuss this issue in more detail in Chapter 12. In this example, the raw data samples of S&P 500
are detrended by the Hodrick-Prescott (HP) filter.

SRS
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signal-to-noise ratio (SNR) can be expected to be substantially improved in the
joint time-frequency domain.

75.00-

T

3000+

|||x

5.00-

R
o UUM

T
N

0000 0020 008 0080 0080 0100 0120  0.145(ms)

Fig. 1-5 Ionized impulse signal (Data courtesy of Non-Proliferation & International
Security Division, Los Alamos National Laboratory)

As an example, let’s look at the detection of impulse signals in low orbit sat-
ellites. Because the impulse signal may be caused by nuclear weapon testing, the
detection and estimation of the impulse signal has been an important national
security issue.

75.00- W
MHz ¥ i

50.00~ f

&
25.00- [’

0.00- / ~
0000 0020 0040 0060 0080 0100 ©120  0145(ms)

Fig. 1-6 Signal masked from noisy background

0000 0020 0040 0050 0080 0100 0120 0145

Fig. 1-7 Reconstructed signal

Fig. 1-5 depicts the impulse signal received by the U.S. Department of
Energy ALEXIS/BLACKBEARD satellite. After passing through dispersive
media, such as the ionosphere, the impulse signal becomes the non-linear chirp
signal. While the time waveform is severely corrupted by random noise, the
power spectrum is mainly dominated by radio carrier signals that basically are
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unchanged over time. As shown in Fig. 1-5, neither time waveform nor the
power spectrum indicate the existence of the impulse signal. However, when
looking at the time-dependent spectrum, we could immediately identify the pres-
ence of the chirp-type signal arching across the joint time-frequency domain. By
JTFA, recently scientists in Los Alamos National Laboratory have made sub-
stantial progress in detecting the radio frequency (RF) non-linear chirp-type sig-
nals (see [51] and [153]).

Based on the joint time-frequency representation, we can further mask the
desired signal, as shown in Fig. 1-6, then apply the inverse transformation to
recover the original time waveform. Fig. 1-7 compares the noisy and recon-
structed signals. When the SNR is very low, as with many satellite signals,
JTFA may be the only choice to detect and estimate the signal of interest.

The significance of JTFA was recognized as early as the end of World War
II. For a long time, JTFA has received attention mainly in academia. Except in
the speech processing community, JTFA was not widely accepted. Recently, as
the computing power of personal computers rapidly increases, more and more
JTFA applications are reported. Unfortunately, for most practical engineers and
scientists, JTFA remains a buzz word. It is the aim of this book to systematically
discuss the idea and method behind the joint time-frequency analysis and move
JTFA into the real world.

This book contains three parts. Because the development of JTFA was
closely related to conventional Fourier analysis, the first part of the book briefly
reviews classical signal analysis. Although the materials presented in Part 1
may not be new for the reader, the concepts reviewed are very important for our
discussions later in the book. We carefully select the topics and examples and
use them throughout the remainder of the book.

/N

/

/

/ \/

VWV

Fig. 1-8 Fourier basis functions

The theoretical developments are presented in Part 2. In parallel to the
classical frequency representations, we present the linear as well as bilinear
joint time-frequency representations. The linear presentations include the Gabor
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transform (also known as the short-time Fourie: transform) and the wavelets.
The fundamental idea behind linear transformatons, such as the Fourier trans-
form, Gabor transform, and wavelets, is to compare the signal with a pre-
designed “ruler.” The tick marks of the ruler are nade up of the elementary func-
tions. Different elementary functions, or tick marks, lead to a variety of different
signal representations.

Fig. 1-8 depicts the tick marks used for theFourier transformation, which
are harmonically related sinusoidal functions. Berause each elementary function
corresponds to a particular frequency m, the Feurier transform (the result of
comparison between the signal and the tick marks) is the indication of the
amount of signal presented at the frequency a

Al
H\A \/ \\\/\/_
~ i

(a) Gabor elementary functions

(b) wavelets

Fig. 1-9 In the Gabor transform, the change of tie frequencies is obtained by fre-
quency modulation. In wavelets, the change of the frequency is achieved by scaling
time index.

Fig. 1-9 sketches the Gabor and wavelets elementary functions. Unlike the
Fourier transform, for which the elementary finctions extend into the entire
time domain, the Gabor and wavelets elementzry functions are centered in a
particular time. Therefore, the tick marks employed for the Gabor transform and
wavelets not only contain the frequency information but also have time informa-
tion.

In the Gabor transform, the different frequency tick marks are obtained by
frequency modulation. In the wavelet transform, the different frequency tick
marks are achieved by time scaling. As shown i1 Fig. 1-9b, when we suppress
the elementary function in time, the oscillating cycles of the elementary func-
tions accordingly decrease, which is equivalent t» the increase in the center fre-
quency. In other words, scaling the time indices is equivalent to scaling the
frequency in an inverse amount. By systematically changing time scale, we can
obtain different frequency tick marks. Because the Gabor elementary functions
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and wavelets are centered in both time and frequency, the comparison results
characterize a signal’s behavior in time and frequency simultaneously.

If the Gabor transform and wavelets are evolutions of the classical Fourier
transformation, then the time-dependent spectrum can be considered as the
counterpart of the power spectrum. The power spectrum is also known as the
power density spectrum that describes signal energy distribution in the fre-
quency domain. Unlike the power spectrum, the pattern of the energy distribu-
tion in the joint time-frequency domain, such as the Wigner-Ville distribution, is
very complicated, which is often associated with high oscillation. Because the
high oscillation often obstructs the pattern we expect, traditionally it is consid-
ered as interference. One of the central issues in the signal processing commu-
nity has been how to obtain a time-dependent spectrum that not only possesses a
good time-frequency resolution (or well describes a signal’s local behaviors) but
also has reduced interferences.

i
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g

Fig. 1-10 The signal energy in the joint time-frequency domain can be represented in
terms of an infinite number of elementary energy atoms. All those atoms are concen-
trated, symmetrical, and oscillated. The amount of energy contained in each individ-
ual atom is inversely proportional to the rate of oscillation.

Recently, it was discovered that by applying the Gabor expansion for the
Wigner-Ville distribution, we can break up the signal energy into the infinite
number of elementary energy atoms. As illustrated in Fig. 1-10, all those energy
atoms are concentrated, symmetrical, and oscillated in the joint time-frequency
domain. It is the highly oscillating atoms that bring the interference into the
Wigner-Ville distribution. Because the amount of energy contained in each indi-
vidual atom is inversely proportional to the rate of oscillation, the highly oscillat-
ing atoms possess relatively little energy and therefore could be neglected. It has
been shown that we can well delineate the time-dependent spectrum by using
low oscillating atoms. The resulting representation is named the time-frequency
distribution series (also known as the Gabor spectrogram). All time-dependent
spectra illustrated in this chapter are computed by the low order time-frequency
distribution series algorithm.

It has been said that it is with intuition that one invents; it is with logic that
one proves. Just so with the joint time-frequency analysis, the idea seems simple,
but the rigorous treatments require a certain level of mathematical prepara-
tions. Because this book aims to serve the practicing engineers/scientists and
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university students who are only expected to understand elementary calculus
and linear algebra, we have tried to write this book in a style that appeals to the
reader’s intuition. We are careful to explain the physical events, while avoiding
abstruse mathematics and artificial abstractions. In some cases, mathematical
rigor and lengthy derivations have been sacrificed to get to the practical point.

In Part 3, three real applications, in the areas of radar image processing,
biomedical signal processing, and economy and ecology data analysis, are dis-
cussed in detail. All these examples were directly contributed by experts in their
fields. We hope that readers will find reading about these applications both
enjoyable and enlightening.

At the end of the book, we include a demonstration disk for the Joint Time-
Frequency Analyzer developed by National Instruments Corporation. We are
pleased to be able to include the demonstration diskette so that readers can get
first-hand experience with the potential of JTFA, and hopefully share some of
our enthusiasm!




CHAPTER2

Review of Signal Analysis

This chapter provides a brief review of the
fundamentals to time and frequency analysis, which serves as a quick reference
throughout this book. In most cases, we will only present the facts and results
without detailed justifications. The reader can find the rigorous treatments in
Papoulis [141] and other related references, such as Cohen [32], Oppenheim and
Schafer [136], Strang and Nguyen [168], and Vetterli and Kovacevic [180].
Although the materials presented in this chapter may not be completely new, it
is certainly beneficial to go through them before reading the rest of book. The
concepts and examples introduced in this chapter will be extensively used for the
future developments.

In Section 2.1, we briefly discuss the two most important aspects for signal
analysis, expansion and inner product. To study a signal’s properties that are not
obvious in the time domain, we usually map the given signal from time domain
into another domain, in which the interesting properties would be made explic-
itly. For example, to study the signal’s periodic property, we usually write the
signal as the sum of harmonically related complex sinusoidal functions
exp{j2nnt/ T}. The coefficients (or weights) of each individual elementary func-
tion are inner products of the analyzed signal and dual functions. For the Fou-
rier series, the dual functions are the same as the elementary functions
exp{j2nnt¢/ T}, which correspond to impulses at frequencies 2nn /7. Because the
inner products reflect the similarity between the signal and the dual functions,
Fourier transform indicates the amount of signal presented at frequency 2rn /7.

13
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Obviously, different elementary functions would lead to different signal interpre-
tations. One main topic for signal analysis is how to choose the elementary func-
tions and how to compute the dual functions from the application at hand.

The general expansion theory has a wider scope for deep mathematical
issues, which is beyond the scope of the book. In this book, we only discuss those
expansions that can be realized with the help of a fair amount of linear algebra,
such as the Gabor expansion (or sampled inverse short-time Fourier transform),
orthonormal wavelet, and time-frequency distribution series (also known as
Gabor spectrogram).

In Section 2.2, we review one of the most prominent signal representation
schemes - Fourier transform. The concepts in the classical Fourier analysis are
not only important to analyze the signal whose frequency contents are not
changed in time, but also fundamental to the joint time-frequency analysis.
While the short-time Fourier transform (STFT) is evolved from the traditional
Fourier transform, the time-dependent spectrum, such as STFT spectrogram
and Wigner-Ville distribution, could be considered as counterparts of the conven-
tional power spectrum. Since the Fourier theory has been extensively studied for
many years, in this chapter we will only examine those aspects which are closely
related to the development of joint time-frequency representations.

In Sections 2.3 and 2.4, we review in more detail some important relation-
ships between the time and frequency representations, which are fundamental
for the joint time-frequency analysis. In particular, we discuss the concept of
mean instantaneous frequency and the relationship between frequency band-
width and time representations. The frequency bandwidth in fact is determined
by variations of mean instantaneous frequency (the derivative of a signals
phase) as well as magnitude.

Because the time and frequency representations are related via the Fourier
transform, the signals time and frequency behaviors are not independent. For

gnal's time duration gets narrower, its frequency bandwidth
must become wider. We cannot make the time duration and frequency band-
width arbitrarily small simultaneously. This assertion is traditionally named
uncertainty principle, which plays an important role in the joint time-frequency
analysis. In Sections 2.5 and 2.6, we give mathematical proof of the uncertainty

principle and the discrete Poisson formula, respectively.

exaraple, when a sl

2.1 Signal, Expansion, and Inner Product

The term signals generally refers to a function of one or more independent vari-
ables, which contain information about the behavior or nature of some phenome-
non. The common examples of the signals include electrical current, image,
speech signals, stock indexes, etc., which are all produced by some time-varying
processes. While electrical current, speech signals, and stock indexes are func-
tions of the time, the image signal s(x,y) is a 2D (two-dimensional) light intensity
function, where x and y denote spatial coordinates. The function s(x,) is propor-
tional to the brightness of image at the point (x,y).
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Among the number of infinite possible variables, the most important are
time and frequency, because they are closely related to our everyday life. Based
on frequency behaviors, signals can further be grouped into two categories. First
is the one whose frequency contents are not changed with time, such as normal
engine vibration. It has been well known that the frequency behavior of this kind
of signal can be well characterized by the conventional Fourier transform. Very
often, people call this type of signal a stationary signal. It is worth noting, how-
ever, that the terms stationary and non-stationary are generally reserved for
random signals. Although we shall not delve into the detail of probability theory
here, we have to bear in mind, that strictly speaking, it is incorrect to use the
word “stationary” for the signal whose frequency contents do not change with
time.

The second type of signals are those whose frequency contents evolve with
time, such as biomedical signals, speech signals, stock indexes, and vibrations.
This kind of signal is usually called a non-stationary signal. The majority of sig-
nals encountered in the real world belong to this category. Because the conven-
tional Fourier transform does not tell how a signal’s frequency contents change
in time, the classical Fourier analysis is not adequate for many real signals. The
goal of this book is to systematically discuss new representations that describe a
signal’s behavior in time and frequency domains simultaneously.

V3

Fig. 2-1 For orthogonal expansion, expansion coefficients a, are exactly the signal
projection on the elementary functions y.

From the mathematical point of view, the representations of a signal are
not unique. By the expansion, we literally can represent a given signal in an infi-
nite number of ways*. In other words, given any signal s from the domain ‘¥,
where W can be finite-dimension or infinite-dimension, we may write signal s in

* In principle, a given signal can be decomposed in an infinite number of ways. In practice,
unless the elementary functions are simple enough, such as orthonormal functions, the real-
ization of desired expansions in general is not trivial. The central topic of this book is the
method of extending a time signal as the sum of elementary functions that are concentrated in
both time and frequency domains.
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terms of linear combination of the set of elementary functions {w,},cz for ¥-
domain, i.e.,

§ = 2a,Y, (2.1)

If {y,},c 7 is also in the domain ¥, then expansion coefficients a, in (2.1) depict
the signals behavior in'the ¥ - domain. Fig. 2-1 illustrates an orthogonal expan-
sion, in which the expansion coefficients a,, are exactly the signal projection on
the elementary functions.

The most popular example is the Fourier series that decomposes a periodic
time signal, §(¢) = §(¢+1T), wherel =0, £1, £2..., as the linear combination of a
set of harmonically related complex sinusoidal functions exp{j2pnt¢/7}. Here, the
term harmonically related complex sinusoidal functions refers to the sets of peri-
odic sinusoidal functions with fundamental frequencies that are all multiples of
a single positive frequency 2n/7, i.e.

3(¢) = i anexp{jggnt} (2.2)

n=-

The formula (2.2) is named the Fourier series. The expansion coefficients a, in
(2.2) are a signal’s orthonormal projections on the complex sinusoidal functions
exp{2nn/TY". They indicate the amount of signals presented at the frequency
2nn/T.

If the set of {y,},cz is complete for ¥, that is, all signals se'¥ can be
expanded as in (2.1), there will exist a dual set {\r,} such that the expansion
coefficients can be computed by the regular inner product, such as

a, =0, = fs(;/-\;’m*(t).:;g (2.3}
or
L a=(s,) = Xslkg(A) (2.4)
k

for discrete-time signals. The operations in (2.3) and (2.4) are named inner prod-
ucts in the mathematical literature. Formulae (2.3) and (2.4) are also called
transformations, and {,(¢) is named the analysis function. Accordingly, (2.1) is
called inverse transform and y,(¢) is named the synthesis function.
Mathematically, (2.3) and (2.4) are also called inner products and remem-
bered as (s,V{, ). The inner product has an explicitly physical interpretation,
which reflects similarity between the signal s(¢) and the dual function ¥,(¢). In

* The reader should bear in mind that expansion coefficients a,, in general are not orthogonal
projections of the given signal s(¢) on elementary functions y,(z) unless y,(¢) are equal to its
dual function .
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other words, the larger the inner product a,, the closer the signal s(¢) to the dual
function ¥,(¢).

The operation of the inner product in (2.3) and (2.4) may be thought of as
using a ruler, constituted by a set of functions {{, }, to measure the signal under
investigation. Each individual function ¥, (¢) can be considered the tick mark of
the ruler. The expansion coefficient a, indicates the weight of the signal’s projec-
tion on the tick mark determined by W,(¢). Our everyday experience tells us
that the precision of the measurement largely depends on the smallest unit of
the instrumentation used. If a physician uses a ruler whose smallest scale is the
decimeter to measure a patient’s height, then there is no way for the physician to
tell the patients height in terms of centimeters. The goodness of the ruler is mea-
sured by the fineness of the unit. Therefore, elementary functions should be cho-
sen such that the resulting tick mark is the finest.

If {y,} is complete but linearly dependent, the representation is redundant
and named the frame. In this case, the set of the dual function {{,} in general is
not unique. If {y,} is complete and linearly independent, then we say {y,} and ¥,
are biorthogonal. That is,

<Wmfvn'> b B(n—n') (25)

where

1 n=20
0 otherwise

8[n] = { (2.6)

Once {y,} is complete and linearly independent, it forms a basis.

If {w,} is complete and (v, ¥,) = 8[n-n'], then ly,} are orthonormal. In
this case, ¥, =¥, . The dual function is itself, which is called self-dual. The
aost vall-known example of the orthonormal functions is {exp(j2nnt/TH.
Because the dual functions and the elementary functions have the same form,
we can readily obtain the expansion coefficients of the Fourier series in (2.2) by

o]

the regular inner product operation (2.3), e.g.,

T/2 21
a, = J. 3 (t)exp{—j—nt}dt (2.7)
T/2 T

which indicates the similarity between the signal and a set of harmonically
related complex sinusoidal functions {exp{j2nn¢/ T}}. Because exp{j2nnt/ T} corre-
spond to impulses in the frequency domain, the ruler used for the Fourier trans-
form possesses the finest frequency tick marks (that is, the finest frequency
resolution). The measurements, the Fourier coefficients a,, precisely describe
the signal’s behavior at the frequency 2nn /7.

Another well-known orthonormal basis is the sinc function given by

sin(nt)

sinc(t) = —

(2.8)
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which is plotted in Fig. 2-2. It can be shown that {sinc(z-nT)},.z are complete
and orthonormal, i.e.,

(sinc(t —nT), sinc(¢ - n'T)) = To[n-n'} (2.9)

If the signal is band limited, such as | S(w)| = 0 for & > w/A¢, where At denotes a
sampling interval, then we have

s(t) = D asinc(t-nT) (2.10)

n=-oo

where
Gy = %_l's(t)sinc(t—nT)dt (2.11)

which is the sampling of the continuous-time signal s(¢) at time nT. Formula
(2.10) is usually referred to as the sampling theory.

S(w)

24T

T (]

0

Fig. 2-2 Sinc function

The significance of the orthogonality is twofold. First of all, it has made it
easy to compute the expansion coefficients. Referring to (2.3) and (2.4), the com-
putation of the expansion coefficients hinges on the existence of the dual function
{/»}. For the set of orthonormal elementary functions, the dual functions are
equal to the elementary functions. In this case, the expansion coefficients can be
readily obtained, via (2.3) or (2.4), once the elementary functions are determined.
However, when the set of elementary functions are not orthonormal, such as h(z—
mTexp{jnQt} (Gabor elementary functions), y((t—b)a) (wavelets), and exp{-o(t—
mT)2~(m—nQ)2/ot}exp{j(pTco+th)} (elementary Wigner-Ville distributions), the
computation of the dual functions in general is not trivial. Therefore, another
central topic of this book is how to implement the expansion when the desired set
of elementary functions are not orthogonal.

Secondly, if (y,()} constitutes an orthonormal basis, then the expansion
coefficients g, are the signal’s exact projections on the basis functions y,(t), such
as in the case of the Fourier series (2.7). In a biorthogonal case, ¥, # VY, . Because
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expansion coefficients a, are inner products of signal s(#) and dual function
W, (¢), they reflect the similarity between the analyzed signal and the dual func-
tions rather than the similarity between the signal s(¢) and elementary functions
w,(0). If ¥,(¢) and y,(¢) are significantly different, then @, may not reflect the
signal’s behavior regarding the prudently selected elementary functions v,(¢) at
all. In the joint time-frequency analysis, having the elementary functions v, (¢)
optimally localized cannot guarantee that the coefficient a, (transform) also
reflects the signal’s local behavior. When { ¥,(¢)} is badly localized in joint time
and frequency domain, a, will not truthfully describe the signal’s time-varying
nature. We shall see more examples in subsequent chapters.

V3

Vg

Y1
Fig. 2-3 Non-orthogonal expansion

Fig. 2-3 illustrates a non-orthogonal expansion. Although {y,} is complete
in this case, the expansion coefficients are obviously not equal to the signal pro-
jections on {y,}. When {y,} is not orthogonal, we have to first compute the dual
function {{,} and then compute the expansion coefficients a, via (2.3) or (2.4).

The concepts of the expansion are fundamental for signal representations,
which will be used throughout the book. When the expansion is invoked, the first
problem is the selection of the desired elementary functions. The word desired
here implies:

» the elementary functions should have desirable physical interpretations;
¢ the form of the set of elementary functions {y,} should be simple to build.

To discover a signal’s property at different frequencies, we hope that the
elementary functions are optimally concentrated in the frequency domain, such
as {exp{j2nnt/T}} that correspond to frequency impulses at 2nn /T and constitute
an orthonormal space. In this case, the dual function and elementary function
have the same form. The resulting inner product <s(¢),exp{j2nnt/T}>, the Fourier
transform, precisely indicates the signal’s behavior at the frequency 2nn/T.

To characterize the signal’s behavior in the time and frequency domains
simultaneously, the elementary functions need to be localized in both time and
frequency domains, such as windowed harmonically related complex sinusoidal
functions h(t-mTexp{jnQt} (Gabor elementary functions) or scaled functions
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w((t—b)/a) (wavelets). Less obvious selection is for the decomposition of the
Wigner-Ville distribution.

As introduced in Chapter 5, the Wigner-Ville distribution is traditionally
considered a signal energy distribution function in the joint time-frequency
domain. It possesses many useful properties for signal processing. The major
deficiency of the Wigner-Ville distribution is the so-called cross-term interfer-
ence. It is observed, however, that the cross-terms are generally localized and
highly oscillated. On the other hand, the useful properties of the Wigner-Ville
distribution are all obtained by averaging the Wigner-Ville distribution. These
observations suggest that if the Wigner-Ville distribution is thought as the sum
of localized 2D (time and frequency) harmonic functions, then useful properties
of the Wigner-Ville distribution will mainly depend on the low oscillated har-
monics. This is because low harmonics have larger averages. The high harmonics
not only have limited influence on the useful properties, but also directly relate
to the cross-term interference. Therefore, they are less important to the joint
time-frequency representations. To retain the useful properties and suppress the
cross-terms, we should decompose the Wigner-Ville distribution as the linear
combination of localized 2D harmonic functions, such as exp{—a(t—mﬂz—(WnQ)Z/
alexp{j(pTw+qQt)} (2D Gaussian function). The resulting expansion is named
time-frequency distribution series or Gabor spectrogram.

Moreover, it is highly desired that the ruler be easier to build. In addition to
the Fourier series, good examples include the Gabor expansion, wavelets, and
the time-frequency distribution series. For the Gabor expansion, the set of ele-
mentary functions is constituted by time-shift and frequency-modulated single
prototype functions A(t-mT)exp{(jn¥}. In the wavelet presentation, different
time and frequency tick marks are accomplished by translating and dilating a
single mother wavelet y((¢~b)/a). In all those cases, once we decide the mother
function, the entire set of elementary functions can be readily obtained.

Unce the elementary functions are selected, the remaining question is how
to compute dual functions. In most applications, desirable elementary functions
are neither orthonormal ner biorthogonal. Consequently, implementations of
desired expansions are not as simple as the Fourier series. In those cases, the
dual functions are not unique. To obtain a best measurement, we have to impose
certain constraints on dual functions. One main topic of this book is how to com-
pute the dual function { ¥,} for the given meaningful elementary function {y,,)}.

The general expansion has a wider scope for deep mathematical issues. For
example, the proof of the completeness in general is not straightforward. In this
book, we shall limit our discussions to the cases where expansions can be real-
ized with the help of a fair amount of elementary linear algebra.

Finally, it is worthwhile to note that the dual functions v, and {¥,} are
exchangeable, that is,

sty = Y 0s Ydw, () = X ls, wy Uuld) (2.12)

Which one, y,() or {¥,(£)}, is used for the analysis function to compute the
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expansion coefficients depends on the applications at hand. If we mainly are
interested in the expansion coefficients, such as most applications of the short-
time Fourier transform and wavelet transform, then we may use y,(¢) for the
analysis function, because it is selected first and thereby easier to make it meet
our requirements. In this case, once y,(t) is properly selected, the expansion
coefficients a,, will guarantee to give good estimations of signal behaviors in the
joint time-frequency domain.

2.2 Fourier Transform

Although a given signal can be represented in many different ways, the most
important are the #ime and frequency representations. The significance of the
quantity time is easy to understand, because it is fundamental. The majority of
signals encountered in our everyday life are directly related to ¢ime. The fre-
quency representations, on the other hand, were not popular until the early 19th
century when Fourier first proposed the harmonic trigonometric series. Since
then, the frequency representation has become one of the most powerful and
standard tools for studying signals. By using frequency representations, we
could better understand many physical phenomenon and accomplish many
things that cannot be achieved based on time representations. For example,
based on spectra, we could better tune and evaluate musical instruments as
introduced in the beginning of Chapter 1. By examining the spectrum, we could
also identify elements contained in the materials that we are interested in. This
is because all elements have their own distinct frequencies. Iron has a different
frequency spectrum than that of copper.

By the expansion theorem, the frequency representations of non-periodic
signal s(?) is

sl == %—tJS(m)exp{jtm}dw 2.13)
where
S(0) = [s(t)exp{~jot}dt (2.14)

Eq.(2.14) is named continuous-time Fourier transform. S(®) is the measure of the
similarity between the signal s(¢) and complex sinusoidal functions as shown in
Fig. 2-4.

One of the most important features of the Fourier transform is that the
basis functions in (2.13) and the dual functions in (2.14) have the same form
exp{jwt}). Moreover, exp{jot} corresponds to an impulse at frequency @ Hence,
the ruler used to measure a signal’s frequency properties possesses the finest
tick marks. Consequently, S(w), the signal’s projection on the basis functions,
precisely reflects the signal’s behavior at frequency @

The square of the Fourier transform 1S(w)12 is called power spectrurn,
which indicates how the signal energy is distributed in the frequency domain.
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While the Fourier transform S(®) is a linear function of the analyzed signal, the
power spectrum |S(w)!? is quadratic to the signal s(#). The Fourier transform
S(®) in general is complex, whereas the power spectrum |S(®)! 2 is always real.
The Fourier transform and the power spectrum are the two most important tools
for frequency analysis.

Fig. 2-4 Real parts of complex sinusoidal functions

According to the Wiener-Khinchin theorem, the power spectrum can also be
written as the Fourier transform of the signal’s auto-correlation function, i.e.,

IS(@)* = [R(v)e?"dr (2.15)
where the auto-correlation function R(t) is computed by

R(t) = [s(t)s*(t-1)dt (2.16)
The presentation (2.15) is very useful, which leads to a feasible way of designing
the joint time-frequency representations. For example, if we make E(t) time-

dependent, such as R(1,t), then the resulting Fourier transform manifestly is the
function of time and frequency, i.e.,

P(t,0) = [R(t,e?"dr (2.17)

which links the power spectrum to time. Hence, we name P(t,0) the time-depen-
dent spectrum. Good examples include the STFT spectrogram as well as the
Wigner-Ville distribution. We shall elaborate on this subject in more detail in
Chapter 5.
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For applications in digital signal processing, it is necessary to extend the
continuous-time Fourier transform to discrete-time signal. Let s[kAt] = s(?),
where At denotes the sampling interval. Without loss of the generality, let At = 1.
Then, the discrete-time Fourier transform is defined as

S(8) = Y slklexp{-j6k} (2.18)
k

where 6 = @A¢. 6/21 is named the normalized frequency. The inverse discrete-
time Fourier transform is

slk] = Zl—nf; 5(68)exp {jk0}d6 2.19)

Because the time variable of s(¢) is digitized, its frequency counterpart becomes
the periodic function at the frequency domain, that is, S(8) = S(8+2nl), forI=
0, +1, £2.... Note that the frequency variable 6 in (2.18) and (2.19) is a continuous
variable. ;

When the digital computers are used, S(6) can only be evaluated at dis-
crete points, such as 8 = 2nn/L where 0 <n < L. In this case, (2.18) and (2.19)
have to be further modified. The resulting transform is named the discrete Fou-
rier transform (DFT).

L-1
Stn] = 3 SRIW Y (2.20)
k=0

where

2r
WL = exp{dlf}

Because we sample the frequency variables of 8, the time samples in (2.20) fur-
ther reduce to periodic, that is, for /=0, £1, +2.... The inverse DFT is

L
- 1 = k
5th] = ¢ Y S(w’, (2.21) |
n=0
Example 2-1 Complex sinusoidal function
If
s(t) = exp{jwot}
then

S(w) = [expljogt}exp{-jotidt = 2m3 (- w,) (2.22)
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For the discrete-time signal,

s[h] = exP{ﬁE—”k} =Wy (2.23)
the corresponding DFT is
=, Lot n'k —nk 1 i
Snl= 3 W, W, = ZS(n«n -1L) (2.24)
k=0
=0 %1, £2....

In the frequency domain, the sinusoidal-type functions are perfectly local-
ized, since their spectrum loads only two points. In the time domain, these func-
tion are not localized. Therefore, they are not suitable to analyze or synthesize

complex signals presenting fast local variations such as transients or abrupt
changes.

Example 2-2
If

Real cosine function

s(t) = cos{wgt}
then,
S(w) = fcos(a)ot)exp{~j<nt}dt
= %j[exp {jowgt} + exp{—jw,t } exp {—Jot}dt

g TN ok Bl PO ¢ B

Unlike its complex counterpart in Example 2-1, the real-valued cosine
function corresponds to two pulses at frequencies —wg and g. It is easy to verify
that for an arbitrary real signal s(¢), its Fourier transform must satisfy S(w) =
S*(~0). In other words, its power spectrum is symmetry with respect to @ = 0.

Example 2-3
If

Rectangular pulse signal

(4 <T
S(’)‘{o > T

as shown in Fig. 2-5.
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s(t)

>L‘

-T 0 T

Fig. 2-5 Rectangular pulse

Then,
T ;
S(0) = A exp{-jot}dt = .J%exp{—jcot};fT T | (2.25)
L
which is plotted in Fig. 2—-6.
S(w)
24T
»
\/—n 0 r
T T

Fig. 2-6 Fourier transform of rectangular pulse

In applications, we usually write the Fourier transform of the rectangular pulse in
terms of the sinc function in (2.8). Then,

sinoT sinoT

S(®) = 24— = 2AT= 2

& 2ATsinc(£0n—T) (2.26)

The rate of oscillation of S() in frequency domain is inversely proportional to the

width of rectangular pulse T. The narrower the width of s(¢) is, the higher the oscil-
lation of S(w).
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Tn contrast to the sinusoidal functions, the rectangular pulse is finitely sup-
ported in time domain but badly localized in the frequency domain.

Example 2—-4 Gaussian function

s(t) = J;exp{-%a-tuf} (2.27)

which is the standard Gaussian function with the mean time tye The Fourier trans-
form is

S(w) = f&exp{~%(t—tu)z}exp{—jo)t}dt = exp{— —2%602 +jwtu} (2.28)

The formula (2.28) usually is remembered as the Gaussian characteristic function.
Eq.(2.28) shows that the Fourier transform of the Gaussian function is also Gauss-
ian. The time-shift in (2.27) corresponds to the phase-shift in (2.28). Moreover, the
variance of the frequency representation in (2.28) is the reciprocal of the time vari-
ance in (2.27). The narrower the spread in the time domain is, the wider the spread
in the frequency domain, or vice versa. Unlike the sinusoidal or rectangular pulse
functions discussed earlier, the Gaussian function is localized in both time and fre-
quency. As we shall see later, among all possible functions, the Gaussian function is
optimally concentrated in joint time and frequency domain.

Sglz]
slk]——p 4 L b———®{ Lowpass ——

i

Fig. 2-7 Interpolation Filter

Example 2-5 Interpolation filter

Fig. 2-7 is a block diagram of an interpolation filter. The left block is commonly
called an L-fold expander. The right block is a conventional lowpass filter. The
expander inserts L-1 zeros between each sample s[k] and produces the output sglk]
as

L =014
SE[k]:{s_[k/] B=d, 142

0 otherwise

2.2 Fourier Transform 27
Then
Se(8) = gsE[k]exp{—jek} = ;SE[kL]exp{—jLGk}

= Yslklexp{~LOk} = S(L6)
k

which implies that Sg(8) is an L-fold compressed version of S (8) as demonstrated
in Fig. 2-8. The multiple copies of the compressed spectrum are usually called
images. If applying a lowpass filter after the expander, as show in Fig. 2-8, then we
obtain upsampled signals.

@ stk ®) 150)1
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Fig. 2-8 Interpolation (a) s{&], (b) 1S(®)1, (c) sglk], (d) 1Sg(8)!, (e) Upsampled sam-
ples y[&], (f) Image removed spectrum.

The operation of the interpolation filtering can be described by

N
ylkl = Y slnlylk-nL] (2.29)

n=0

where (%] denotes the lowpass filter with the cut-off frequency at .

The interpolation filter is a very important filter, which can be used to
change sampling rates of the existing digital samples. As introduced in Chapter
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5, the sampling rate of the discrete Wigner-Ville distribution usually requires
four times faster than the signal’s bandwidth, which is twice the conventional
sampling frequency. Applying the interpolation filter discussed in this example,
we can resolve aliasing without altering the existing hardware structure.

The deficiency of the classical Fourier analysis is that the complex sinusoi-
dal basis functions are not concentrated in time domain (see Example 2-1). The
Fourier transform, inner product between the analyzed signal and complex sinu-
soidal functions, does not explicitly associate with time. Based on the Fourier
transform alone, it is not clear whether or not the signal’s frequency contents are
changed in time, though the phase of S(w) is related to time-shift. On the other
hand, the frequency contents of the majority of signals encountered in our every-
day life are time-dependent, such as the economic index, medical data, the
monthly rainfall record, sunlight, and speech signals. It has been recognized for
a long time that the time or frequency representations alone are not adequate for
many applications. It is beneficial to study the signals in time and frequency
domains simultaneously.
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Fig. 2-9 “Hood,” spoken by a five-year-old boy (Data courtesy of Y. Zhao, the Beck-
man Institute at the University of Illinois). The power spectrum (right) indicates there
are four frequency clusters, but it does not tell how they are changed over time. In con-
trast, the time-dependent spectrum (top left) clearly depicts how those four formants
vary with time.

Fig. 2-9 illustrates the speech analysis results of an utterance by a five-
year-old boy. The power spectrum (right) indicates there are four frequency clus-
ters, but it does not tell how they are changed over time. In contrast, the time-
dependent spectrum (top left) clearly depicts how those four formants vary with
time. Therefore, the time-dependent spectrum is more valuable for the study of
speech pathology than the power spectrum.

It is the goal of this book to introduce joint time-frequency representations
that characterize signals in time and frequency simultaneously. Before discuss-
ing joint time-frequency analysis, we shall further review the relationship
between a signal’s time and frequency representations.
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2.3 Relation of Time and Frequency Representations

In the preceding section, we briefly reviewed the concepts of the expansion for
converting a given signal from one domain to another domain. In particular, we
discussed the Fourier transform. Because time and frequency play the prominent
roles in our everyday life, it is important and beneficial to further investigate the
relationship between the time and frequency representations. Since the subject
of the Fourier analysis has been exhaustively studied for many years, in this sec-
tion we only exam those concepts that are directly related to our future develop-
ments. Moreover, most of the time, only the continuous-time cases are discussed.
We leave their discrete counterparts for the reader to exercise.

Shifting Shift in time by ¢, results in multiplication by a phase factor in the
frequency domain, i.e.,

s(t—tp) & exp{—jmto}Stm) (2.30)

Conversely, a shift in frequency by o, results in modulation by a complex expo-
nential in the time domain, i.e.,

S(® - 0g) < exp {joet }s(t) 2.31)
-
Al

ﬂ/% o

(a) s(tla) (b) Slaw)

Fig. 2-10 The top plots correspond to the small scaling factor a. The bottom plots cor-
respond to the large scaling factor a. Scaling in time domain leads to the inverse scal-
ing in frequency domain.

Scaling Scaling in the time domain leads to inverse scaling in frequency
domain, i.e., .

s(t/a) = S(aw) (2.32)

where a is a real constant. Fig. 2-10 illustrates s(¢/a) and corresponding Fourier
transform. It is interesting to note that the signal’s center frequency increases
when we suppress the signal in the time domain, or vice versa. In other words,
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we can systematically adjust the signal’s frequency centers simply by scaling the
time variables. This suggests that instead of using the complex sinusoidal func-
tions, such as in the Fourier transform, we may employ the scaled functions to
build tick marks to measure a signal’s frequency behavior. The resulting repre-
sentation offers many interesting properties and named wavelets. We shall dis-
cuss it in great detail in Chapter 4.

Eq.(2.32) also implies that the Fourier transform pair cannot both be of
short duration. When the time duration gets larger, the frequency bandwidth
must be smaller or vice versa. This assertion, known as the uncertainty princi-
ple, can be given various interpretations, depending on the meaning of the term
“duration.” Because the uncertainty principle plays an extremely important role
in the joint time-frequency analysis, we shall treat it separately in Section 2.5.

Conjugate Function
$*(t) & S*(~0) (2.33)

If s(t) is real, then s() = s*(t). Hence, S(®) = S*(-0), which is named Hermitian
function.

Derivatives

n

%s(t) & (jo)"'S(o) (2.34)

This is a very useful relation, which will be extensively used in this book to con-
vert the function from time domain to frequency domain, or vice versa.

Convolution Theorem For signals s(¢) and ¥(#), the convolution is defined as
s(B)Y®y(t) = fs(m)y(t— 1)dt (2.35)
If the Fourier transform of s(£) and y(z) are S(®) and G(w), respectively, then the

convolution of s(¢) and ¥(¢) is equal to the inverse Fourier transform of S(0)G(w),
that is,

[s(oye-vdt = %jS(w)G(m)efmtdm (2.36)
Conversely,

~S@)G@Q-0)dQ = [senee?at (2.37)
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Parseval’s Formula Setting ¢ = 0 in (2.36), we obtain
| [srnde = 5=]S(@G(@)do (2.38)
With 1(-) = h*(), we have G(w) = H¥(@). Then, (2.38) reduces to
Jsoh (s = 5= ]S(@H@)do (2.39)

which is known as Parseval’s formula. If s(¢) = h(t), we have S(w) = H(w), and
(2.39) becomes

st = %Jls(m)lzdm (2.40)

which implies that the Fourier transformation is energy conserved.

2.4 Time Duration and Frequency Bandwidth

In the preceding section, we reviewed some basic connections between a signal’s
time and frequency representations. The most important relationship in terms of
joint time-frequency analysis, however, is the relationship between a signal’s
time duration and frequency bandwidth. The concepts introduced in this section
play significant roles in joint time-frequency analysis. »

As we know, the time duration and frequency bandwidth can be defined in
several different ways. The different definitions will lead to the different inter-
pretations. In this book, we employ the most common definition - the standard
deviation, the concept used in the probability theorem to characterize the time
duration and frequency bandwidth.

Let’s define that the energy contained in signal s(¢) is E, that is;

2 1 2
lstl? = fls)fde = 5=[IS(@)’do = E (2.41)
Then, the normalized functions 1)1 YE and |S(w)!%2nE can be thought of as
the signal energy density functions in the time and frequency domains, respec-
tively. In this case, we can use the moment concepts from the probability theory

to quantitatively characterize the signal’s behaviors. For example, we could use
the first moment to compute the mean time and mean frequency, i.e.,

(B = %Itls(t)lzdt (2.42)

and

(@) = sp]olS(@)do (2.43)
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Without loss of the generality, let s(t) = A(t)exp{jo()}, where A(t) and o(¢) are
magnitude and phase, respectively. Both of them are real.

Eq.(2.43) implies that to calculate the mean frequency, we have to first com-
pute Fourier transform. In what follows, we shall derive a formula to compute
the mean frequency without calculating Fourier transform. The result not only
simplifies the procedure of computing the mean frequency, but also helps us to
better understand the relationship between time representation and frequency
behavior.

Let H(w) = ®S(w), then by derivative property, we have
h(t) = ~j%s(t) (2.44)
Applying Parseval’s formula (2.39) on (2.43) obtains,
<@ >= ~1—JH(m)S* (@)dw
2nE
O - A
= [~ ~s(s* (tya
1
=5 ] =il Oexplio(} + Ao (exptp(©)})s * (e
1
== [~ O+ aje D)Aba
=— j o (AN dt—L j A (DA(dr (2.45)

Because the left side of (2.45), the mean frequency, is real, the second term of the
right side in (2.45) must be zero. Consequently, (2.45) reduces to

() = [¢ (t)'s“

(2.46)

which says that the mean frequency <@> is the weighted average of the instanta-
neous quantities ¢'(¢) over entire time domain. We name ¢'(¢) the mean instanta-
neous frequency.

Traditionally, the first derivative of phase ¢'(¢) is defined as the instanta-
neous frequency rather than the mean instantaneous frequency as we do here.
There are two reasons to name ¢'(t) the mean instantaneous frequency rather
than the instantaneous frequency. First, at any time instant ¢, the signal often
contains more than one frequency tone, such as the speech signal in Fig. 2-9.
Second, each frequency tone has a certain bandwidth. Unless for very special
cases, such as complex sinusoidal functions and the constant magnitude linear
chirp, the signal spreads out in frequency domain. In other words, the “instanta-
neous frequency handwidth” of the signal in general is not equal to zero. The
instantaneous frequencies are not the single value function of ¢£. Hence, it is not
correct to name ¢'(¢) as the instantaneous frequency. As we shall show in Chap-
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ter 5, ©'(¢) in fact represents the mean or average of the signal’s frequencies at
time ¢.

©'(#) is a very important quantity. In joint time-frequency analysis, we often
use it to evaluate the merit of a proposed time-dependent spectrum. For a
desired time-dependent spectrum P(¢,0), it is natural that the conditional mean
frequency <w> is equal to the mean instantaneous frequency ¢'(¢). That is,

jcoP(t, ®)dw
(@), = ———— = ¢'(§) (2.47)
[P, oydo

When 1s(#)! 2/E and 1S(w) | %/2nE are considered as the signal density func-
tions in the time and frequency domains, we can further use the concept of the
variance to measure the signal’s energy spreading in time and frequency
domains. Usually, we define 24A; and 24, for the time duration and frequency
bandwidth, where

2ds@)
E

3= %J‘(t— W)Yl = [P gr _ (2.48)

2
IS(m)I 3 ijmzls(m)! do - (o) (2_49)

-—J( <P

Eqgs.(2.48) and (2. 49) are the standard definitions of the variance, which depict
the signal’s spreading with respect to <¢t> and <w>, respectively. Like the case of
mean frequency discussed early, we can also express the frequency variance
49) as the function of time.
Praeo 2ls relationship, we can rewrite (2.49) as

! 2 9 1 1
8y = 5=l (@) IS@)do = o= [H@H*@)do = g[hHh* 0t (250)

where H(®) = (0—<»>)S(w). Because
1 .
=[S(@exp{j(o- ()t}do = s(t)exp{~j(a)t} (251)

Taking the derivative in both sides of (2.51) yields

=[i0— (aS()exp (o= (t}do = Sshexp{(@t}]  (252)
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Therefore,

h(t) = ;T_CJ.H(O))eXp{j(Dt}dCO = ;—nf(m%(x)))S(m)exp{_jmt}dco
. o d g
= &V (@) exp {~j(0)t}
iDL (8) — (o)A exp L (0(t) - (@)t} +A'(E) expLi(o() — (0)t}]
exp () (@' () - (o)A)—TA (1]

Substituting () into (2.50) obtains

AL = }%f(cp'(t)— (co))zAz(t)dt+%J_[(A'(t))2dt (2.53)

which says that the frequency bandwidth is completely determined by magni-
tude variation A’(¢) as well as phase variation ¢'(). To obtain a narrow band sig-
nal, we could either smooth the magnitude or phase. If both the magnitude and
phase are constant, such as the complex sinusoidal signal exp{jogt}, then the fre-
quency bandwidth reduces to zero. To better understand this important concept,
let’s look at some examples.

Example 2-6 Normalized Gaussian function
.
4
s(t) = g(t) = (gj exp{-—gtz} (2.54)
b 2
Obviously,
E = [ls(t)’dt = 1

and @'(t) = 0. Based on formula (2.46), the mean frequency <w> = 0. From formula
(2.53), the variance is

2 2 O 2 2 (04
A, = o ﬁj‘t exp{-at’}dt = = (2.55)
Example 2-7 Frequency modulated Gaussian function
s(t) = g(t)exp{jwet} (2.56)
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then,
Q'(t) = 0
o 2
(o) = A/Efwoexp{—at 1dt = ©,
2 2 (0f,2 2 (04
B 20 J;Jt exp{-at’}dt = 5
Compared to Example 2-6, although the phase in this example is not equal to zero,

the variation of the phase is constant, that is, ¢'(t) = og. Consequently, the fre-
quency bandwidth is unchanged.

Example 2-8 Linear chirp signal with the Gaussian
envelope
If
it o5
s(¢) = g(t)exp{jpt’} (2.57)
then,
¢'(t) = 2Bt

(W) = J%JZBtexp{—atz}dt =0
2 2 [or 2 2 o 2 5 o 4[32
A, = ﬁft exp{-at }dt+ﬁj(2ﬁt) exp{-at }dt = 7
Because the derivation of the phase in (2.57) is not constant, that is, 9'(t) = 2Pt, the

frequency bandwidth in this example is larger than that in either Example 2-6 or
Example 2-7. The extra term 4B2/(1 is proportional to the sweeping rate j.

Example 2-9 Scaling function s(t/a)
In this case, the signal energy is

flstt/a)’dt = aflst/a)’d(t/a) = aE (2.58)
The first derivatives of the magnitude and phase are alA't/a) and o l(t/a),

respectively. If the mean frequency and frequency bandwidth of s(¢) are <w> and
2A, then for scaled function s(¢/a),

(o) = aLEJa“‘@'(t/a)Az(t/a)dt = a—léj@(t/a)Az(t/wd(t/a) -2

a
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-1

Al(a) = (;%J{[a“A(t/aﬂzHa ¢ (t/a) - (o)) AX(t/a)}dt

—zlij{Az(t/a) +(9'(t/a) —a()’?AXt/a)}d(t/ a)
a

1
= A
a
which indicates that time scaling leads to the mean frequency shifting and the fre-
quency bandwidth scaling as illustrated in Fig. 2-10. It is interesting to note, how-
ever, the ratio between the bandwidth and the mean frequency is independent of the
scaling fact a, that is '

2A,(a) 24,
Ty Rl Q (2.59)

In other words, the scaling does not change the ratio between the frequency band-
width and mean frequency. This property is commonly referred to as the constant Q.

Applying the moment concepts, we quantitatively characterize the signal in
time and frequency domains, respectively, which greatly facilitates the signal
analysis. It should be kept in mind, however, that the moment concepts in gen-
eral do not directly apply to the joint time-frequency domain. This is because the
time-dependent spectrum may go to negative. Consequently, the instantaneous
frequency bandwidth, the conditional variance, may become less than zero,
which is contradictory to our intuitions. We shall discuss this issue in more
detail later.

2.5 Uncertainty Principle

Based on the definitions of time duration and frequency bandwidth given in the
previous section, we are now ready to give the quantitative definition of the
uncertainty principle as follows.

THEOREM

If

JEs(t) =0 (2.60)
for |t| — o0, then

Ay = ; (2.61)
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The equality only holds when s(¢) is the Gaussian function, i.e.,
s(¢) = Aexp{-at’} (2.62)

PROOF

For the sake of simplicity, let’s assume that <t> = 0 and <> = 0. Conse-
quently, (2.48) and (2.49) become

AL = [Fls)de (2.63)
and
A:D & z%—t'[a)z\S(m)lzdm (2.64)
Then,
N8 = [Plsldts=]o’lS(@)] do (2.65)

Replacing @S(w) = H(w) in (2.65) yields
Alag = [PlsPdtfh)h*)dt (2.66)

where we applied Parseval’s relation. Because of the derivative property in
(2.34),

©S(m) (——)—j—%s(t) (2.67)
Applying (2.67) to (2.66) yields
Alag = jz2|s(t)[zdtj‘§zs(t)|“dt (2.68)

From Schwarz inequality, it follows that -

d 2
jtzts(t>|2dtf‘%s(t)rdtz J‘ts(t)zﬁs(t)dt‘ (2.69)
Because
¢ 2| 10 1
Jts(t)%s(t)dt - %jt%sz(t)dt = 32( )—N—zj-‘msz(t)dt = - (2.70)

Inserting (2.70) into (2.69), we obtain the uncertainty inequalii.;y rela.tio‘n
(2.61). If (2.61) is an equality, then (2.69) must also be an equality. This is
possible only if s'(¢) = kts(¢), that is, s(¢) is given by (2.62).
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2.6 Discrete Poisson-Sum Formula

The Poisson-sum formula is very useful in signal analysis [141]. In this section,
we shall investigate the discrete version of the Poisson-sum formula, which plays
an important role in deriving the discrete Gabor expansion.

_ Let {a[n]} be a periodic sequence of period L = AMM. Then, we define
{b[n]} as the periodic extension of {a[n]}, that is

il M-
binl = Y aln-mAM] (2.71)
m=0

Obviously,

bln] = bln+AM] (2.72)
Let’s denote B[] the DFT of {b[n]}, thatis,

AM-I~ i AM-1/M~1
Blgl= ¥ bWy = X [Za[n—mAM])W;;k (2.73)
n=0 n=0\m=0

Substituting i = n — mAM, (2.73) reduces to a single summation, such as

L-1 I
Blkl = 3 alilW,, (2.74)
i=0
Based on (2.73), we have
il | aM-1 o | AM-1L-1 e
b[n] = m kgo B[k]WAM = m kZ'O (i‘z_‘oa[i]VVYAM ",AM (2.75)
By (2.71), we have
M-1 AM-1/L-1
> aln-mAM] =~ ¥ | S atw Wk
2 = AM &, i=0a[z] i Woar (2.76)

which is known as the Poisson-sum formula.

Summary

From the mathematics point of view, a given signal can be represented in an infi-
pite number of ways via different expansions. A typical goal in signal processing
is to find a representation in which certain attributes of the signal are made
explicit. Therefore, the central issues of signal processing are how to construct a
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set of the elementary functions {y,},cz and how to compute the corresponding
dual functions. It is worthwhile to note that {y,}l,czand {{»},. 7z are exchange-
able. Either of them can be used for analysis functions to compute the expansion
coefficients or the transform. The process of computing the coefficients is similar
to using a “ruler,” constituted by a set of analysis functions, to measure the sig-
nal under consideration. For good measuring, the set of the analysis functions
should be selected such that the resulting “ruler” is easier to be built and its tick
marks are finest.

Because time and frequency are the two most fundamental quantities, the
time and frequency representations are the most important signal representa-
tions. While a signal’s time representations are natural, the frequency represen-
tations were not popular until the early 19th century, when Fourier first
proposed harmonic trigonometric series. The basic method used for exploring a
signal’s periodicity property is to compare the analyzed signals with the harmon-
ically related sinusoidal functions, which is named the inner product in mathe-
matical literature. The two most common approaches to describe a signal’s
behavior in terms of frequency are the Fourier transform (linear) and power
spectrum (quadratic).

In this section, we reviewed the relationships between time and frequency
representations. In particular, we discussed the frequency bandwidth. It is
shown that a signal’s frequency bandwidth (or frequency resolution) is com-
pletely determined by magnitude and phase variations. Because the time and
frequency representations are related by the Fourier transformation, a signal’s
behaviors in the time domain and frequency domain are not independent. For
example, we cannot make the signal’s time-duration and frequency bandwidth
arbitrarily small simultaneously. The product of the time-duration and fre-
quency bandwidth has to satisfy the uncertainty principle.




Joint Time-Frequency
Analysis

The Fourier transform has been the most
common tool to study a signal’s frequency properties. However, based on the Fou-
rier transform and power spectrum alone, it is hard to tell whether or not a sig-
nal’s frequency contents evolve in time, even though the phase of the Fourier
transform relates to time shifting. On the other hand, except for a few special
cases, the frequency contents of the majority of signals encountered in the real
world change with time. In those applications, the classical Fourier analysis is no
longer adequate. As shown in Chapter 2, a good example is the speech signal.
Intuitively, the formant of the speech must be time-varying. Otherwise, the speech
will be indistinguishable and thereby cannot be used for our daily communica-
tions. It has been recognized for a long time that the conventional power spectrum
is not suitable for the study of speech, Doppler frequency, as well as many other
signals, in which the spectra evolve with time.

It is the primary goal of this book to introduce the signal’s joint time-fre-
quency representations and their applications. Analogous to the classical Fourier
analysis, in this part we present in parcilel the methods of linear and quadratic
(or bilinear) joint time-frequency representations. Chapters 3 and 4 are devoted to
the short-time Fourier transform (STFT) and the wavelets transform, respec-
tively. Although results of the STFT and the wavelet transform look quite differ-
ent, the techniques used to measure the signal’s local behavior are identical. All
linear transformations are achieved by comparing the analyzed signal with a set
of prudently selected elementary functions that can be thought of as the tick
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marks of the ruler used in our everyday life. The main difference lies in the way in
which the tick marks are built. While the frequency tick marks are obtained by
frequency modulation in the STFT, in the wavelet transform the frequency tick
marks are obtained by scaling the center frequency of the mother wavelet (which
is equivalent to reciprocal scaling of the mother wavelet in the time domain).

Unlike the linear representations, which are clearly predominated by the
STFT and wavelet transform, there are more than a dozen candidates for the
bilinear time-frequency representations. Our discussions, however, start with the
Wigner-Ville distribution in Chapter 5, because it is simple and it better charac-
terizes the signal’s time-dependent spectra than the STFT spectrogram (square of
the short-time Fourier transform), scalogram (square of the wavelets), as well as
many other methods known so far. The main deficiency of the Wigner-Ville distri-
bution is the so-called cross-term interference that significantly obscures the
applications of the Wigner-Ville distribution. It has long been recognized, how-
ever; that the cross-terms always occur in the midway of two auto-terms. They are
localized and highly oscillated. On the other hand, the useful properties possessed
by the Wigner-Ville distribution are obtained by averaging the Wigner-Ville dis-
tribution. Those observations suggest that we may apply a lowpass filter for the
Wigner-Ville distribution, to retain the low frequency components and remove the
high frequency parts. Because the discarded high oscillated parts have small
averages, the lowpass filtered Wigner-Ville distribution presumably preserves the
useful properties with reduced cross-term interference. Basically, there are two
types of lowpass filters: linear, characterized by Cohen’s class in Chapter 6, and
non-linear, described by the time-frequency distribution series (also known as the
Gabor spectrogram) in Chapter 7. In Chapter 8, we further introduce the signal’s
adaptive representation and adaptive spectrogram. While the two-dimensional
elementary functions have a fixed envelope in the time-frequency distribution
series, for the adaptive spectrogram, the elementary functions are adapted to best
match the signal under consideration.

In addition to studying the signal’s frequency content changes, another
major advantage to displaying time function in joint time-frequency domain is for
noise reduction. Generally speaking, the noise tends to evenly spread into the
entire joint time-frequency domain. In contrast, the signal is concentrated in the
relatively small area. As a result, the regional signal-to-noise ratio of noise-cor-
rupted signals could be significantly improved. In general, it is much easier to
recognize the noisy signal in the joint time-frequency domain than from either
time or frequency domain alone. Once the signal is identified, we then can remove
all noise, simply by forcing the noise terms to zero, to obtain a modified noiseless
Joint time-frequency representation. By the inverse transform, finally the original
time signal is recovered. Such an operation is traditionally considered as time-
variant filtering and has been found very powerful for the wideband and non-sta-
tionary signal estimation.

In principle, all joint time-frequency representations, both linear as well as
bilinear, could be used for the time-variant filters. Our discussions in Chapter 9,
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however, are focused on the Gabor expansion-based time-variant filters, because
they are simple and powerful.

The literature on joint time-frequency analysis is enormous, but most of it
requires o level of mathematical preparation which is perhaps not suitable for
engineering students as well as practicing engineers/ scientists. We have tried to
present the fundamental ideas and important algorithms only with the help of
elementary calculus and linear algebra. All the algorithms introduced in Part 2
have been extensively tested by the authors and National Instruments customers
over the last three years. We sincerely hope that the reader will find that the mate-
rials in this part are interesting and enlightening.




CHAPTER3

Short-Time Fourier Transform
and Gabor Expansion

I n conventional Fourier transform, the sig-
nal is compared to complex sinusoidal functions. Because sinusoidal basis funec-
tions spread into the entire time domain and are not concentrated in time, the
Fourier transform does not explicitly indicate how a signal’s frequency contents
evolve in time.

Based on the expansion and inner product concepts, a natural way of char-
acterizing a signal in time and frequency simultaneously is to compare the signal
with elementary functions that are concentrated in both time and frequency
domains, such as the frequency modulated Gaussian function. Because Gauss-
ian-type functions are optimally concentrated in the joint time and frequency
domains, the resulting comparisons reflect a signal’s behavior in local time and
frequency.

In Section 3.1, we briefly introduce the methodology of the short-time Fou-
rier transform”™ (STFT). For the continuous-time STFT, the analysis function and
synthesis function have the same form. We can easily recover the original timme
functions based on the STFT However, the representation based on the continu-
ous-time STFT is highly redundant (or oversampled). For a compact presentsa:
tion, we often prefer to use the sampled STFT. In this case, the inverse problem
is no longer as straightforward as the case of the continuous-time STFT. The
inverse of sampled STFT can be accomplished by the Gabor expansion. Although

It is also known as windowed Fourier transform.
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Gabor was apparently not motivated to investigate the inverse problem of sam-
pled STFT, the Gabor expansion turns out to be the most elegant algorithm of
computing the inverse of the sampled STFT.

Section 3.2 is devoted to the general introduction of the Gabor expansion.
Although the idea of the Gabor expansion was rather straightforward, its imple-
mentation has been a hot research topic. The continuous-time Gabor expansion
in fact has a wider scope for deeper mathematical issues, which has been thor-
oughly studied by Janssen (see [86], [91], [94], and [95]) as well as many other
researches. The discrete-time Gabor expansion, on the other hand, is relatively
simple and can be realized with the help of elementary linear algebra. In Section
3.3, we introduce the discrete Gabor expansion for periodic sequences. Then, we
develop the discrete Gabor expansion for infinite samples in Section 3.4. In gen-
eral, given the synthesis function, the dual function is not unique. The natural
question is how to choose the dual functions. In Section 3.5, we introduce the
orthogonal-like Gabor expansion. The concept of the orthogonal-like has been
found very important from both a theoretical and application point of view. In
Section 3.6, we present a fast algorithm of computing dual functions. in appen-
dix A, we discuss the existence of the biorthogonal function at critical sampling.
In appendix B, we investigate the general optimal algorithm that allows the dual
function Y{£] to be optimally close to an arbitrary desired function dlk].

Over the years, many techniques have been successfully developed to
implement the Gabor expansion, such as Zak transform-based algorithms (see
[198] and [199]), filter bank methods [179], as well as the pseudo-frame approach
[115]. In this book, we have limited our discussions to the method that was first
introduced by Bastiaans (see [8], [9], and [10]) and recently extended by Wexler
and Raz [185]. The reader who is interested in methods other than those pre-
sented in this chapter may consult the related literature.

3.1 Short-Time Fourier Transform

The frequency contents of the majority of signals encountered in our everyday
life change over time, such as biomedical signals, speech signals, stock indexes,
and vibrations. Because the basis functions used in the classical Fourier analysis
do not associate with any particular time instant, the resulting measurements,
Fourier transforms, do not explicitly reflect a signal’s time-varying nature’.

A simple way to overcome the deficiency possessed by the regular Fourier
transform is to compare the signal with elementary functions that are localized
in time and frequency domains simultaneously, i.e.,

STET(t, ®) = [s(07*, w()dT = [s(T)y*(z-t)e?""dr (3.1)

* Although the phase characteristic of S(®) contains the time information, it is difficult to
establish the point-to-point relationship between s(¢) and S(®) based upon the conventional
Fourier analysis.

3.1 Short-Time Fourier Transform 47

which is a regular inner product and reflects the similarity between signal s(¢)
and the elementary function y(t—t)exp{jwt}. The function ¥z usually has a short
time duration and thereby it is named the window function. Eq. (3.1) is called
short-time Fourier transform (STFT) or windowed Fourier transform.

The formula (3.1) can be understood in several ways. Fig. 3—1 depicts the
procedure of computing the STFT; first multiply the function y(¢) with signal s(¢)
and compute the Fourier transform of the product s(t)y«(t-t). Because the win-
dow function Y(¢) has a short time duration, the Fourier transform of s(t)y+(1—£)
reflects the signal’s local frequency properties. By moving Y(t) and repeating the
same process, we could obtain a rough idea how the signal’s frequency contents
evolve over time.

t L s e e — - ’L
| i
2 &
A |
| |

; y y
&
g STFT
=
g time
& >

Fig. 3-1 Short-Time Fourier Transform

Alternatively, we could also understand STFT from the concept of expan-
sion introduced in Chapter 2. In STFT, we compare the signal s(¢) with a set of
elementary functions y(1-t)exp{jot} that are concentrated in both time and fre-
quency domains. Suppose that the function Y(t) is centered at ¢ = 0 and its Fou-
rer transform is centered at m = 0. If the time duration and frequency bandwidth
of Y(t) are A, and A, then STFT(,w) in (3.1) indicates a signal’s behavior in the
vicinity of [t-A, t+A] X [0-Ag 0+AL].

In order to better measure a signal at a particular time and frequency (t,m),
it is natural to desire that A, and A, be as narrow as possible. Unfortunately, the
selections of A, and A, are not independent, which are related via the Fourier
transform. If we let A, and A, be a signal’s standard deviations as introduced in

|
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Chapter 2, then the product A;A, has to satisfy the uncertainty inequality, that
is

AA > 1

1= = 2

There is a trade-off of the selection of the time and frequency resolution. If y(z) is
chosen to have good time resolution (smaller A,), then its frequency resolution
must be deteriorated (larger A,), or vice versa. The equality only holds when (z)
is a Gaussian function.

The reader should bear in mind that if {y(1—t)exp{jwt}} is considered as a
ruler, then the different time and frequency tick marks for STFT are obtained by
time-shifting and frequency-modulating a single prototype window function y(£).
In the next chapter, we shall introduce another way to constitute time and fre-
quency tick marks, which is commonly known as wavelets. Although the concepts
of exploring a signal’s time-varying nature are quite similar (performing inner
product operations), the different way of building tick marks leads to very differ-
ent outcomes.

The square of STFT is named STFT spectrogram to distinguish it from the
time-dependent spectrum based upon other linear techniques, such as the Gabor
expansion and the adaptive representations. STFT spectrogram is the most sim-
ple and used time-dependent spectrum, which roughly depicts a signal’s energy
distribution in the joint time-frequency domain. While the STFT in general is
complex, the STFT spectrogram is always real-valued.

Example 3-1 STFT with Gaussian-type analysis
function

If

1

3
Y(t) (E‘ exp{—%tz} (3.2)

and

1l

s(t)

Bfeof )

Intuitively, in the joint time-frequency domain, s(¢) is centered in (0,0). Its time
duration is determined by B. Substituting s() and Y(¢) into (3.1) yields

|
|
|
|
J
;’
|
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|
STET(t, ®) = (a—?>4jexp{—gtz}exp{—%(1~ t)z}exp{—jwr}d‘c
TE L

(il 58t i

oY) e (232 - e ot

:
exp{—z(%fy)t2 }(i—?ji{ exp{—((i;—g)(f = a—i—ﬁt)z}exp {~ot}dr

Applying the Gaussian characteristic function introduced in Example 2—4, we have

Al —

it

1
2.Jaf o o 1 2 .
STFT(t, ®) = (oc_:[?) exp{— 2(0€+B)t T+ ﬁ)m G Bmt} (3.4)

A(A)
_A/oc+B

Fig. 3-2 The ellipse area reaches its minimum when the variance of analysis fux}ction
perfectly matches the signal time duration, that is, o = 8. The minimum area is 2T,
which is twice as large as that of the Wigner-Ville distribution.

The corresponding STFT spectrogram is

_2.JoB {_ of o 1 } (3.5)

SP(¢, ©) = |STFT(¢, 0)* = Ey i e e

which shows that STFT spectrogram is concentrated in (0,0), the center of signal
s(t). The contours of equal height of SP in (3.5) are ellipses. The contour for the case
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where the levels are down to el of their peak value is the ellipse indicated in Fig. 3—
2. The area of this particular level ellipse is

a+B  l+r

—mn-—Tn

where r = B/a.is a matching indicator. The area A reflects the concentration of STFT.
Naturally, the smaller the A is, the better the resolution. The resolution of STFT is
subject to the selection of analysis function. The minimum of A in (3.6) occurs when
r = 1. In other words, when the variance of analysis function o perfectly matches the
time duration of the analyzed signal B, SP(¢,0) in (3.5) will have the best resolution.
However, because the signal duration B will likely be unknown, it would be difficult
to achieve the optimal resolution in general. Moreover, it should bear in mind that
even the optimal resolution, A = 27, is twice as large as that of the Wigner-Ville dis-
tribution.

(3.6)

Taking the inverse Fourier transform with respect to STFI(,») in (3.1
yields

1 : 1 .
ﬁjSTFT(t, o)exp{juoldo = 2—7—r”s(1)y('c—t)exp{/(p.—”c)(n}drdm
= Js(r)y('c—t)?i(u~r)d‘c

= s(Wy(n-1)
Let 1 =t, we have

1

s(t) = W{swm, o)exp {jto}do (3.7)

which implies given STFT(¢,w) for all ¢ and ®, we can completely recover the sig-
nal s(¢).

It is worth noting that (3.7) is a highly redundant representation. In fact,
the signal s(¢) can be completely reconstructed merely from the sampled version
of the short-time Fourier transform, STFT(mTnQ), where T and Q denote the
time and frequency sampling steps, respectively. In other words, we can use the
sampled STFT to completely characterize signal s(t) and thereby save consider-
able computation as well as memory. Unfortunately, in this case, the reconstruc-
tion is no longer as simple as (3.7). We shall discuss this subject in more detail in
the subsequent sections.

The STFT can also be viewed as a mapping from the time domain to the
time-frequency domain, as illustrated in Fig. 3-3. For any time domain function
s(¢) and window function Y(¢), such mapping always exists. But the inverse may
not be true. In other words, given a function ¥(¢) and an arbitrary two-dimen-
sional function B(tw), there may be no physically existing signals s(¢) whose
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STFT is equal to B(,w). In this case, we say that B(Z,®) is not a valid short-time
Fourier transform. The simplest example is

50 = { 1 for |¢| < ¢5lol < oy (3.8)

0 otherwise
Because no signal can be finite supported in both time and frequency domains,

B(t,0) cannot be a valid joint time-frequency representation. As shown in Fig. 3—
3, STFT(¢,®) in fact is only a subset of the entire two-dimensional function B(t,®).

Y(t) i s()
A o i

B time

Fig. 3-3 STFT(,0) is a subset of the entire two-dimensional function. An arbitrary
two-dimensional time-frequency function may not be a valid STEFT(, o).

For a given function ¥(¢), a valid short-time Fourier transform has to be
such that its inverse Fourier transform is separable, that is

L[B(t, wexplinodo = sqrh- Vb @.9)

For the digital signal processing application, it is necessary to extend the
STFT framework to discrete-time signal. For the practical implementation, each
Fourier transform in the STFT has to be replaced by the discrete Fourier trans-
form, the resulting STFT is discrete in both time and frequency and thus is suit-
able for digital implementation, i.e.,

L-1 .
STFT(k, nl = 3 slilyli-kIW (3.10)
i=0
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STFT[k’ n] = STFT(t’ 0‘)) it =kAt, 0 = 2rn/(LAL)

where At denotes the time sampling interval. v{%] = Y(kAt) is the L-point window
function. We call (3.10) the discrete STFT to distinguish it from the discrete-time
STFT, which is continuous in frequency. It is rather easy to verify that the dis-
crete STFT is periodic in frequency, that is,

STFT[k, n] = STFT[k, n +IL]

for [ = 0,%1,#2,+3.... Like the continuous-time STFT, arbitrary two-dimen-
sional discrete function in general is not a valid discrete short-time Fourier
transform.

3.2 Gabor Expansion - Inverse Sampled STFT

Instead of representing a signal either as the function of time or the function of
frequency separately, in 1946, Gabor" suggested representing a signal in two
dimensions, with time and frequency as coordinates [53]. Gabor named such two-
dimensional representations the “information diagrams as areas in them are
proportional to the number of independent data which they can convey. Gabor
pointed out that there are certain “elementary signals” which occupy the small-
est possible area in the information diagram. Each elementary signal can be con-
sidered as conveying exactly one datum, or one “quantum of information.” Any
signal can be expanded in terms of these by a process which includes time analy-
sis and frequency analysis as extreme cases. For signal s(z), the Gabor expansion
is defined as

s(t) =

YL

2 Conlma®) = Y ¥ C, L h(t-mT)exp{jnQt} (3.11)
=i B

m=—co n=—co

where T and Q denote the time and frequency sampling steps. Fig. 3-4 illus-
trates the Gabor sampling grid.

" Dennis Gabor was born on June 5, 1900, in Budapest, Hungary. His talent for memorization
— an asset in any academic field — appeared at the age of twelve, when he earned a prize from
his father for learning by heart, in German, a 430-line poem. Gabor finished his doctorate in
electrical engineering in 1927. His work in communication theory and holography started at
the end of World War II. It was during that time that he wrote the famous Gabor expansion
paper. In 1949, he joined the Imperial College of Science and Technology at London University
and in the late sixties became a staff scientist at CBS Laboratories in the United States. While
his formal education had been largely in the applied engineering fields, he had not neglected to
study the basic physical and mathematical tools that would facilitate his life’s work, which
was mostly motivated by a desire to create or perfect a particular device invariably secured on
a sound mathematical footing. His genius as an inventor lay in an innate ability to focus on a
final goal, regardless of the difficulties. His endeavor paid off. In 1971, the Royal Swedish
Academy of Sciences presented Dennis Gabor with the Nobel Prize for his discovery of the
principles underlying the science of holography.

§
1
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A(D

nQ Q

o

(0,0) mT

Fig. 3-4 Gabor sampling lattice

In Gabor’s original paper, he selected the Gaussian function as the elemen-
tary function, i.e.,

1
h(t) = (%)4exp{—%t2} (8.12)

because the Gaussian function is optimally concentrated in the joint time-fre-
quency domain according to the uncertainty principle, that is,

Lo

m:A/(_XT—

which is the lower bound of the uncertainty inequality.

Although Gabor restricted himself to an elementary signal that has a Gaus-
sian shape, his signal expansion in fact holds for rather arbitrarily shaped sig-
nals. For almost any signal A(¢), its time-shifted and harmonically modulated
version can be used as the Gabor elementary functions. The necessary condition
of the existence of the Gabor expansion is that the sampling cell 7Q must be
small enough to satisfy

1
AA 5

TO <2 (3.13)

Intuitively, if the sampling cell TQ is too large, we may not have enough infor-
mation to completely recover the original signal. On the other hand, if the sam-
pling cell T'Q is too small, the representation will be redundant. Traditionally, it
is called critical sampling when TCQ = 2n and oversampling when TQ < 2n. It is
interesting to note that although Gabor was not known to have investigated the
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existence of the formula (3.11), the sampling cell that he selected, TQ = 2n, hap-
pened to be the most compact representation!

Gabor was also not known to have published any practical algorithms of
computing the Gabor coefficients”. Despite the earlier treatment by Auslander et
al [3], Gabor’s work was not very popular until 1980, in particular, after Bas-
tiaans related the Gabor expansion and short-time Fourier transform (see [8],
[9], and [10]). Bastiaans introduced the sampled short-time Fourier transform to
compute the Gabor coefficients. i

As mentioned in the preceding section, the continuous-time inverse STFT is
a highly redundant expansion. In applications, for a compact presentation we
usually use sampled STFT. However, the imprudent choice of analysis function
¥#) and sampling steps, T and Q may lead to the sampled STFT being non-
invertible. With the help of the Gabor expansion, we now can easily solve the
problem of the inverse of sampled STFT, even though it was apparently not
Gabor’s original motivation.

Based upon the expansion theorem introduced in Chapter 2, if the set of the
Gabor elementary functions {k,, ,(®)} is complete, then there will be a dual func-
tion (or auxiliary function) y() such that the Gabor coefficients can be computed
by the regular inner product operation, i.e.,

Crn = J$()¥*m, a(t)dE = [s ey (¢ =mT) exp{~jnQt}dt
= STFT(mT, n2) (3.14)

which is the sampled STFT and also known as the Gabor transform. It can be
shown that for critical sampling, the Gabor elementary functions {p () are
linearly independent. In this case, the dual function is unique and biorthogonal
to h(f). At oversampling, the selection of the auxiliary function is not unique.
There are two fundamental problems regarding the implementation of the Gabor

expansion:

o how to compute the dual functions W(t)?
e how to select the dual function y(t) if they are not unique?

Substituting (3.14) into the right side of (3.11) yields

5@ = [509 T X Va0 (3.15)

m=—co p=—co

Obviously, the Gabor expénsion exists if and only if the double summation is a

*In his notable paper, Gabor proposed an iteration approach to compute the coefficients Cpy, p,
which, however, has been found not to converge in general [54].
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delta function, that is,

2 2 ’Y*myn(tl)hm,n(t) = S(t't') (316)

m=-c n=-oco

By the Poisson-sum formula, (3.16) can be reduced to a single integration [185],
15,

T, .

- fn(tyry, - (@) dt = 5(m)8(n) (3.17)
where

Yo . = Wt -mTo)exp{inQo} (3.18)

where Ty = 2/Q and Qg = 2r/T. In some literature, (3.17) is named the Wexler-Raz
identity, which plays an important role in computing the dual functions. Note that
except for the critical sampling, TQ = 2%, Yy, ,(£) #Y5 ().

, Hf Hh

Fig. 3-5 Although the Gabor elementary function (dotted line) is optimally concen-
trated in the joint time-frequency domain, the corresponding biorthogonal function
(solid line) is neither localized in time nor in frequency.

At critical sampling, the set of {h,, ,(¢)} is linearly independent. In this case,
we say Y(¢) and h(¢) are biorthogonal to each other. For oversampling, the set of
{Am @) is linearly dependent. The resulting presentation is redundant. Bas-
tiaans gave the closed form of the solution ¥(¢) for the Gaussian function A(f) at
critical sampling. The results are plotted in Fig. 3-5. Note that, although A(t)
(dotted line) is optimally concentrated in the joint time-frequency domain, the
corresponding biorthogonal function y(¢) (solid line) is neither concentrated in
time nor in frequency.

It is worth noting that, unlike harmonically related complex sinusoidal
functions used in the Fourier series, which are orthonormal, the set of the Gabor
elementary functions in general does not constitute an orthogonal basis. In this
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case, the dual function y(#) is not equal to the Gabor elementary function A(?).
The direct consequence is that although we could easily have the Gabor elemen-
tary functions optimally concentrated in the joint time-frequencies domain, the
dual function ¥#) may not be localized. Consequently, the Gabor coefficients
Cpnn» the inner product of signal and dual functions, do not necessarily reflect
the signal's behavior in the vicinity of [mT-A, mT+AdXnQ-A, nQ+Agl.
Whether or not the Gabor coefficients C,, , describe the signal’s local behavior
depends on the property of the dual function. If (t) is badly concentrated in the
joint time-frequency domain, the Gabor coefficients C,, , will fail to describe the

_ signal’s local behavior. We shall discuss a great deal of the selection of dual func-

tions in Section 3.5.
Finally, we should emphasize that the dual functions ¥(#) and A(¢) are

exchangeable. The Gabor expansion can be written in either way as
$@t) = X A8 Ymnd Bmn (&) = 2 (8 R )V, n(8) (3.19)

Which one, ((t) or i(t), is used for the analysis function to compute the Gabor
coefficients depends on the applications at hand. If we are mainly interested in
Gabor coefficients, then we may use h,, ,(¢) to calculate C,,,, because it is
selected first and thereby easier to make it meet our requirements. In this case,
once h(z) is properly selected, the Gabor coefficients C,, , will well describe the
signal’s local time and frequency behaviors.

3.3 Gabor Expansion for Discrete Periodic Samples’

The utilization of the Gabor expansion (or the inverse sampled STFT) hinges on
the availability of the dual function. Except for a few specific functions, such as
Gaussian, two- and one-sided exponential at critical sampling, where the dual
functions (in this case, the dual functions must be biorthogonal to each other)
can be explicitly computed (see [8], [41], and [52]), analytical solutions of ((¢) are
not generally available. Moreover, the signals encountered in most applications
today are of discrete-time. Hence, it is necessary and beneficial to extend Gabor’s
framework into the case of discrete-time and discrete-frequency.

The procedure of digitizing the continuous-time Gabor expansion (3.11)
essentially is a standard sampling process. Thereby, we leave it for the reader to
exercise. Note that sampling the time variables leads to periodicity in the fre-
quency domain. Similarly, digitizing the frequency variable results in periodicity
in the time domain. Because it digitizes both time and frequency indices, the dis-
erete varsion of the Ctabor expansion in general is only applied for the periodic
discrete-time signals.

Because we can easily extend a finite sequence to a periodic function, all results developed
from periodic functions are automatically applicable for finite samples.
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For discrete-time signal s[k] with period L, the discrete Gabor expansion is
defined by

i YAVt ~ nANk
Slkl= Y S Cnahlk—-mAMIW, (3.20)
m=0 n=0

where the Gabor coefficients are computed by

Crn= 3 SlEIPIE-mAMIW M (3.21)
k=0

Note that the signal s[k], synthesis function A(k], and analysis function y{k] are
all periodic and have the same period L. We name (3.20) the periodic discrete Ga-
bor expansion to distinguish it from the discrete Gabor expansion in which neither
the analyzed signal nor the window functions need to be periodic. Fig. 3-6 depicts
the procedure computing the periodic discrete Gabor coefficients.

~&— DFT <&
FT <

Gabor Coefficients N

M

Fig. 3-6 Periodic Discrete Gabor transformation

The terms AM and AN in (3.20) denote discrete time and frequency sam-
pling steps, respectively. The oversampling rate is defined by

L

It is called critical sampling when @ = 1 and oversampling when ¢ > 1. For the
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stable reconstruction, the sampling rate must be greater or equal to one. In Wex-
ler and Raz’s original paper [185], it was required that AMM = ANN = L". In this
case, M and N are equal to the number of sampling points in time and frequency
domains, respectively. The product MN is equal to the total number of the Gabor
coefficients. Rewriting (3.22) obtains

number of Gabor coefficients (MIN)
number of distinct samples (L)

oversampling rate (o) =

which shows that the sampling rate is equal to the ratio between the total number
of Gabor coefficients and the number of distinct samples. For critical sampling,
the number of the Gabor coefficients is equal to the number of distinct samples.
In the oversampling case, the number of the Gabor coefficients is greater than the
number of samples. In this case, the resulting Gabor expansion is redundant.

If we restrict ANN = L, (3.20) and (3.21) can be rewritten as

MoalNeds . ¢ o
§kl= Y Y Cmnhlk-mAMIWy (3.23)
m=0 n=0
and
A el o m -nk
G = 2, SlE R~ maMIW (3.24)
k=0

where N can be considered the number of frequency bins or number of frequency
channels. Eq. (3.24) implies that the Gabor coefficients are periodic in n, e.g.,

ém,n =ém,n+iN VieZ (325)
Substituting L = ANN into (3.22) yields
a = A%-l > 1 (3.26)

which says that for the stable reconstruction, the time sampling step AM has to
be smaller or equal to the number of frequency bins or frequency channels N.

*Li and Qian show [116] that the requirement ANN = L is not necessary. AN in fact can be
any integer. Consequently, we could have more freedom in choosing the oversampling rate. On
the other hand, however, the implementation may become complicated and less efficient. For
example, we may no longer be able to use the efficient FFT algorithm to compute the Gabor
expansion as well as the sampled short-time Fourier transform.
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The remaining question is how to compute Y{%] for a given h[k] and sam-
pling steps. Substituting (3.24) into the right side of (3.23) yields

(3.27)

Ie L1 M-1N-1 _ if bk
§[kl= Y S[E1Y X vk -mAMhlk-mAMIW,
k' =0 m=0 n=0

Hencs, the periodic discrete Gabor expansion exists if and only if the double
summation is equal to the delta function, i.e.,

k -k

M-IN-1 ) I g
f_,o Z,ov*[k' —mAMIE [k -mAMIWyy ) = 8[k - F] (3.28)

The double summation form is not very pleasant to work with. Eq. (3.28) does
not provide a clue to solving 1{%]. By the discrete Poisson-sum formula, Eq. (3.28)
can be reduced to a single summation [185], such as

Lo, ~pk ~ AM
kz,oh[kﬂ“qN]WAM‘{*{k] = —r-8(p13(q] (3.29)

where 0 < p < AM and 0 < g < AN. Eq. (3.29) usually is considered the discrete
version of the Wexler-Raz identity.

PROOF
Expanding the left side of (3.28) obtains

M-1 4 AN -1
S Pk -mAMY; (k- mAMIN Y, 8k -k -gN]
m =0 q=0

AN -1 M-1
=N Y 8(k-k-gN1Y v[k'-mAMI (% +gN-mAM] (3.30)
qg=0 m=0

Applying the discrete Poisson-sum formula (2.76) to the second summation,

M-
S v [k-mAMIA [k + gN - mAM]
m=0

1 AM -1 L—l~ " \ &
. szo S hlk+gNIW, PR W
= i=0
which implies that (3.28) holds if and only if
o k AM
Zh[mqmw;ﬂ*[k] = -dlp1dlal for 0<p<aM 0<g<AN

1=0
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Eq. (3.29) can also be formulated in terms of matrix computation, i.e.,

Hy' = [i (3.31)

where H is a AMAN-by-L matrix, whose entries are defined as
sz -pk
Popartvq,r =h1R+ qN]WAiM (3.32)
ﬁ is the AMAN dimensional vector given by

AM

i=(=—,00..0)7

U (N )
AMAN

Eq. (3.31) shows that the dual function y{%] is no more than the solution of a
linear system. The necessary and sufficient condition of the existence of the solu-
tion of (3.831) is that ﬁ is in the range of H. At the critical sampling case, AMAN =
L, His an L-by-L square matrix. Thereby, the solution is unique if it exists. For
oversampling, AMAN < L, (3.31) is an underdetermined system and thereby the
solution is not unique in general. In any case, (3.31) provides a feasible way to
find the discrete dual function Yl&].

L=80, dM=18, Sampling Rate = 1 1.=80, dM=16, Sampling Rate = 1
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Fig. 3-8 Alk] = 0.45exp(-0.2(~k-39.5)}
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Fig. 3-7 and Fig. 3-8 illustrate the one- and two-sided normalized exponen-
tial sequences and their corresponding biorthogonal functions. Based on the
algorithm discussed in this section, we virtually can compute dual functions for
an arbitrarily given Gabor elementary function.

3.4 Discrete Gabor Expansion

In the preceding section, we introduced the periodic discrete Gabor expansion
that requires the signal, analysis function, and synthesis function to have the
same length. This is inconvenient (even impractical) in many applications, par-
ticularly when the number of samples L is large. For L-point samples, (3.31)
essentially implies an L-by-L linear system. Therefore, it is desirable that
lengths of analysis and synthesis function are independent of the length of sam-
ples so that we can use short windows to process arbitrarily long data. When this
is achieved, the discrete Gabor expansion can then be used in many more signal
process applications where typical signals are long.

slk] - s[k] -

aily re.

Assume the length of the signal s(k] is L and the lengths of Gabor elemen-
tary function A[k] and dual function vik] are L. Let’s build auxiliary periodic
sequences as

o 0 —~(L-AM)<k<0
§[k] = Sk +iLy ] = {S[k] ( er s L" (3.33)
o g Kkl 0<k<L

h[k} = /’Z[k-i—lLo] = { 0 Py (L _ (3_34)
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G i _y[k] 0<k<L
Y[]~v[+zo]—{0 L (E, <A

where all have the same period Ly = LgtL-AM. The periodic discrete Gabor
transform can then be plotted as Fig. 3-9.

Because of zero padding, we can compute the Gabor transform without roll-
ing over either the signal s[#] or analysis function ylk]. The auxiliary periodic
sequences defined in (3.33), (3.34), and (3.35) actually release the periodic con-
straint. Substituting auxiliary periodic sequences into the form of the periodic
discrete Gabor expansion (3.23) and (3.24) yield

(8.35)

T i

G R § (RIF*k — mAMIW," (3.36)
k=AM-L
and
M-t N-1_ i e
§[k] = Y. C mnhlk —-mAMIW, (3.37)
m=nmy n=0
where
AM-L
my = “AM (3‘38)

The oversampling rate is ¢ = N/AM. For the perfect reconstruction, the time
sampling step AM has to be less or equal to the number of frequency channels IV.
The total number of time sampling points is the smallest integer that is larger
than or equal to Lo/ AM. Because of zero padding, the oversampling rate is equal
io the ratio between the number of the Gabor coefficients and the number of zero
padded samples s(&].

Wheh [ remaining fnibs, leting Ly - ee and thershy La — oo (3.35) and
(3.37) directly lead to the Gabor expansion pair for discrete-time infinite
sequence, i.e.,

Gon = 5 s{k]*{*[k—mAM]W:/,nk (3.39)
k=0 I

and

w N-1
4 (3.40)

stkl = Y Y Cmnhlk-mAMIWy

m=m n=0
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The remaining question is how to compute the dual function y{&]. Substitut-
ing (3.34), and (3.35) into (3.29) and writing the resulting formula in the form of
matrices, then we have

Hy* = o (3.41)
where "'/_;, is an Lg-by-1 vector and
T
i (ATVA—{ 0,0, ) (3.42)-

H is a AMLy/N-by-Lq matrix that can be written as

H, H, Higg .10 0 0
H, H e 0 0 0 H,
Hyo O 0 H, H,
H v 0 0 0 0 H (3.43)
0 0 0 H, H, Hovs
0 H, H, 0
0 H, H, Hip 0
where H; are AM -by-N block matrices whose entries h, (i) are
by (i) = hpplg +D) = hI@+ DN +RIWS, (3.42)

Because ANN =L, hp 3(i) = 0 for i = (p+]) = AN. That is, H; = 0 for i 2 AN. In

g

order to have dual functions y{k] and iz\[k] have the same time support, we force
the last L~AM elements of the vector ¥, to be zero, that is,

heabee e
Li~AM

s

Fo= }g‘ where 0 = (0,0,0...0)7 (3.45)
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v is an L-dimensional vector. Replacing "70 in (3.41) by (3.45), (3.41) reduces to

H, H . Hy

H, & Hyo 0

. Hy, O

Hyya 0 0 F*=Hy*=Q (3.46)
0 0 H,

0 Hy .. Havs

The matrix can be remembered by an auxiliary periodic sequence given by

h(k] 0<k<L

3.4
0 L<k<2L-N AT

Rik] = hlk +l(2L—N)]E{

The.n, 'the entries of H can be defined in the same manner as in the case of the
periodic discrete Gabor expansion (3.32), i.e.,

Fpattvq k= Rlk +qNTW g (3.48)

Consequently, (3.46) can be written as
Lot -pk AM
3 Rl MW (k) = -dlp)ta) (3.49)

.Where 0<p<AMand 0 €q < 2(aN-1). The significance of Eq. (3.49) is that it is
independent of the signal length. It guarantees that the dual functions, Ak] and
y{k], have the same time support.

H in (3.46) is a K-by-L matrix, where

L L AM 2L
K = AMQ2AN-1) = 2Lg ~AM = =~ AM (3.50)
where a denotes the oversampling rate. Therefore, (3.46) is an underdetermined
system when

2L
—&——AM<L (351)

that is, ¢ is larger than 2L/(L+AM).

It is interesting to note that the periodic discrete Gabor expansion and dis-
crete Gabor expansion have a similar formula of computing the dual functions
(see (3.31) and (3.46)) except for the structures of functions H. In the case of the
periodic Gabor expansion, H is made up of the periodic window function Alk]
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directly. For the discrete Gabor expansion, H is constituted by the periodic auxil-
iary function h[k] which is the zero padded window function h[k]. R

Finally, 7lk] derived for the discrete Gabor expansion is a subset of v, 1n
(3.45), which is a special solution of the periodic discrete Gabor expansion intro-
duced in Section 3.3. Because we force the last L;-AM elements of the vector }73
to be zero, the existence of ¥{k] is much more restricted than that in periodic
cases, in particular, for the critical sampling AM = N. Because the critical sam-
pling does not introduce any redundancy, it plays an important role in many sig-
nal processing applications, such as the maximally decimated linear systems.
Then, the important issue is the existence of the critically sampled discrete
Gabor expansion. In what follows, we only give the results without derivations.
The reader can find the rigorous mathematical treatment in Appendix A.

For clarity of presentation, let’s define the operation ® by

— zero iff one term is not z
non - zero iff one term 1s not zero (352)

e, e, Ve, ® ..., =
R " {0 otherwise

If a set of numbers feg,e1,e9---,¢,, | satisfies the condition

ep®e, ®e,®..0e, #0 (3.53)

then we call this set of numbers exclusively non-zero.
Now, we state that for critical sampling, the biorthogonal function vik] of

the discrete Gabor expansion exists iff
RE]®A[(N+RI®RLRN+£]®..0® R(AN-1)N+£]%0 (3.54)

where 0 <k < N and ANN = L. If h{k] satisfies Eq. (3.54), then (k] is uniquely
determined by

[ | o
vImN+k] = 1 Nh[m__—N+k] h[mN+k]#0 (3.55)

0 otherwise

where 0 <m<AN and 0<% <V,

FryTy oy
| RINT ¥ h(2N] |

(0] .
hik] h{N+k] hI2N+E]

Fig. 3-10 The locations of h[mN+k] at the critical sampling, where 0 < kE<Nand 0<
m < AN.
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Fig. 3-10 depicts the locations of A[mN+k]. Eq. (3.54) implies that AlmN+k]
can only contain N non-zeros. Moreover, the non-zero point can only be one & for
all different m. When 0 < m < AN = 1, that is, N = L (the number of frequency
channels is equal to the length of the function A[k]), then the necessary and suffi-
cient condition of the existing of dual function is simply that

R{E]#0  Vkel[0,L)

which is illustrated in Fig. 3—11. In fact, this is exactly the case of non-overlap
windowed Fourier transform.

AM=N=L=128 AM=N=L=128
1.25+ 0.30+
1.00+ 0255
st ] 0.20+
I 0.15-
050-] l |
1 0.10+
0.25 } ' ‘] ! ‘ 0.05-
0.00-putll I3 I I 00
0 20 10 &0 @ 100 120127 0 2 10 50 90 100 120127
(a) h[%] (b) vi%]

Fig. 3-11 Biorthogonal sequences at the critical sampling (AM =N = L).

Fig. 3-12 plots Alk] and y{k] for AM = N = L/2 = 64. In this case, non-zero
points are h[32] to A[63] and [64] to A[64+31], which obviously satisfies the con-
ditions described by (3.54) and (3.55).

AM=N=54.L =128 AM=N=64,L=128
1.25- 0.75-
1.00-
0.50+]
0.75-
0.50-]
0.25
0.25-|
0.00-] 0.00 . ! y jul T T
0 20 4@ 50 80 100 120127
(a) hik] (b) vlk]

Fig. 3—12 Biorthogonal sequences at the critical sampling (AM = N = L/2).

3.5 Orthogonal-Like Gabor Expansion

As shown earlier, given A[k] and the sampling steps, the solution of (k] in gen-
eral is not unique. Then, the question is how to select the y{£] that best meets our
goal. Recall that the Gabor coefficients C,, , are the sampled short-time Fourier
transform with the window function Y{k]. This means that the window function
'ik] has to be localized in the joint time-frequency domain. Otherwise, the Gabor
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coefficients C,, ,, inner product of s(k] and yik], would not characterize the sig-
nal’s local behavior.

=128, dM=16, dN=4

0.25+
0.20-
015
010+
0.05-
0.00-
005
1 X 0 w8 10 1o
(a) hlk]
=128, dM=16, dN=4 L=128, dM=15, dN=4
025+ 0.60-
0.20- o
015
0.20
0104
0.05-] 0.00
000+ 0.20-
005 . i : , \ ; 03 i . > ; i y
[1} 20 40 60 80 100 120127 0 20 40 80 80 100 120127
(b) Yopilke] () k]

Fig. 3-13 Parts (b) and (c) are dual functions of A[k] in (a). They both ‘yield thg perffct
reconstruction. Yopi[k] in (b) is optimally close to Gaussian-type function Alk] in (a) .

time index time index

(a) 1Cpp | of linear chirp (b) | C,py | of linear chirp

Fig. 3-14 (a) is computed by Yoplk], which well presents the linear chirp signal. (b} is
computed by y{#] plotted in Fig. 3-13c, which does not provide desired information of
the linear chirp signal in the joint time-frequency domain. However, bo'th Gabqr coeffi-
cients will lead to the perfect reconstruction by using the same synthesis function A[k].

Second, the behaviors of v{k] and h[k], such as time/frequency centers and

S 01

time/frequency resolution, have to be close. Suppose that Alk] and its Fourier

*The algorithm of computing different dual functions for a same given function h[%] is intro-
duced in Appendix B.
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transform are centered in £ = 0 and 8 = 0. If {&] and A[k] are significantly differ-
ent, for instance, they have completely different time or frequency centers, then
Con,n will not reflect the signal behaviors in the vicinity of (mTnQ).

Fig. 3-13 depicts two different dual functions Y{k] that both correspond to
the same Gabor elementary function A[%] in (a). The shape of %] in (b) is opti-
mally close to that of A[k], whereas the shape of {{&] in (c) significantly differs
from h[Z]. Although both y{%] will lead to a perfect reconstruction with the same
h[k], the resulting Gabor coefficients have substantial differences.

Fig. 3-14 illustrates the magnitude of the Gabor coefficients computed by
two different y{k] for the linear chirp signal. (a) is computed by the optimal y(%].
Because A[k] in Fig. 3-13a is concentrated in the joint time and frequency
domain, the optimal {%] is also concentrated. Consequently, the resulting
Gabor coefficients well present the monotone linear chirp signal. (b) is computed
by vlk] plotted in Fig. 3—-13c, whose shape significantly differs from the Gabor
elementary function A[k] in Fig. 3-13a. Due to the bad shape of the analysis
funcﬁion, the resulting Gabor coefficients plotted in Fig. 3—14b do not properly
describe the time-varying nature of the linear chirp.

Because the Gabor elementary function h[k] is the Gaussian function that
is optimally concentrated in the joint time-frequency domain, the natural selec-
tion %f “.{{k] is that whose shape is closest to 4[%], in the sense of the least square
error , i.e.,

L-1
I'= min
Hys=u =9

k .
%ﬁ - h[k]'2 (3.56)
where

(3.57)

and A[%] is a normalized function, that is, I|h[k]|l2 = 1. For small T, vlk] = ahl[k]
where a is a real-valued constant. In this case, the discrete Gabor expansion can
be written as -

Cmn=ay stRIB*(k-mAMIW, ™ (3.58)
k=0

B_ecause (3.31) and (3.46) have the same form, discussions in this section apply for both peri-
odic and non-periodic cases.
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and

w No1_ .
skl = 3 S Cmohik-mAMIWg' (3.59)
my n=0

m=

Obviously, as long as A[k] is localized in the joint time-frequency domain, the
Gabor coefficients C,,, , will well depict the signal’s local time-frequency proper-
ties. Although the set of (A, ,[k]} is not orthogonal and redundant, the coeffi-
cients C,, , are still good approximations of signal orthogonal projection on
{hm, o[#)). Therefore, (3.59) is called an orthogonal-like Gabor expansion. The
remaining problem is how to solve (3.56).

Expanding Eq. (3.56) obtains [118]

L-1 2
. Y[k] hlRIVIE] 2 }
T = min —2——WT—— +h7[k] (3.60)
H?=ﬁk§=:o{
5 Lol
= Doz klv[k
Elf_ Mk=0h[ Iylk]

Because (see (3.49))

Lot- —pk ~ AM

2. hlk+ql] W 71k = —r-8lp18lq]
(3.60) reduces to

(1AM ,
s _nfun_@ 'MT) : (3.61)

Hy=p

which implies that the solution is the minimum energy of y{k]. According to the
matrix analysis theory, y{k] exists as long as vector { isin the range of matrix H.

If matrix H is of full-row rank, the minimum energy of /(%] is equal to the pseudo

inverse of H, i.e.,
o = HICHED R (3.62)

When the rank of H is less than the number of rows, we can employ the singular
valoe dacompnnsition (SVD) to alleviate the rank deficiency problem.

Assume that the rank of H is p and the number of rows is g, where ¢ 2 p.
Applying SVD to matrix H, (3.46) becomes

USVY = i (3.63)
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where matrices Ue C*? and Ve ™% are unitary. S e RAE Multiplying UT to
both sides of (3.63) yields

0
prp O/i><(1—p)

0 0

po
pXL o _|rs0 1 T
! *‘/* 1l ‘U‘IXP Ugsta-m| (3.64)

(g-p)xp (g=p*(I-p) VEL—/J)XL

where S’ e R”? is a diagonal matrix with non-negative main diagonal entries.

The solution of (3.64) exists when [ is orthogonal to U" (consistency condition).
When the consistency condition is satisfied, we rewrite (3.64) as

Hy* =1 (3.65)

where H = 8°V’e ¢ has full r i= (Ui ini

ow rank p and (= (U) p. Then, the mini-

mum energy solution of y[£] is

—= ~ . A -1
Yropt = HYHET) 1 (3.66)

0 10 20 30 40 50 0 0 5 10 5 20 25 30 35 40 45 50

(a)L=56 ,N=8,AM=7,a=8/7 err=0.4018 (b)L=56,N=8,AM=6,a=4/3,err=0.2598
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(c)L=56,N=8,AM=5,a=8/5,err=0.1628 (b)L=56,N=8,AM=4,a=2,err=0.0865
Fig. 3-15 R[k] (dotted line) and Y,,,[k] (solid line).
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Fig. 3-15 depicts the Gaussian function and corresponding dual functions
at different sampling schemes. In order to utilize the FFT (fast Fourier trans-
form), the number of frequency bins (or channels) N is usually chosen as two’s
power. For instance, N = ok £ =1,2,3,..The oversampling rate is determined
by a = N/AM, where AM denotes the time-sampling step. The length of A[k] and
Yopttkd, L, has to be divided by both N and AM. That is, L/N and L/AM have to be
integers.

In general, the difference between hlk] and Yopilk] decreases as the over-
sampling rate increases. To faithfully characterize a signal’s local properties in
the joint time-frequency domain, it is critical to make Yopil%] and h[k] as close as
possible. The minimum difference between yopt[k] and Ak, T in (3.56), is related
to the selection of A[k] and sampling steps. If the Gaussian function is used, for
instance,

1
3
hlk] = (%) exp{—%kz} (3.67)
the minimum difference between Yopil%] and h[k] is observed when
2
« = TN (3.68)

The discrete Gabor expansion and the concept of orthogonal-like Gabor
expansion were first proposed by Qian et al. (see [148] and [149)) In addition to
seeking y{k] that is optimally close to R{E], the algorithm introduced in this sec-
tion could be easily modified to have k] optimally close to an arbitrary function,
ie.,

L-1

Fewmn ¥
Hy=pp=0

Ykl 4
™ dlk] (3.69)

where d[] is a normalized target function. Such generalized optimization is very
useful, in particular, for those applications where analysis and synthesis func-
tions are desired to have different properties. For instance, we could use the
Gabor expansion for filter bank design. In many filter bank applications, analy-
sis and synthesis functions usually have different requirements. In this case,
while one filter can be predetermined by hlk], the other could be solved via
(3.69). The general solution of (3.69) is discussed in Appendix B at the end of this
chapter.

3.6 Fast Algorithm of Computing Dual Functions

In Sections 3.3 and 3.4, we discuss the algorithms of computing the dual function
+[%] for the periodic discrete Gabor expansion and infinite discrete Gabor expan-
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sion, respectively. In both cases, y{4] are the solutions of the linear complex sys-
tems. In this section, we shall show that those complex matrices in fact could be
converted into real-valued matrices and thereby save a considerable amount of
computations [118]. The following discussions are mainly based on the case of
th? infinite samples (3.49), but the results should be easily extended to the peri-
odic cases (3.29) simply by replacing the auxiliary function h[k] by the periodic
function hlk].
Given the finite Gabor elementary function A[%], the dual function %] for
the discrete Gabor expansion can be computed via Eq. (3.49)
Lzl -k AM
3tk aNIW k] = S8ip1ala)
o=

where 0 <p < AM and 0 < ¢ < 2(AN-1). The auxiliary periodic function Rlk] is
defined in (3.47). Therefore, computing Y{%] is to solve the linear complex system
with AM(2AN=-1)-by-L complex matrix H.

Let’s take the inverse DFT with respect to (3.49), i.e.,

L-1 AM -1
-~ . 1 -k  AM | B ok’
hlk +gNy*[k]— w? Sy Sh s P P
kgo NI (k) pgo e Gl ,,Zo SplWy,  (B70)
Because
LT iy .
ngo Wy =8(k-k -1aM) (3.71)
Eq. (3.70) reduces to
L-1_ [
kzoh[k +pAM + gN1y¢ [k +pAM] = Nﬁ[q] (8.72)

where 0 <k < AM and 0 < q¢ < 2AN-1. Eq. (3.72) suggests that y{%] can be com-
puted by AM-separated real-valued linear systems, i.e.,

Hoye = (3.73)

where H), are (2AN-1)-by-M matrices with the entries:

hq.pk) =k [k +pAM +qN] (3.74)

. -
1

Yr 1s an M-dimensional vector with the entries:

Yp(R) = vlk+pAM] (3.75)

73
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and
i, =(N"00..0)7
Sy iy
24N-1
While (3.49) is a AM(2AN-1)-by-L linear complex system, the solution of (3.72) is
a AM independent (2AN-1)-by-M linear real system. Therefore, considerable
computations are saved when (3.72) is used. Moreover, it is interesting to note

that the minimum norm of (3.31) is equal to the minimum norms computed by
each individual linear system in (3.73). We leave the proof for the reader to exer-

cise.

Summary

In this .chapter, we discussed the short-time Fourier transform (STFT) and
Gabor expansion. Although Gabor did not investigate the inverse of the STFT,

‘the Gabor expansion turns out to be the most elegant algorithm of computing the

inverse of a sampled STFT. The Gabor expansion has been thoroughly studied in
the mathematics literature for a long time. Most of the analysis was confined to
the continuous-time cases, which has a wider scope for deeper mathematical
issues. The discrete Gabor expansion, on the other hand, is relatively easier to
understand. It could be implemented with the help of elementary linear algebra.
In Sections 3.3 and 3.4, we introduced Gabor expansions for periodic and infinite
discrete-time samples, respectively. Although the structure of H matrices in
(3.31) and (3.46) are different, the dual functions in both cases could be solved by
similar linear systems. In Section 3.5, we bring up the concept of orthogonal-like,
which not only is fundamental for time-frequency analysis, but also is important
for time-varying filtering. We shall elaborate on this subject in Chapter 9.




Wavelets*

The most common technique of studying
some properties of signals that are not obvious in the time domain is to compare
the given time function with a set of prudently selected elementary functions.
For example, to explore a signal’s periodic property, traditionally we compare the
time signal s(#) with a set of harmonically related complex sinusoidal functions
exp{j2nnt /T}. Because each individual complex harmonic sinusoidal function
explj2nnt/T} corresponds to a particular frequency 2mn/7, the Fourier trans-
form, the measure of similarities between s(t) and exp{j2rnt/ T}, reflects the sig-
nal’s behavior at frequency 2nn/T. By changing the parameter n, we can obtain
all different frequency tick marks. In addition to complex harmonic sinusoidal
functions, we can also build frequency tick marks by scaling the time index ¢ of &
given elementary function w(¢), as introduced in Chapter 2. Scaling signal in the
time domain results in inversely scaling in the frequency domain. When the
dilated (scaled) and translated (time-shifted) elementary functions yla " l(t-b))
are employed to measure the given signal, the resulting presentation is named
time-scale representations or wavelets. The elementary function y(t) is known as
the mother wavelet.

Although the original idea can be traced back to the Haar transform at the
beginning of the century, wavelets were not popular until the early eighties.
About ten years ago, researchers from geophysics, theoretical physics, and math-
ematics developed a solid foundation for “wavelets” (see [61] and [125]). Since
then, this topic has been treated in considerable detail by numerous researchers
in both the mathematics and engineering literature. In particular, Mallat (see
(1207 and [121]) and Meyer [126] discovered a close relationship between wavelet

* This chapter is co-authored with Xiang-Gen Xia, Hughes Research Laboratories, Malibu, Cal-
ifornia 90265.
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and mutiresolution analysis structure, which leads to a simple way of calculating
the mother wavelet. Their work also established a connection between continu-
ous-time wavelets and digital filter banks. Daubechies (see [34], [35], and [36])
developed a systematic technique for generating finite-duration orthonormal
wavelets with FIR (Finite Impulse Response) filter banks. Those results have
triggered tremendous interest in the mathematics as well as signal processing
communities. Due to the efficiency in representing non-stationary signals, such
as speech and image/video, and many other interesting properties, wavelets has
become one of the most active research areas.

Although both wavelets and STFT can be used to study a signal’s local
behaviors, they have substantial differences in many aspects. Unlike the STFT
and Gabor expansion, which can be realized with the help of a fair amount of ele-
mentary matrix theory, to apply wavelet analysis one needs a certain level of
mathematical preparation. Because the aim of this book is to university students
and practicing engineers/scientists, in what follows, we shall only introduce the
most fundamental ideas without delving into mathematical details. Although
our presentations are limited in the orthonormal wavelet transform, this chap-
ter, we believe, would serve as a good introduction for those who are interested
in this exciting field.

In Section 4.1, we introduce basic concepts of wavelets. In particular, we
emphasize its differences from STFT. For STFT-based signal decomposition (e.g.,
the Gabor expansion), we can virtually use any function as the window function.
For wavelet decomposition, however, the valid mother wavelet has to satisfy an
admissibility condition. Therefore, one main issue for wavelet analysis is how to
generate a desired mother wavelet. A popular algorithm that was first studied by
Mallat [121] and Meyer [126] is based upon the multiresolution analysis struc-
ture. To facilitate the reader’s understanding of multiresolution analysis, in Sec-
tion 4.2, we review a simple example, piecewise constant approximation. Then,
in Section 4.3, we discussed mathematical beauty of the multiresolution analy-
sis. Finally, in Section 4.4, we introduce digital implementations. As a matter of
fact, in most real applications, we can well estimate wavelet transform by filter
banks without explicitly calculating the mother wavelet function w(¢).

4.1 Continuous Wavelet Transform

In Chapter 2, we showed that there are usually two ways of building frequency
tick marks to test the signal in the frequency domain. One is to use harmonically
related complex sinusoidal functions, such as Fourier transform as well as Gabor
transform. The other is achieved by scaling the time variable ¢ of a given elemen-
fary tucciion wig), If the center frequency, ur wie idean irequency, of the function
W(¢) is wg, then the center frequencies of its time-scaled version (or dilation) w(¢/
a) will be the reciprocal of wy, for instance, <w> = @/ e, as shown in Example 2—
9. When the dilated and shifted fanction y(a~X(z-b)) is used as the tick marks to
measure a signal’s local behavior, the resulting presentation is named wavelet
transform (WT), or the continuous-time wavelet transform (CWT) if the signal
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under consideration is a function of continuous-time, i.e.,

1 )
T(a, b) = —|s(t)y* t a#0 4.1
OWIGe,b) = <=Jsow(Go 1 (4.1)
where () denotes the mother wavelet. The parameter a represents the scale
index that is the reciprocal of the frequency. The parameter b indicates the time
shifting (or translation). Suppose that w(¢) is centered at time zero and frequency
wg. Then, its dilation and translation q/(a_l(t—b)) is centered at time b and fre-
quency wg/a, respectively. Consequently, the quantity of CWT(a,b), inner prod-
uct of s(¢) and w(a"l(t—b)), reflects the signal’s behavior in the vicinity of (b, wg/
a). Therefore, CWT(a,b) could also be thought of as a function of time and fre-
quency by

= TF(% t) (4.2)

CWT(a,b)‘ -
G5 o by
(0]

V

(a) Gabor elementary functions

(b) Wavelet basis functions

Fig. 4-1 In the Gabor transform (or STFT), all elementary functions have the same
envelope, whereas the wavelet basis functions have different envelopes. The time and
frequency resolutions of wavelet basis functions change with a scale factor,

In STFT, the “ruler” used to measure the signal’s joint time-frequency prop-
erty is made up of time-shift and frequency-modulated single prototype function
y(t-t)exp{jot). Therefore, all elementary functions have the same envelope as
shown in Fig. 4-1. Once ¥(¢) is chosen, both the time and frequency resolutions of
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the elementary functions y(t—t)exp{jwt} are fixed. On the other hand, the “ruler”
used in the wavelet transform is obtained by the dilation and translation of a
mother wavelet. Consequently, both time resolution and frequency resolutions of
the basis function \u(a"l(t-—b)) are functions of the scaling factor.

Let’s use the standard deviation to characterize the signal’s resolution. If
time and frequency deviations of the mother wavelet y(t) are A, and A, then the
corresponding time and frequency deviations of ya~Xt-b)) are ad; and Ayfa,
respectively (see Example 2-9). For the wavelet basis function w(a_l(t—b)), the
higher the time resolution (smaller a) is, the worse the frequency resolution.
This suggests that the wavelet basis matches a long-duration signal with low
oscillation or a short-duration signal with high oscillation. Fig. 4-2 illustrates
STFT and WT tiling in the joint time-frequency domain. While the STFT tiling is
linear, the WT tiling is logarithmic.

v A

\j

(0,0 |

i

(a) STFT (b) WT

Fig. 42 Tilings of STFT and WT.

Tt is interesting to note that for wavelet basis function w(a~1(t-d)), the prod-
uct of time resolution aA, and frequency resolution Ay/a is independent of the
scale factor a. This indicates that the wavelet’s function \u(a"l(t—b)) also obeys
the uncertainty principle. Moreover, assume that the mean frequency of the
mother wavelet ‘W(¢) is wy. Then, the mean frequency of \u(a_l(t—b)) is og/a (see
Example 2-9). Consequently, the ratio of frequency- bandwidth 24./a (double
standard deviation in frequency domain) and the mean frequency wp/a is
unchanged with the scale a. That is,

Q :2Am/a=2_A_L0

wy/a Wy
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which naturally links the wavelet transform to the conventional constant Q
analysis. Frequency responses of STFT and WV are plotted in Fig. 4-3 and Fig.
4-4, respectively.

I S(w)!

i i

1(0,0)

Fig. 4-3 Bandwidth of STFT is uniform in frequency domain.

A [S(w)!

| ) i

(0,0)

Fig. 4-4 Bandwidth of WV basis increases as frequencies increase.

In order to get a better feeling about the difference between STFT and WT,
let’s look at a simple example. Suppose that we have a signal that contains two
time pulses and two frequency pulses, such as

3 Jwgt

s(t) = 8(t—t)+8(t-ty)+e" " +e (4.3)

Then its frequency presentation is
S(w) = e e 28 (w - @) + 218(® — w,)

Fig. 4-5 compares STFT and WT for the signal in (4.3). While time and fre-
quency resolutions of STFT are uniform in the entire time-frequency domain,
they vary in WT. At high frequencies, we have better time resolution and bad
frequency resolution. At low frequencies, we have better frequency resolution
and bad time resolution. However, the ratio of bandwidth and center frequency
is constant.
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The square of WT is commonly named scalogram, i.e.,

SCAL(a, b) = |CWT(a, b)|° (4.4)

wp I o / -

oy _—

v

1 tg o
(a) STET (b) WT

Fig. 4-5 Comparison of STFT and WT. (While time and frequency resolutions of S’I.‘FI‘
are uniform in the entire time-frequency domain, they vary in WT. Frequency/time
resolution gets better at low/high frequencies and becomes worse at high/low frequen-
cies.)

It is worthwhile to note that if we only want to analyze the signal and do
not want to recover the original signal based upon the transformations, then the
mother wavelet y(t) in (4.1) could be any functions we like. When the perfect
reconstruction is needed, the selection of the mother wavelet y(¢) will be much
more restricted; it has to satisfy the admissibility condition given by

1)
7 = 2_T.-EJ._..T(BI_-dm<oc» (4.5)

W(w) is the Fourier transform of the mother wavelet y(z). Condition (4.5) implies
¥(0) = 0. In other words, the mother wavelet y(¢) is of bandpass. Once y(¢) meets
the admissibility condition, then the original signal s(¢) can be reconstructed by

C

s(t) = Ciwjji—zcw'r(a, b)q‘;(t;aé)dadb (4.6)

which is named the inverse wavelet transform. {(¢) is a dual function of y(z).
Usually, ¥(#) = y(¢). Like the case of the Gabor expansion, the representation
of continuous-time wavelet is redundant. The original signal could be completely
reconstructed by the sampled CW'T. The resulting presentation is known as the
wavelet series. We shall discuss this issue in more detail in following sections.
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In addition to the properties mentioned earlier, another important feature
of wavelet transform is

[lst)i’de = ELUa“ﬂCWT(a, b)*dadb (4.7)
L2

which says that the weighted energy of the wavelet transform in the joint
time-frequency plane is equal to the energy of the signal in the time domain.
Traditionally, (4.7) is considered the counterpart of the Parseval’s formula for
the Fourier transform. It is worthwhile to note that such a relation in general
does not hold for STFT unless the function y(¢) is badly localized [36].

Finally, because the elementary functions used in STFT are complex har-
monic sinusoidal functions, STFTs usually are complex. On the other hand, WT
are real-valued as long as both signal s(¢) and mother wavelet y(¢) are real. This
makes WT attractive for many applications.

4.2 Piecewise Approximation

The representation of the continuous-time wavelet is redundant. For a given
arbitrary signal, in fact, we can completely characterize it by sampled CWT. Tra-
ditionally, we sample CWT in a dyadic grid, that is,

a=2" b=n2" (4.8)
Substituting (4.8) into (4.1) yields

d, . = CWDQ2 ™ n2™) = 2" [s(t)y*(2"t —n)dt = [s(t)y*p, (t)de

where v, ,,(t) are translated and dilated versions of the mother wavelet function
y(t) given by

m/2

Y o(2) = 2" (2"t - n)
Based on the sampled wavelet transform d,, ,, we can reconstruct the original
signal s(¢) by

oo B

s = Y Y dUmat)= Y Y CWDQ™,n2"02"? ¢ (2 t-n)

m=—ocon = — m=—ocon=-oc

(4.9)

where ¥, , (¢) are dual functions of v, ,(8).
One important issue in wavelet theory is how to determine v, ,(t) as well
as W, , (¢). For the sake of simplicity, let’s limit our discussion to the case where
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Fpn () = Wy o(¢), which implies that {wy, ,(®)} are orthonormal. In this case,
(4.9) becomes

s(t) = i i o Wi, n(8) (4.10)

m = oo n = -0

which is commonly known as a wavelet series. The constants d, , are wavelet
series coefficients and computed by the regular inner products

G =[SOS, (e (4.11)

0) T sl
A i ots \
1 /// T L
Vi
1 - 0
(a) (b)
Avo
g, [
| 3
-1
(c)
A 2020=0()+y(®)
1
I (& OV, =V, ®W,

Fig. 4-6 Piecewise approximation: (a) elementary function of Vo, (b) Vg, () elemen-
tary function of Wy (w(#) that is orthogonal to 6(¢)), (d) Wp, (e) elementary function of
V3, (f) V; can be achieved by the coarse approximation Vj plus the detail Wo.

One popular algorithm of computing the mother wavelet y(?) is based on
the concept of the multiresolution analysis, which was first studied by Mallat
[121] and Meyer [126]. Before introducing abstract descriptions of multiresolu-
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tion analysis, in what follows, let’s first look at a simple example - piecewise
approximation.

As shown in Fig. 4-6b and f, a given arbitrary signal s(¢) can be approxi-
mated at different levels by piecewise constant basis functions. For instance, the
approximation depicted in (b) can be accomplished by translated piecewise con-
stant function ¢(¢) in Fig. 4-6 a, where

bl = { i <l

0 otherwise
By the definition of ¢(¢), translated ¢(¢) are orthogonal to each other, i.e.,

j(p(t—n)(b*(t—n')dt = 8(n-n') forn,n'eZ

We define V) as a space constituted by a set of translated elementary functions
{¢(t-n)}. Then,

s(8) = 3 co n0(2%-n) = Y g 0t - 1) 412)

where cg , represents the weight of the function ¢(¢-n).
Similarly, the approximation plotted in (f) can be accomplished by trans-
lated piecewise constant function ¢(2¢) in Fig. 4-6e, that is

s() =~ 2Y 0, 002"t ~n) = J2X ) ,0(2t-n) (4.13)

where §(2¢) is dilated o(¢). It is interesting to note that ¢(¢) can be written in
terms of ¢(2¢). For example,

o(t) = 0(28) +9(2t - 1) (4.14)

Because the interval of $(2¢) is half that of ¢(¢), the piecewise approximation
illustrated in Fig. 4-6f has smaller error (or say better resolution) than that in
Fig. 4-6b. We define V| as a space determined by a set of translated elementary
functions {21/2¢(2lt—n)}. Accordingly, V,, is a space determined by a set of
translated elementary functions {2 *¢(2"t ~n)} .

Obviously, as intervals of piecewise constant functions 2m26(2™¢) get,
smaller and smaller, the resolution becomes better and better. When m goes to
infinity, the approximation manifestly converges to s(¢). The factor 2™2 ensures
that the basis function 2™26(2™¢—n) has unit energy. When m goes to minus
infinity, the basis function ¢, ,() converges to zero.

It is important to note that as long as the translations of §(t), {d(t-n)}, are
orthonormal, the translations of dilated ¢(t), such as {2m20(2™¢—n)} for a fixed m,
must also be orthonormal, i.e.,

- i“'::“?a




84 Wavelets Chap.4

[ 2 (B0 (D)t = 2" [0(27 -~ n)0*(2"t = ')t
= Jo(e-n)o*(t-n)dt

=d(n-n') VYmeZ i)

o) ()
1A 14—«[
- = 2
1 ;ﬁ .
Aq>(t) f wlt) o(2¢-1)

t |
|
1 ]

Fig. 4-7 The set of (¢(2¢—n)} can be completely represented by the set of {¢(¢-n)} plus
(W(E-n)).

The relation (4.14) shows that low resolution baziz M7 otion o) can be com-
pletely determined by high resolution basis 0(2Z). In other words, V,cV, ;-
Alternatively, as depicted in Fig. 4-7, we can also write high resolution basis
®(2t) by low resolution basis ¢(¢), plus some detailed information determined by
fw(t-n)}. The function y(¢) is defined as

(=3
IA
N
A
Nt —

(4.16)

Bl —
A
o~
A
e

[ 0  otherwise
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Obviously, the translations of y(¢) are orthonormal, i.e.,

[w(t - nyw*@E-n")dt = 8(n-n")
Moreover, y(¢) is orthogonal to ¢(¢), i.e.,

fq)(t —m)y*(t-n)dt = 0
From Fig. 4-7, we can see that

o2ty = TV

and
02t -1) = ¢(t);\u(t)
Let W, be a space that is constituted by the set of {y(¢—n)}. Then, W contains all
translations of y(z), y(t-n).
One most important feature of piecewise approximation is that the high
resolution approximation can be represented in terms of low level resolution plus
some details. The reader can verify that

CiontCpon+ Ci2n=Clon+
s(t)= 23, 002 ~n) = 3R (¢ - ) + =y (- ) (417)

The second term is plotted in Fig. 4-6d, which is in W. The processing described
by (4.17) is commonly remembered by i

V, =V, ® W, (4.18)
1 0

which implies that the subspace W}, is an orthogonal complementary space of V
in V. Obviously, Vo<V, and W, V,. If continuing to carry over the decompo-
sition in (4.18), then we have

Vi=V,oW, =V,® W, oW, =V, ® W, . W,oW, oW, {(4.19)

where the space W, is constituted by {,, ,(£)}.

Because the translations of w(¢) are orthonormal, similar to (4.15), the
translations of dilated w(¢), {2"*w(2™t -n)} = {W,, ,(¢)} for a fixed m, must
also be orthonormal. Moreover, since the space W, is perpendicular to the space
W,,» for m#m' as constructed before, y,, ,() and w,, .(¢) are orthonormal to
each other. That is,

[V (Bt = 272 [y (27t - n)y* (27t~ n)dE = B(m - m)8(n—n)

This relation obviously applies to the function y(¢) defined in (4.16). Fig. 4-8
depicts the case wherem =0 and m'= 1.
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A y(t/2) 4 VO

T 1

i !

Fig. 4-8 {y,, n(t)}is orthonormal.

Note that 2™/2¢(2™t) converges to zero as m goes to minus infinity. In' the
other words, V,, becomes the space with only zero when m approaches minus
infinity. In this case, (4.28) reduces to

V,=..8W,,0W_ ®W, (4.20)
The above decomposition can be generalized to
Vo = o W, OW G0 8W, 0 8W,. Ymed @.21)

As mentioned earlier, we can improve the accuracy of the approximation
simply by reducing the interval of the function 9m2p(2™¢) (that is, increase m).
Therefore,

i for m — e (4.22)

(2"t —n) —>s(t)

m,n
I3

Applying (4.21) and (4.17), we can rewrite (4.22) as

st = 3 Y, d o2 2@ 0} (4.23)

m=—o0 n=-c0

which implies

V.= limV,=.09W,0W 0W,0W ®.. (4.24)

m— o
which is equal o f‘”e whele signal space. Note that (4.23) has exactly the same
form as the wavelet series in (4.10). w(?) defined in (4.16) is actually a Haa}r
wavelet, one of the most well-known wavelet functions. Because {Wp (t)} is
orthonormal, the wavelet series coefficients dpm,n can be readily computed by the
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regular inner product process, such as

d

m,n

= 2™ s(yy* (2"t - n)dt (4.25)

In this section, we see that a Haar wavelet series can be achieved by the
piecewise approximation. Although the Haar wavelet is not suitable for joint
time-frequency analysis due to its poor frequency localizations, the concept
behind piecewise constant approximation is very useful. Based on the piecewise
constant approximation, in the next section, we shall introduce a more general
method, multiresolution analysis, to design mother wavelets.

4.3 Multiresolution Analysis

In this section, we shall generalize the idea of the piecewise approximation dis-
cussed in the preceding section to the so-called multiresolution analysis, then
derive a general algorithm to calculate the mother wavelet y(£).

Let L2 denote the whole signal space with all finite energy signals, thatis,
[ls)Pde <

Let V,,, me Z be a nested subspace of Lot VeV . cL’. The sub-
space sequence V,, is called a MRA (multiresolution analysis) of L? if the
following holds: |
@) s(t)e V,, ifand only if s(2t) e V,, ., forme Z;

(1) The intersection of the sequence V,,, has only zero signal, i.e.,

NV, = {0}

(iii) Any signal in L2 can be approximated by signals in the union of the ',

spaces V,;

(iv) There exists a signal ¢(¢) € V, such that its translation o(t-n), ne Z, *

forms an orthonormal basis of Vj, i.e.,

foyoxt-nydt = 8(n) 4.26)
and for any s(¢) in VY,
s(t) = 3,6,0(t-n)
whers
¢, = Js()o*(t—n)dt

¢(¢) is named a scaling function.
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Obviously, the piecewise approximation example in the previous section is
an MRA. The goal of MRA is to find the orthogonal complementary space W of
Vy in V; and corresponding mother wavelet y(t). Because the mother wavelet
w(t) is closely related to the scaling function ¢(¢), in what follows, we shall start
with the scaling function ¢(¢) and then derive the mother wavelet w(t).

By property (i), if 0(¢/2) e V_ then ¢(¢/2) & V,. From property (iv), there
are constants 2, such that

q>@ = 25h,00 -1 (4.27)

which is named the dilation equation. In the case of the piecewise approximation
example, hg = hy = 1/2, as described in (4.14).
Taking the Fourier transform in both sides of (4.27) yields

jcp@ et = 23 R, [0t -n)e?dt (4.28)
By replacing the integration variables, we can rewrite (4.28) as

2fot)e ™ ds = 2Y h,Jo(te? " Ve = 235 h,e P o) dt (4.29)

In other words,

D(20) = H(0)D(®) (4.30)

O(w) = H(%’)d:(%’) ! (4.31)

where ®(w) denotes the Fourier transform of 0(¢). H(w) is the discrete Fourier
transform of &, which is periodic in frequency. As long as ®(0)#0, H(O) = 1.
This means that H(w) is a lowpass filter. If we continue to carry out such decom-
position, then

ow = A3 jo(3) - BEp(ER(E) - LrGPo v

Without loss of generality, let ©(0) = 1, that is,

or

®0) = [o()dt = 1 (4.33)
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the normalized scaling function ¢(¢). Substituting (4.33) into (4.32) yields

D(w) = kfj[l H (295} (4.34)

Whic}} shows that as long as it satisfies the dilation equation (4.27), the scaling
function ¢(¢) is completely determined by the lowpass type filter H(®). According
to the MRA definition, the translations of ¢(¢) are orthonormal (condition (iv)).
The next question is what this condition implies to H(w).
Because {0(¢—%)} is orthogonal, that is,
[ot)0* (2 - n)dt = 8(n) neZ
by the Parseval’s relationship, we have

Jo(0)0*(0)e?"do = 2n8(n) (4.35)

Taking the summation at both sides with respect to n, we obtain

g_[tb(m)cb*(m)e'jm”dco = n (4.36)
That is,
j@(m)@*(m)ge“f‘“"dm = 2n[®(@)®*(0) Y §(0-2nm)do = 21 (4.57)
Therefore,
%;o(mzkmlz =1 Yo (4.38)

Substituting (4.31) into (4.38) yields

2

§,|<1>((D+2la’,n)|2 - %IH(®+22k1t)q)(w +22k7t)

2

= %tH(%) + kn)dD(%) + kTC)
— niwzﬁ{% + E/m)@{g + Znn} 3 + ngw!H(% F{(2n + 1)75)@(% +(2n+1 )n) g
e (4.39)

where we partition the variable % into even and odd parts. Because H(w) is peri-
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odic in frequency, that is, H(w) = H(w+2n), the identity (4.39) reduces to

(3] 2

n=-oco

2
(D(§+(2n+l)nj =1 (a4

)
(D@ + 2nnj +

H(%-)+thz i

n=-oo

By the relation (4.38), the identity (4.40) becomes
H(o)H*(0)+ H(o + )H* (0 +1) = 1 Y o (4.41)

As shown earlier, H(0) = 1, therefore (4.41) implies that H(r)=0.

So far, we have proved that the orthonormal scaling function ®(¢) can be
generated by a lowpass filter H(»), in which H(0) = 1 and H(r) = 0. To compute
the mother wavelet, let’s introduce another function G(w) so that

H(0)G*(0) + Ho+n)G*(w+m) = 0 (4.42)

The pair of H(w) and G(w) is named quadrature mirror filters for MRA. One solu-
tion of (4.42) is

G(w) = -7 °H*(0 + ) (4.43)

Substituting H(0) = 1'and H(x) = 0 into (4.43) yields G(0) =0 and G(r) = 1, respec-
tively. This means that G(w) is a highpass filter. From (4.43), the inverse Fourier
transform of G(w) can be computed as

gy= BEYRy g (4.44)
Assume that y(¢) is a function whose Fourier transform Y(w) satisfies

(g = G( %}D@) = G(%J)TT H(E’;) (4.45)

Then the corresponding time relationship is
w(t) = 238,02t~ k) (4.46)
k

One can prove (see [36] and [121]) that under minor conditions on H(w), y(t—n)
for all integers n form an orthonormal basis for the orthogonal complementary
space Wy of Vg in Vy,ie., V, = Vi @ Wy,

Because the translations of y(¢), (w(t—n)}, forms an orthonormal space Wo,
similar to (4.15), the translations of dilated w(t), (W, ,(®)} for a fixed m, must also
form an orthonormal basis for the orthogonal complimentary space W, of ¥V, in
V ns1- By properties (i) to (iii),

L= .. eW, oW,o..

Therefore, the dilations and translations ,, ,() of w(¢) form an orthonormal
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basis for the signal space L2. This means that for any signal s(¢), we have

sy = Dos X G, o Vo)

m=-con=—o0

where
oy = I (0

which is exactly what we want. Therefore, w(¢) is the mother wavelet. The con-
stants d,, , are wavelet series coefficients.

Examplie 4-1 Haar wavelet

1
H(w) = 2(1 +exp{—jo}) (4.47)

Because H(0) = 1 and H(n) = 0, H(®) in (4.47) is lowpass. From (4.32), the Fourier
transform of the scaling function is

S & kf:[IH(zf’,;) i) ;[1 . exp{—j:j%}J

k=1

E Lo |l .o o)
IT expi gy 5| €XPyJ w1t OXPy U g
k=1 2 2 2

il
1)
>
he
—
L.
IS
Je
o S
&
S
w
S~
1
N

= exp{—~jo/2} [] cos(zk-o%)
k=1
Because”

ﬁ COS( 0] )_ sin®/2
T Sl i ‘(,0/2

" See formula 1.439, p. 38, “Table of Integrals, Series, and Products,” by I.S. Gradshteyn and
I.M. Ryshik, Academic Press, New York and London, 1965.
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we have

: inw/2
o(w) = eXp{—]w/Z}S—lg—/T- (4.48)

From (4.43), the highpass filter corresponding to H(®) in (4.47) is
1 ;
G(®) = —exp{Jo}H*(w+7) = i(l —exp{—jo}) (4.49)

Obviously, H(®w) and G(®) constitute quadrature mirror filters, deﬁned. earlier. By
(4.45) and (4.49), we can compute the Fourier transform of the wavelet, i.e.,

o) - 6(3)0(3) - 5 - exe{5] o5} 0"

1 .0 3 sinw/4 .
Ik Y (e ik A vz (4.50)
The magnitude is
\(2sinw/4\? _ : z(Zsinw/4)2
[¥(w) = A/’Z(l—cosi)(—a———) = A/(2s1n(1)/4) =
_ (sinu)/4)2 (4.51)

- /4

which is sketched in Fig. 4-9.

70 /\
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Fig. 4-9 |'W(w)!. (Haar wavelet possesses strong ripples in the frequency domain.)
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The inverse Fourier transform of W(w) is

—
=
IN
o~
A

DO =

w(t) = (4.52)

IN
o~
N

—

[T

0 otherwise

which is exactly the Haar wavelet. The corresponding time domain scaling function
and Haar wavelet are illustrated in Fig. 4-10. Although the Haar wavelet is com-
pactly supported in time, it has strong ripples in the frequency domain. Therefore,
the Haar wavelet is not suitable for joint time-frequency analysis.

A o) A VO

L. I1/2‘ -
' i
|
i

. .

Fig. 4-10 Haar scaling function ¢(¢) and wavelet y(z). (Haar wavelet is compactly sup-
ported in the time domain.)

By a similar procedure, the reader can compute a mother wavelet based on
the ideal lowpass filter

b

o<

H(w) = (4.53)

0 otherwise

The resulting wavelet is called a sinc wavelet.

Except for a few cases, however, the analytical solutions of ¢(¢) and w(z) for
a given lowpass filter in general do not exist. Very often, ¢(¢) and y(z) have to be
determined numerically. Fig. 4-11 illustrates a Daubechies wavelet and corre-
sponding scaling function, in which the lowpass filter is

hk = g s 3 ] "”'g“" T S

The main features of Daubechies wavelets are that they are smooth and com-
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pactly supported in time domain. As the order of the lowpass filter gets larger,
the wavelets tends to be smoother. At the same time, the time support region
becomes wider.

In short, both scaling function ¢(¢) arrd mother wavelet () can be gener-
ated from a pair of quadrature mirror filters H(®w) and G(®). In addition to H(r) =
G(0) = 0 and H(0) = G(n) = 1, we can impose other conditions to lowpass filters.
The most basic requirement for the scaling and mother wavelet is smoothness.
This is usually achieved by imposing the vanishing of derivatives of lowpass fil-
ter H(w) at 7 up to a certain order. The reader can find excellent descriptions of
quadrature mirror filter design in [168], {179], and [180].
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(c) Daubechies wavelet y(¢) (d) I'¥(w)!
Fig. 4—11 Daubechies wavelet

4.4 Discrete Wavelet Transformation and Digital Filter
Banks

In the last three sections, we introduce the wavelet transformation for continu-
ous-time signals. As a matter of fact, the majority of signals encountered in our
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everyday life are the functions of discrete-time. Therefore, it is important for us
to investigate the wavelet transform for discrete-time samples. The main issue
here is that the discrete version of a wavelet cannot be obtained by simply

‘replacing ¢ with the discrete-time index i (4.10). This is because the analytic

mother wavelets y(¢) do not exist in general. Moreover, the quantity 27 does not
remain an integer for m < 0. Hence, special care has to be taken when we develop
the discrete wavelet transformation.

Based upon our previous discussions, we could conclude that if the signal
s(¢) is in V}, for finite %, then s(¢) should be completely determined by

oo

s(t) = Z ChnOr o () (4.54)

n = —oo

Because V, = V,_ @ W, _,, (4.54) can be rewritten as

-1

s(t) = }:Cmo 2Pmg,n(2) + 2 2 G, 1V 8 k>m, (4.55)
m=mg n

Coefficients c,,, and d,, are inner products between s(t) and ¢,,,(t), and
Wi, (£ respectively. Therefore, the constants dp,n, are wavelet series coe}‘ﬁczents
By the Parseval’s equality, we have

en = 22 502 mydt = =2 S(@@* (2 we? do  (4.56)
For a normalized ¢(¢) (see (4.33)), that is, ®(0) = 1, (4.56) reduces to

cn=k
¢ ,;:iz‘k/z,[ Sraye ™ e = 5 ;’-‘Ej (4.57)

for a larve k. This means that c; , is approximately equal to the sample of s(¢) at

t = 27%n with a scale 272, The higher the resolution is (that is, larger k&), the

smaller the error. The reader can find detailed error analysis in [192] and [193].
Without loss of generality, let

Chn = sl = 5@ i
Because
G JS(LL)KJPE il = (k-l)/ﬁJ‘ (t)‘i)*ﬂt Zant
/
I Z(k‘1)/2js(t)2zhi¢*(2kt_2n_i)dt (4.59)

where we use the relation described in (4.27). By exchanging the summation and
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integration, (4.59) becomes
Clrpiis ﬁzhijs(t)‘?*k.znn(t)di = ﬁzhick.2n+i = ﬁzhi—znck,i (4.60)

which implies that once ¢ ,, is known, we can recursively compute Cm,n» for m <
k, by a lowpass filter H(w). Fxg 4-12 illustrates the operation in (4.60), where the
block following the lowpass filter denotes downsampling by two.

w2 o

Fig. 4-12 Low resolution coefficients c;_ 1,» €an be recursively computed by lowpassing
high resolution coefficients ¢y, ,.

Ck,n

Similarly,‘ we can prove that
di_in = 2381 20k (4.61)

where &k is defined in (4.44), which is a highpass filter. Note that d,, , are wave-
let series coefficients. Eqs.(4.60) and (4.61) imply that d,,, , can be obtained by fil-
ter banks, as illustrated in Fig. 4~13. The output of highpass filters are wavelet
series coefficients d,, ,. It is interesting to note that for discrete-time samples,
the wavelet transform can be accomplished by directly applying filter banks,
without computing mother wavelet function w(z).

Cmo,n
; - H O Y 2
Ck-2,n
* G Mot 1! dmO,n
sf] | dion -..@-‘L
—> V2>

ooy 2R

Fig. 4-13 Implementation of discrete wavelet transform via digital filter banks.

The relations (4.60) and (4.61) show that, given high-resolution coefficients,
we can directly compute the low-resolution coefficients. Conversely, we can com-
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pute the high-resolution coefficients based upon the low-resolution coefficients,
ie.,

n = ﬁ(zhn-2i0m~x,i+Z€n—2idm-1.i) (4.62)
Y 14

which implies that we can recover the original signal s[i] by filter banks, as illus-
trated in Fig. 4-14.

¥ A

dmO,n
=

H(w) s{i]
-

dyr, >k 2H 6

Fig. 414 The original sample can be recovered by digital filter banks.
PROOF
From (4.60) and (4.61), the right side of (4.62) can be written as

ﬁ(zhn—ﬁcm-l.i o Zgn—zidm— |.;)

i 13

2(27% —2izhk—2icm‘k * Zgn—Zi;gk ~2iCm, k)
i

22::,,z ..Y(h TR T

R=-2i"%%-2i -

i

"

k
2§CM.k2(hn caitt it (D PRt naaihy g0 (4.63)

where we use the relation described in (4.44). In order to have (4.62), we
have to prove that

23 (ki gihi i+ (<D PRy ik g ) = 8k -n) (4.64)

There are two cases: n+k is odd and n+k is even. When n+k is odd, i.e., n+k
= 2p+1, for an integer p, the left side of (4.64) reduces to

SR
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Summary

In this section, we introduced the concept of wavelet transformation, which is t
closely related to the conventional constant Q analysis. Unlike the STFT, where
we can virtually use any function as a window function, to a complete reconstruc-
tion the mother wavelet has to satisfy certain conditions. Therefore, one funda- l
mental issue in wavelet analysis is the selection of the mother wavelet w(t). For u
the sake of simplicity, we focused our discugsions on orthonormal wavelets”. In
these cases, the mother wavelet can be generated via multiresolution analysis
structure. That is, from Eq.(4.45) ‘

zz(hn—zih(2p+l)—n—zi*hl—n¢2ihl-—(2p+l)&n«vlz')
i

S i zzhn—Zih2p+l»n~2£~22hn +2i—2ph2i—n+l
[ H
i 2Zh2i+nh2i+2p+l~n—2zh2i+nh2i+2p+l—n =0 (465)
: [

When n+k is even, i.e., n+k = 2p, for an integer p, the left side of (4.65)
reduces to

‘ W\, (© W) v ®)
o= (3 o3
zi(hn—Zith‘u—2i+hl—n+2ihl-2p+n+21') 5 . . . k=2 2 )

i

where ©(w) denotes the scaling function. H(®) and G(®) represent a pair of low- k

pass and highpass filters of quadrature mirror filters. Consequently, the problem

of selecting the mother wavelet reduces to the design of quadrature mirror fil-

ters. For a discrete-time signal, we don’t even need to explicitly calculate the |

mother wavelet y(t). The wavelet transform d,, ,, could be well approximated by [

digital filter banks. !
As we know, wavelets is a very broad topic. What is presented in this chap-

ter is the most fundamental. We only address the orthonormal bases imple- [

mented by means of digital filter banks. The reader can find more -

comprehensive materials in [24], [35], [168], [180], and [186].

i

2Zh2i+nh2i +2p—n * 2Zh21+ l»nh’l(i—p)+ l+n
‘ :

1

2Zh2i+nh2i+2p—~n *zzhznz 21 iP5 i
i 3 4

i

22h2i+nh2i02p—n+22h2i+1+2p—nh2i+l+n i (4-66)
5 i

Because 2/ is even and 2i+1 is odd, we can group two summations in (4.66)
into

Zzhi+nhi1—2p—n = 2Zhihi+2p—2n = 2zhihi+2(p—n) (4.67)

LT

barverrge s e e

Because the lowpass filter H(w) satisfies Eq.(4.41), i.e.,

H(o)H*(0) +H(o+t)H*(0+ 1) = |

Taking the inverse Fourier transform at both sides yields

2X hiki s, = 8(n) (4.68)

(s

for all integers n. Substituting (4.68) into (4.67) leads to

thihnz(p»,—‘; =8p-n) =8(k-n) (4.69)

i
=

Hence,
i

Cm,n = ﬁf\}:hn-ucm- Li¥ ngz:'dm« l.ij

B i

* The theory developed in this chapter could be generalized to biorthogonal wavelets. For
example, the biorthogonal wavelets and corresponding wavelet coefficients could also be
approximated by the digital filter banks.




;
i
1
4

-
ry 4

A

§ mrem—t
Y :

&am@

&

CHAPTER5

Wigner-Ville Distribution

The representations that describe a sig-
nal’s frequency behavior fall predominantly into two categories: linear represen-
tations such as the Fourier transform and quadratic representations such as the
power spectrum. Previously we described the linear joint time-frequency repre-
sentations, the short-time Fourier transform, the Gabor expansion (which can be
considered an inverse of a sampled short-time Fourier transform), as well as
wavelets. In Chapters 5, 6, 7, and 8, we will introduce the counterpart to the
power spectrum: the quadratic, or bilinear, joint time-frequency representation.
Although dozens of bilinear joint time-frequency representations have been pro-
posed over the last five decades, we shall start with the Wigner-Ville distribution
because it is simple and powerful.

In Sections 5.1 and 5.2, we discuss the motivation and general properties of
the Wigner-Ville distribution. What makes the Wigner-Ville distribution so
unique are its descriptions of a signal’s time-varying nature better than many
other representations, such as STET spectrogram and scalogram (the square of
the wavelet transform), which are known in the area of joint time-frequency
analysis. Moreover, the Wigner-Ville distribution possesses many properties use-
ful for signal analysis. The problems of the Wigner-Ville distribution have been
the so-called cross-term’ interference that severely limits the applications of the

" The cross-term in fact is not an appropriate phrase to describe the unwanted terms appear-
ing in the Wigner-Ville distribution, though it is used in almost all literature. We shall clarify
it in Chapter 7.
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Wigner-Ville distribution. Therefore, a major research effort has existed to find
time-frequency representations that preserve the properties of the Wigner-Ville
distribution but have reduced cross-term interference. Such a joint time-fre-
quency representation is the focus of the rest of Part 2. In Section 5.3, we investi-
gate the cause and effect of the cross-term interference. In Section 5.4, we
address the relationships between Wigner-Ville distribution and STFT spectro-
gram and scalogram, respectively. Section 5.5 is devoted to the smoothed
Wigner-Ville distribution and Wigner-Ville distribution of analytic signals. Both
of them are traditionally used for cross-term interference reduction. Although
they have certain limitations, they are simple and effective for many real appli-
cations. Finally, in Section 5.6, we discuss the numerical implementation issue of
the Wigner-Ville distribution.

Wigner-Ville distribution has been known for many years. What we discuss
in this chapter are only those aspects which are closely related to our future
developments. The reader can find more comprehensive treatments of Wigner-
Ville distribution in [25], [133], [134], and [135].

5.1 Time-Dependent Power Spectrum

The square of the Fourier transform is called the power spectrum, which charac-
terizes the signal’s energy distribution in the frequency domain. While the Fou-
rier transform is linear, the power spectrum is the quadratic function of
frequencies. Accordingly, we also use the square of short-time Fourier transform
and wavelet transform to describe the signal’s energy distribution in joint time-
frequency domain. The squares of short-time Fourier transform and wavelet
transform are named STFT spectrogram and scalogram, respectively. As dis-
cussed in previous chapters, the results obtained -from STFT spectrogram and
scalogram are subject to the selection of analysis functions. To overcome those
problems, in the present chapter we shall introduce a more general method of
describing the signal’s energy distribution in joint time-frequency domain.
According to the Wiener-Khinchin theorem, the power spectrum can also be
considered as the Fourier transform of the auto-correlation function R(1),1e.,

PS(t,0) = S(o)I’ = [R(1)exp{~jot}dt (5.1)

where R(1) is computed by
R(1) = fs(t)s*(t-1)dt (5.2)
Eq. (5.1) is not a function of time, which indicates how much energy is present in
frequency o over the entire time period. But it does not show how the spectrum
1s distributed in time. Based on (5.1), there is no way to tell' whether or not a sig-

nal’s power spectrum changes over time. Therefore, the standard power spec-
trum is inadequate to depict signals whose frequency contents evolve with time,

5.1 Time-Dependent Power Spectrum 1038

such as most biomedical signals, speech signals, stock indexes, and vibration sig-
nals.

By examining (5.1), we can see that one possible way to depict a time-
dependent spectrum is to make the auto-correlation function time-dependent.
The resulting Fourier transform of the time-dependent auto-correlation function
R(¢,7), with respect to variable 1,1s then a function of time, i.e.,

P(t,®) = [R(t, 1)exp{-jot}dt (5.3)

We name P(t,0) a time-dependent power spectrum. The question that remains is
how to determine the time-dependent auto-correlation function R(2,1).
Apparently, the choice of R(¢,7) is not arbitrary. For example, because P(¢,m)
presumably describes the time-dependent power spectrum, adding all instanta-
neous-time spectrum P(¢,,0) should yield the total power spectrum | S(w) |2, le.,

[Pt wydt = |S() (5.4)

which is traditionally called the frequency marginal condition. Conversely, the
integration along the frequency axis should be equal to the instantaneous
energy, 1.e.,

]
z—an(t, ®)do = |s()] (5.5)

which is commonly known as the time marginal condition. If P(t,w) represents
signal energy distribution in the joint time-frequency domain, then we hope it is
real-valued, that is,

P(t,0) = P*(t, ») (5.6)

From the conventional energy concept, we also wish that the time-dependent
spectrum would be non-negative.

Most importantly, however, we need to ensure that P(¢,00) indeed identifies
the signal's frequency content changes. This is the primary motivation of joint
time-frequency analysis and it also is the most difficult property to justify. For
linear representations, such as short-time Fourier transform and wavelet trans-
form, the goodness of the representation can simply be judged by the concentra-
tion of elementary functions (or the finesse of tick marks). The higher the
elementary functions are concentrated, the better the proposed representation
describes a signal’s local behaviors. Unfortunately, it is not the case for the time-
dependent spectrum. For most time-dependent spectra, there are no explicit ele-
mentary functions. We shall introduce a criterion that is widely employed for sig-
nal processing after examining some examples in the next section.

The most popular time-dependent spectrum is STFT spectrogram. In addi-
tion to being the square of shori-time Fourier transform, STFT spectrogram can
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also be written as the Fourier transform of time-dependent auto-correlation
function R(¢,t), where

Rt 1) = %IJASUS,T)AY(@,r)exp{jﬂt}dl‘) (5.7)

where A (0,1) represents the ambiguity functions of signal s(z). A7) is the
ambiguity function of the analysis window Y(t). Let’s leave the proof of (5.7) until
Chapter 6. What the reader should bear in mind is that STFT spectrogram only
satisfies (5.6). It does not satisfy frequency marginal (5.4) and time marginal
(5.5) conditions. The resolution of the STFT spectrogram is subject to the selec-
tion of the analysis window function ¥(z).

Much research over the last five decades has focused on the time-dependent
spectrum. The methodology of discovering the desired time-dependent auto-cor-
relation functions R(t,7) has been a major development in this area. The reader
can find a comprehensive review of this subject in [32]. We shall not delve into
those details here, but rather introduce the results that have been well estab-
lished, such as the Wigner-Ville distribution.

The Wigner™ distribution [187] was originally developed for the area of
quantum mechanics in 1932 and was introduced for signal analysis by a French
scientist Ville [181] 15 years later. It is now commonly known in the signal pro-
cessing community as the Wigner-Ville distribution (WVD).

In the WVD, the time-dependent auto-correlation function is chosen to be

1 T
R(t,7) = s(t+ z)s*(t—i) (5.8)
Substituting the above time-dependent auto-correlation into (5.3) yields
% T ;
WVD, (¢, w) = fs(z+§)s*(t-§>exp{—Jw1}dI (5.9)

Eq.(56.9) is usually called the auto-WVD. Accordingly, the cross-WVD is defined
as

WVD, (¢, w) = J.s(t+;)g*(t—§)exp{—jm1}dr (5.10)

* Bugene P. Wigner was born on November 17, 1902, in Budapest, Hungary. He attended
Budapest Lutheran High School, where he met John von Neumann (1903-1957). At age 23,
Wigner received his doctorate in chemical engineering. He first came to the United States in
1930 as a lecturer in mathematics at Princeton, where he spent most of his career. He worked
on a series of projects during World War II, including the Manhattan Project. On December 10,
1963, Eugene Wigner, with Maria Goeppert Mayer and J. Hans D. Jensen, received the Nobel
Prize for their discoveries concerning the theory of the atomic nucleus and elementary parti-
cles, which were based on atomic research that had been conducted during the first three
decades of the twentieth century. Wigner laid the groundwork for the revision of concepts con-
cerning right-left symmetry by Chen Ning Yang and Tsung-Dao Lee, who won the Nobel Prize
in 1957. Wigner’s sister, Margaret married Paul Dirac, the brilliant Nobel laureate, whom
Wigner always described as “my famous brother-in-law.”
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where s(t) and g(¢) denote two different signals. It is easier to verify that

WVDS’g(t, ) = WVD*, (¢, ) (5.11)
Consequently,

WVD,(t, ®)

WVD*(¢, ©) (5.12)

which implies that the auto-WVD is real-valued.

i

Jo

&=

Fig. 5-1 The WVD of the Gaussian function is concentrated at (0,0). The parameter o
controls the spread of WVD in time and frequency domains. The area of the ellipse
where the levels are down to e’ of their peak value is A = 7, which is half the size of
STFT.

Example 5-1 WVD with Gaussian-type analysis

function
1
/a\x_i o 2
s(t) = (7 ) expi-5t (5.13)
s(¢) is a normalized Gaussian function which has a unit energy. The corresponding

WVD is

2 2
WVD, (z, 0) = J%jexp{—%[[t + g) + (t - ;) }}exp{—jw‘c}dT
exp{~at2}/\/%jexp{~%12}exp{—j(ﬂ”c}d‘c

Zexp{{atz " émz}} (5.14)

which indicates that the WVD of the Gaussian function is concentrated at the origin
(0,0), a signal’s time and frequency center. The parameter o controls the spread of

|

I
l
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WVD in time and frequency domain. A larger value of o leads to less spread in the
time domain but large spread in the frequency domains, or vice versa. The contour
plot of the WVD consists of concentric ellipses. The contour for the case where the
levels are down to e of their peak value is the ellipse indicated in Fig. 5-1. The
area of this particular level ellipse is . Compared to the STFT spectrogram in
Example 3-1, the resolution of WVD is fixed, in which there is no window effect. For
the STFT, the minimum area of the ellipse where the levels are down to el of their
peak value is A = 27, which is twice as big as that of the WVD. In other words, the
resolution of WVD is twice as good as that of a STFT spectrogram, if we use the area
A as a measure. Moreover, the reader can easily verify that (5.14) satisfies both time
and frequency marginal conditions.

In addition to the formulae (5.9) and (5.10), the WVD can also be computed
from the frequency domain. Let

s(7) = S(t+%) and g,(1) = g*(t_g)

Then, the corresponding Fourier transforms are
5,(1) o S,(0) = 2520)e’ > and  g,(1) o G,(0) = 2G*20)e?*™
Based on the convolution theorem, (5.10) could be written as
1 T ;
WVDS,g(t, W) = fs(t + i)g*(t - i)eXp {~jo1}dr
= jsl(t)gl(r)exp{-jmr}dr
=S5,(0)®G(0)
4 ’ -
= = [SCw)G* 20 - 200"V dy
Let 200 = o + /2, then,
1 Q Q :
WVD, (¢, @) = z—ijs(w + 7)G*(w~ 7)exp (jQt1dQ (5.15)

where S(w) denotes the Fourier transform of s(t) and G(w) denotes the Fourier
transform of g(¢). The corresponding auto-WVD is

1 (oh o Q .
WVD,(t, @) = ﬁjs(m -??)S*(w— —ijexp{JQf}dQ (5.16)
Eqs.(5.16) and (5.9) indicate that the WVD is symmetric in the time and fre-
quency domains. Consequently, a property derived from (5.9) always has the
dual property in the frequency domain.
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5.2 General Properties of Wigner-Ville Distribution

In the preceding section, we introduced the concept of time-dependent spectrum
and the Wigner-Ville distribution. Compared to STFT, the WVD not only has a
better resolution, but also does not suffer the window effects. In what follows,
we shall investigate the WVD in more detail.

Time-Shift Invariant: If the WVD of signal s(¢) is WVD(¢,0), then the WVD of
the time-shifted version sy(t) = s(¢t) is a time-shifted WVD of s(2), i.e.,

WVD, (2, ©) = WVD(2 - ¢), ©) (5.17)
Frequency Modulation Invariant: If the WVD of signal s(t) is WVD,(¢,0),

then the WVD of the frequency-modulated version so(t) = s(t)expljmgt} is a fre-
quency-shifted WVD of s(¢), i.e.,

WVD (¢, 0) = WVD (¢, © - @) (5.18)
Time Marginal Condition:
1 jWVD s s '[ T . T 1 J' .
o [t o)do = s(t+ i)s (t— i)fr exp{—jot}dodt
T . T 2
= [s{t+3Jo(e-3 oz = Isco (5.19)
Frequency Marginal Condition:
fWVDS(t, w)dt = ”s(t + %)S*(t - ;)exp{ﬁ'mr}dtdr
= fexp{—jmr}js(t)s*(t -1)didt

= fexp{—ij}R(I)dt = {S(m)!z

Because the WVD satisfies both time and frequency marginal conditions, we can
readily determine from Parseval’s relation that

I 1
5=/ JWVD, (¢ 0)dwdt = —[IS(0)do = [ls@)dt (5.20)

which says that the energy contained in WVD(,0) is equal to the energy pos-
sessed by the original signal s(#).
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Example 5-2 WVD of linear chirp signal with
Gaussian envelope

1

s() = (%JAexp{— %t2+j[3t2} (5.21)

which is the linear chirp signal with the Gaussian envelope, the first derivative of
the phase ¢'(t) = 2B¢ that linearly increases with time. The WVD is

WVD,(t, ®) = exp{—atz}ﬁjexp{—%f}exp{—j(a)—2Bt)r}d1

= 2exp{—[o¢t2 + é(m_ 2&)2}} (5.22)

which is plotted in Fig. 5-2.

Fig. 5-2 WVD of linear chirp with Gaussian envelope is concentrated at o = 2B¢.

If we consider (5.22) as the linear chirp energy distribution in the joint
time-frequency domain, then the conditional mean frequency of (5.22) naturally
is a measure of a mean instantaneous frequency, that is,

2inj<o WVD, (¢, o)da zinjco WVD, (¢, 0)do
(W), = ; = o (5.23)
= [ WVD(t, w)do Is(®)]
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which indicates the center of the spectrum at time instant ¢. Substifuting (5.22)
into (5.23) obtains

%exp{atz}fmexp{—é(oo - 2{31&)2}(103

(o), = = 2Pt 5.24
K Is(2)|” i B

Note that the right side of (5.24) is exactly the first derivative of the signal’s
phase, that is,

(), = 2Bt = ¢'(2) (5.25)

Therefore, the first derivative of the signal’s phase reflects the mean instanta-
neous frequency. Eq. (5.25) describes a very important property of the WVD.

As a matter of fact, the relationship (5.25) not only holds for Example
Example 5-2 but also for arbitrary signals. Therefore, we name the formula
(56.25) an instantaneous frequency property.

Instantaneous Frequency Property: Let s(t) = At)exp{jo(t)}, where magni-
tude A(¢) and phase ¢(¢) both are real-valued functions. Then,

10 %J.mWVDS(t, w)do z%meVDS(t, ®)do
i i ¥
717-{ [WvD(z, w)dw A@I”

= 0'(t) (5.26)

which says that, at time instant ¢, the mean instantaneous frequency of WVD is
equal to the mean instantaneous frequency of the analyzed signal.

PROOF

%jw WVD(t, 0)do = (%rjzjejmfcos(w + %)S*(w = %)dmdfz (5.27)
Let

H(w) = (oS((o+ %J and Gw) = S(@—% _

Based on derivative property (2.34) and shifting property (2.23), we have

CQ
h(t) = aj%[s(t)exp{ﬂft}] and g(t) = s(t)exp{j—gz—zt}
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Applying Parseval’s formula (2.39), we can rewrite (5.27) as

1 1 i il i —ja
chJwWVDs(t’ w)dow = 7 ejmj{—jaz[s(a)e o Q/2]5*(01)2 o Q/z}dadQ

1¢ Q a0 d
ﬁj'ejmj{~§—|s(a)|ze J Q—]e E Qs*(a)ﬁs(t)}dadQ

2]1.['[ JQtJ__|S(a)l~ JagdadQ'——JS*(a) S(l‘)J’e']Q(t a)de

=2 ls(@)e?* dad@ - js*(a) s ) G2

il

Applying the convolution theorem, the first term becomes
___fQ fjs (@) e 7 dadR = 5= [Qe’¥(S(Q) © S(@)1d0
T
193]
- EJS(b)ﬁjQS*(Q—b)e’ dQdb
- d bt
= 2[S(b)ls* (1)’ db
= ljjS(b)[ ioed s*(t)+]bs*(t)ejbt]

= S(t)—s () +3% S’“(t) S(t) (5.29)
Substituting (5.29) into (5.28) obtains

_l_r( WVD(t, 0)do = _—j[s(t)is*(f)+s*(i)is(t‘)} = Ao @) (5.30)
G MBS e e e’ ;

Replacing the numerator in (5.26) by (5.30), we can readily obtain the
instantaneous frequency property.

Traditionally, we use the instantaneous frequency property (5.26) to evalu-
ate whether or not the time-dependent spectrum reflects the signal’s frequency
content changes. For the desired time-dependent spectrum, we usually hope that

f@P(t, w)do
—_— = (1) (5.31)

jP(t, ®w)dw

where s(t) = A(t)exp{jo)}. Note that neither the STFT spectrogram nor scalo-
gram satisfy (5.31).

5.2 General Properties of Wigner-Ville Distribution i 1

Eqgs.(5.14) and (5.22) show that, at any time instant ¢, there is more than one
frequency component. In other words, the instantaneous frequency is not a sin-
gle value function of time. Signal energy spreads with respect to the mean
instantaneous frequencies. The instantaneous bandwidth is not equal to zero. As
a matter of fact, this not only is true for Examples Example 5-1 and Example 5—
2, but also holds for any signals whose energy is finite". Therefore, the next
interesting question is, what is the instantaneous bandwidth? Or, how does the
signal’s energy spread with respect to the mean instantaneous frequency @'(¢)?
Because the WVD in (5.14) and (5.22) are non-negative. We can use the concept of
a conditional variance to measure the instantaneous bandwidth. For example,

J(@= (), WVD(t, 0)da
WD, w)do

2
t

%exp{—atz}J(w - (w)t)zexp{—é(m = ZBt)Q}dm

ol Q

ls(2)

which indicates that the energy spread is independent of time.

Unfortunately, except in a few cases, in general the WVD could go to nega-
tive. Consequently, we cannot simply apply the conventional variance concept to
measure the instantaneous bandwidth. When a WVD is negative, its conditional
variance (or signal’s energy spread) may become negative too, which obviously
does not make sense. In this case, special care has to be taken when the instan-
taneous bandwidth is evaluated.

Group Delay Property: Assume that the Fourier transform of signal s(#) is
S(w) = Blw)exp{jw(®)). Then, the first derivative of the phase y'()is called the
group delay. For Wigner-Ville distribution, we have

[tWvDt, @)dt [t WVD(2, w)dt
= = 27ty () (5.32)
JWVD,(t, 0)dt 1S(w)*

which says that the conditional mean time of WVD is equal to the ‘group delay.
We leave the proof for the reader to practice.

It is important to note that most useful properties of the WVD are deter-
mined by averaging the WVD. For instance, the time marginal condition is
obtained by averaging the WVD over the frequency. The instantaneous fre-
quency property (5.26) is the conditional frequency average. This suggests that

" As introduced in Section 2.4, the frequency bandwidth is determined by variations of the
phase as well as magnitude. Zero instantaneous bandwidth requires no magnitude variations.
In other words, the magnitude has to be constant In this case, the resulting signal’s energy is
unbounded, such as exp{jMot} and exp{/(lt e
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the properties that are useful to signal processing will be mainly determined by
the smooth portions. Because the average of the high oscillation portion is small,
the highly oscillated portion will have limited influence on the useful properties.
This is a very important observation which leads to an improved time-dependent
spectrum, time-frequency distribution series. We shall discuss this subject a
great deal in Chapter 7.

Although many other time-dependent spectrum schemes claim to preserve
all useful properties of the WVD, none of them has such desired representation
for the signal with the Gaussian envelope as does the WVD in (5.14) and (5.22).
They may satisfy the marginal conditions and instantaneous frequency property,
but they have negative values and are not as concentrated as (5.14) and (5.22).

Finally, as in the case of the short-time Fourier transformation, not all
time-frequency functions P(t,w) can be the Wigner-Ville distribution. For exam-
ple,

[t <ty and |0 <o,

By & { ! (5.33)
0

otherwise

will not be a valid Wigner-Ville distribution, because no signal can be time and
frequency limited simultaneously.

5.3 WVD of Sum of Multiple Signals

As introduced in the preceding sections, the Wigner-Ville distribution not only
possesses many useful properties, but also has better resolution than the STFT
spectrogram. Although the WVD has existed for a long time, its applications are
very limited. One main deficiency of the WVD is the so-called cross-term inter-
ference. For s(¢) = s1(£) + so(¢), the WVD is

WVD(t, w) = WVD (¢, @) + WVD, (¢, ©) + 2Re{ WVD,; (¢, ®)} (5.34)

which shows that the WVD of the sum of two signals is not the sum of their
respective WVDs. In addition to two auto-terms, (5.34) contains one cross-term
WVD,q oo(t,0). Because the cross-term usually oscillates and its magnitude is
twice as large as that of the auto-terms, it often obscures the useful time-depen-
dent spectrum patterns. How to reduce the cross-term interference without
destroying the useful properties of the WVD has been very important to time-fre-
quency analysis. This will also be the focus of the rest of Part 2. Before introduc-
ing various joint time-frequency representation schemes, let’s look at a couple of
examples to get a better idea about the cross-term interference.

|

i
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|

Example 5-3 WVD of complex sinusoidal signals

When s(2) is a single complex sinusoidal signal, for instance, s(¢) = expljmgt), we have
|

WVD, (¢, ®) = jexp{jmo(t + % ~t+ g)}exp {votidt = 2n8(w - ) | (5.35)1

which shows that the WVD is concentrated at frequency ®. This is exactly what we]
expected. When s(¢) consists of the sum of two complex sinusoidal signals, such asi
5(¢) = exp(jo;£)+exp(ji,t), the conventional power spectrum is

PS(w) = 2n8(w,) + 2n8(v,) (5.36) ]
The WVD is l

WVD, (¢, ) =

||MIJ

6((0 ;) +478(0 - 0,) cos { w2} (5.37) |

l

I

i

where @, and @g denote the geometric center and the distance between two complex
sinusoidal functions in the frequency domain, i.e.,

0 + 0,

W, = —5 Wg = 0 ~,

[
Fig. 5-.—3 The WVD of two sinusoidal signals contains two desired auto-terms at fre- !
quencies (07 and Wy, and a large cross-term midway between those auto-terms.

Formula (5.37) is plotted in Fig. 5-3. In addition to the two desired auto-terms at

frequencies ®; and wy, we get a large cross-term at o, midway between those two 1
auto-terms. Unlike the two auto-terms that are non-negative, the cross-term oscil-
lates at frequency wy, the distance between the two individual components in the
frequency domain. Although the average of the cross-term is equal to zero, i.e., ’

[ans(w-o,)cos{w tidt = 0 for my =0 (5.38)

the magnitude of the cross-term is twice as large as the auto-terms! Because the J
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conventional power spectrum in (5.37) indicates that there is no signal at o, and
the energy contained in the cross-term is zero, the cross-term is commonly consid-
ered as interference.

From formula (5.34), each pair of auto-terms creates one cross-term. For N
individual components, the total number of cross-terms is N(N-1)/2. In the sim-
ple case, such as in Example 5—4, we can easily identify the cross-term interfer-
ence. For real signals, the pattern of the cross-terms, which usually overlap with
auto-terms, could be more complicated. Consequently, the desired time-depen-
dent spectrum could be deceiving and confusing.

|
I

|
»
|
|
0.0- |

- h 7 MH2

” ' l |
0000 0005 0010 0015 0020 0025 [sec)

Fig. 5-4 The bottom plot is a time waveform that contains four frequency tones. The
right plot is the traditional power spectrum. The middle one is the joint time-fre-
quency representation computed by time-frequency distribution series.

Fig. 5—4 illustrates the sum of four frequency tones. The bottom plot is time
waveforms. The right plot is the traditional power spectrum. The middle plot is
the desired time-dependent spectrum computed by the time-frequency distribution
series that we will discuss in Chapter 7. The conventional power spectrum indi-
cates that there are four different frequency tones, but it is not clear when those
different frequency tones occur. The time-dependent power spectrum not only
shows four frequency tones, but also tells when they take place.

Fig. 5-5 and Fig. 5-6 illustrate the WVD of the same frequency hopper sig-
nal. Because of the presence of the cross-term interference, the useful time-
dependent pattern is completely destroyed. It is those undesired terms that
obscure the application of the WVD, even though the WVD possesses many
important properties for signal analysis.
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Fig. 5-5 Frequency hopper signal computed by WVD.

Fig. 5-6 3D plot of frequency hopper signal computed by WVD.

Fig. 5-7 and Fig. 5-8 demonstrate seismic signals. The power spectrum
clearly indicates two very strong frequency components. Because of the presence
of the interference, however, those two prominent frequency tones are com-
pletely destroyed in the WVD (see Fig. 5-8).

0
I

%\

T

Fig. 5-7 Seismic signal computed by time-frequency distribution series. (Data cour-
tesy of Naval Research Laboratory, Washington, D.C.)
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Fig. 5-8 Seismic signal computed by WVD.

Example 5-4 WVD of two Gaussian functions

1

o) = S (g)“exp{_ -+ jmit} (5.39)

i=1

which contains two frequency-modulated Gaussian signals. One is concentrated in
(¢1,01). The other is centered in (t5,03). Then,

2 | |5
WVD,(t, @) = 2, exp{—— a(t-tif—é(mmif} (5.40)

i=1
1
+ 4exp{— ot - t“)2 - a(m - mp)z}cos[(m -0ty + ®g(t=12,)+ codt“]

where £, denotes the geometric time mean between two individual Gaussian sig-
nals, that is,

ty+1,
(7 W =
2
t4 is the distance between two individual functions in time domain, i.e.,

tg =t -1,

The summation in (5.40) corresponds to the auto-terms, which are non-negative.
The last term represents the cross-term at (tp, (np), midway between the two auto-
terms, as shown in Fig. 5-9. The cross-term oscillates in both time and frequency
directions. The rate of oscillation is proportional to £; and 04, the distance between
two auto-terms. Both auto-terms and cross-term have the same two-dimensional
Gaussian envelope that is concentrated and symmetrical in joint time-frequency
domain.
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Fig. 5-9 The cross-term is at (tp, mp), midway between the two auto-terms. It oscil-
lates in both time and frequency directions.

Example Example 5-4 demonstrates the mechanism of the cross-term. The
cross-term in fact reflects the correlation of the corresponding pair of auto-terms.
Its location and the rate of oscillation are determined by time and frequency cen-
ters of the auto-terms. If we know the positions of the auto-terms then we can
precisely identify the corresponding cross-term. In the case of two Gaussian
functions, both auto-terms and cross-term are symmetrical and concentrated in
the joint time-frequency domain. Now, the interesting problem is how the auto-
term and cross-term affect the useful properties. To answer this question, let’s
compute some useful properties, such as the time marginal condition.

Inserting (5.40) into (5.19) yields

2
Is()? = A/gz exp{~a(t—ti)2}+2)/%exp{—% i }exp{—oc(t—tp)z}cos{mdt}

i=1

2
= Jg Y. exp{-a(t-2,)"} + A(t; Jexp{-a(t - t,)*} cos(w,t) (5.41)
i=1

The summation is the integration of the auto-terms, which are non-negative. The
second term is caused by the cross-term, which oscillates. The rate of oscillation
@y is proportional to the distance between two auto-terms in frequency domain.
The magnitude A(td2) exponentially decays as ¢4, the distance between two auto-
terms in the time domain, increases. In another words, the farther apart the
auto-terms are, the less energy the cross-term contains. Similar observations
also hold for the other properties. For example, the reader can verify that only
the cross-terms that are created by close auto-terms have significant influence

on the mean instantaneous frequency.
Traditionally, the cross-term has been used to describe something undes-
ired in the WVD, such as those shown in Example 5-3 and Example 5—4. Conse-
quently, they should all be removed. Actually, this thinking is not entirely
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correct. First, unless for very simple cases, such as two sinusoidal signals in
Example 5-3 and two Gaussian functions in Example 54, the cross-term in gen-
eral is not well defined. As we know, the signal can be broken into parts in an
infinite number of ways, and the different decomposition will lead to different
cross-terms. Second, the cross-term is not always a ghost. As shown in Example
5-4, when the cross-term is created by two Gaussian functions whose time and
frequency centers are far apart, the cross-term highly oscillates, which has lim-
ited influence on the time marginal conditions as well as other useful properties.
In this case, the cross-term is indeed not important and thereby could be
removed. When the cross-term is caused by two Gaussian functions whose time
and frequency centers are closer, the cross-term will oscillate less and therefore
has a larger average. If such a cross-term is discarded, the resulting presenta-
tion will leave significant signal energy out. In this case, we can expect to lose
much of the time marginal condition as well as other properties. Thus, simply
discarding all cross-terms is not a right approach.

At this point, the natural question is, what parts of the WVD are
unwanted? How can we get a better joint time-frequency representation? Before
fully addressing this question, let’s further investigate some other aspects of the
WVD.

5.4 Wigner-Ville Distribution, STFT Spectrogram, and
Scalogram

In the beginning of this chapter, we mentioned that both STFT spectrogram and
scalogram can be used to describe a signal’s energy changes in joint time-fre-
quency domain. Then, how are STFT spectrogram and scalogram related to the
Wigner-Ville distribution? In what follows, we shall apply elementary multivari-
able calculus to introduce some important relations.

For an arbitrary signal s(#),

PS,(t, 0) = |STFT, (2, 0)]” = [[WVD,(z, y)WVD,(t -x, ® - y)dxdy (5.42)

where WVD(?,00) and WVD(¢,0) denote the WVD of the analyzed signal s(¢) and
the analysis function (¢), respectively. Formula (5.42) is a typical 2D convolu-
tion, which says that the STFT spectrogram in fact is the convolution of the
Wigner-Ville distributions of the signal s(¢) and analysis function ¥({).

5.4 Wigner-Ville Distribution, STFT Spectrogram, and Scalogram
PROOF
Let’s expand the right side of (5.42).

H_”s(x + g)s*(x - g)y(t —-x+ %)y*(t—x - ;)exp{—jy(u ~V)-jvoldudvdidy

= Hfs(x + %)s*(x - %jy(t -x+ %)y*(t—x - g)exp {vo}d(u - vidudvdx

= ffs(x+Y)s*(x—Y Bt ) ¢ L ]
3 5 5 v | exp{—jvoldvdx (5.43)
Let
_ v v

1=x45 and b = x-5

Then
_a+b
x=— Vv=a-b

The Jacobian determinant is

éc_ ox
da db 0505
J = = = ]
v v L —IJ e
da 0b
Because
dxdv = [J|dadb = dadb (5.45)

formula (5.44) becomes

[Jst@ys* @)t -b)v(¢ - @) exp {~ia - bYo ) dadb
= js(a)y*(t ~a)exp{—j0)a}dajs*(b)y(t -b)exp{jobldb
= [STFT, (¢, ®)|’

When the Wigner-Ville distribution of the analysis function WVD,(¢,0) is of
lowpass, as in the case of most applications, then the STFT spectrogr:;m is a
_smoo‘thed WVD. This implies that the resolution of the STFT spectrogram is
inferior to that of the WVD. Fig. 5~10 depicts the STFT spectrogram for the fre-
quency hopped signal. In this example, the analysis function is a Gaussian
whose WVD is 2D lowpass. Compared to the WVD in Fig. 5-5, the STRT spectro:
gram has a poor resolution, but there is no interference as that which appears in

the WVD. ’
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Fig. 5~10 Compared to the WVD in Fig. 5-5, the STFT has lower resolutions but it
does not have unwanted interference.

It is interesting to note that the scalogram, the square of the wavelet trans-
form, can be written in a very similar way [159], e.g.,

2 x-b
SEAL(a.L) = [CWiie, B)f = HWVDS(x,y)WVDW(——a——, a ady (BAB)
where WVD(t,0) and WVD,,(#,®) denote the WVD of the analyzed signal s(¢) and

the mother wavelet function y(¢), respectively. The operation which is involved
in (5.46) is now an affine correlation.

PROOF
Let’s expand the right side of (5.46), i.e.,

IR
x exp{—j(m +an)y}dxdydmdn
= JHS(JC + %)s*(&u = T—nz—)w(fi—é + g)\y*(x ; 8. g)é}(m +an)dxdmdn

= Hs(x + GTn)s*(x - G’Tn)\y(%é + %)w*(g%—b - g)dxdn (5.47)

Let u = x+(an/2) and v = x—~(an/2). Then

U+v ket o g BT
iaetfi - T La
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The Jacobian determinant is

g}-—g—x— 0505 1 _
L (T md g = (5.48)
a
el PRy
du dv
Because
xdn = |Jldudv = d—szi (5.49)

the formula (5.47) becomes

Hswu(*22 o (22242 - ownia, b)F

= =

5.5 Smoothed WVD and WVD of Analytical Signals

In the preceding section, we showed that the WVD of the sum of multicompo-
nents is the linear combination of auto- and cross-terms. The auto-terms, in gen-
eral, are relatively smooth, whereas the cross-terms are strongly oscillated.
Therefore, a natural way of lowering cross-term interference is to apply a low-

pass filter H(z,w) to the WVD, i.e.,

SWVD, (¢, 0) = ” WVD,(x, y)H(t — x, ® - y)dxdy (5.50)

Because the lowpass filter performs a smoothing operation, (5.50) is called the
smoothed Wigner-Ville distribution (SWVD). Usually, the lowpass filtering can
substantially suppress the cross-terms. On the other hand, however, smoothing
will reduce the resolution. A trade-off exists between the degree of smoothing
and the resolution.

If H(t,0) is the WVD of a function y(¢), then (5.50) becomes the STFT spec-
trogram, as shown previously. In this case, the SWVD manifestly is non-nega-
tive. However, the STFT spectrogram does not preserve time marginal,
frequency marginal, instantaneous frequency, and many other useful properties
that are possessed by the WVD. Usually, the SWVD improves the cross-term
interference at the cost of lower resolution and the loss of other useful properties.

Note that formula (5.50) applies for all bilinear transformations. Any bilin-
ear transform Cy(¢,w) can be expressed as the convolution of WVD,(z,0) and some
2D filter H(t,w) [32], i.e.,

Cy(t, @) = [[WVD(x, y)H(t - x, ® - y)dxdy (5.51)

|
|
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However, smoothing only makes sense when the 2D filter H(t,@) is lowpass.
Conversely, we can also write the Wigner-Ville distributlon.as the convolu-
tion of any other bilinear transform C(¢,w) with 2D filter G(¢,0), i.e.,

WVD(t, 0) = [ [Cy(x, )G (t %, © - y)dxdy (5.52) -

unless G(¢,0) is a 2D lowpass filter, otherwise WVD(t,00) will nf)t be a .smoo.thefi
version of C(¢,w). For example, we usually do not say that a Wzgr.Ler-Vzlle distri-
bution is a smoothed Choi-Williams distribution, because G(¢,®) is not the low-
pass in this case.

0.6+
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b ¢
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Fig. 5-11 WVD of Doppler signal (real-valued).
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.
o000 0010 0020 0030 0040 0051 (sec)

Fig. 5~12 WVD of Doppler signal (analytic signal).

The signals that we dealt with under normal circumstances are.real-val-
ued. A direct consequence of the realness is that the signal’s spectrum is always
symmetric, that is

S(@) = S*(-w)  or  |S@)* = IS(-w) (5.53)

In this case, only one half of the spectrum contains information, while the other
half is redundant. To remove the redundancy, people usually convert the real
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signal to the so-called analytical signal. If S(®) denotes the Fourier transform of
the real-valued signal s(z), then the analytical signal is the inverse Fourier trans-
form of S (w) given by

28(w) ® >0
S,(0) =1{ S ©=0 (5.54)
0 w<0

For a real-valued signal, the negative frequency components not only intro-
duce the redundancy, but also create cross-terms. To reduce the cross-term inter-
ference, Boashash [14] suggested using the analytical signal’s WVD. Because the
analytical function is a halfhand function, the resulting WVD,(t,0) avoids all
cross-terms that are associated with the negative frequency components.

Fig. 5-11 and Fig. 5-12 illustrate the WVD of real-valued Doppler signal
and the WVD,, of the corresponding analytical signal. Obviously, interference is
much less in Fig. 5-12 than that in Fig. 5-11.

However, it has to be kept in mind that the analytical function differs from
the original signal in several ways (see Cohen [32]). For instance, the analytical
function of a time-limited real-valued signal s(£), where s(¢) = 0 for ¢ < tijand ¢ >
f9, is manifestly no longer time limited, because the analytical function is band
limited. Therefore, we should be very careful when the analytical function is
used. Although the analytical function has the same positive power spectrum as

that of a corresponding real-valued signal, its instantaneous properties may sub-
stantially differ from that of the original signal.

The relation between the WVD, and WVD can best be determined by using
(5.16). For example,

WVD, (¢, 0) = %jsa(m%)s: (w—%)exp{th}dQ

20
1 QY 4 Q :
= 5= j S(m+ 5)S’“(co~—2~)exp{19t}d(2

which is equivalent to

WVD, (¢, ) = Z%J'H(Q)S(OH %)S*(w—%)exp{jﬂt}dﬂ (5.55)

where H(Q) is an ideal lowpass filter with cut-off frequency 2. Based on the con-
volution theorem, we can rewrite equation (5.55) as

oo

WVD, (¢, @) = 2[ 2CYwyp ;1 gy (5.56)

—oco
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This result is to convolve the WVD with an ideal frequency-dependent lowpass
filter sin(2wt)/t. The spread of the low-frequency portion of the WVD is much
wider than that of the high-frequency portion.

T
0.000 B.L"OZ 0.004 DD‘OS 0 C:OB D.G‘1 0 i 0.013 (sec)

Fig. 5-13 WVD of rectangle (real-valued signal).
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Fig. 5-14 The analytical function of the time-limited signal s(¢) is not time limited.
The low frequency portion of the WVD,, significantly spreads out compared to the

WVD for the real signal in Fig. 5-13.

Fig. 5-13 and Fig. 5-14 illustrate the WVD, and WVD, of the rectangle
window function. Fig. 5-13 shows that the WVD(t,0) = 0 whenever s(t) = 0.
WVD,(t,0) satisfies the time marginal condition. However, it is not the case for
the WVD,, in Fig. 5~-14. Compared tothe WVD, the low-frequency portion of the
WVD, is significantly altered. Because the WVD, of the analytical function is
smoothed in the time domain, as shown in (5.56), all time domain properties of
WVD,, such as time marginal condition and instantaneous frequency property,
are affected. The WVD, reduces the cross-term interference at the cost of losing
some useful properties.
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5.6 Discrete Wigner-Ville Distribution |

'I.‘he cpntinuous-time Wigner-Ville distribution introduced in the previous sec-

t}ons is of great value in analyzing and gaining insight into the properties of con- {
tllnuous-time signals. Because the majority of signals that we deal with are]
discrete-time signals, in the present section we shall address the subject of dis-
crete Wigner-Ville distribution. The importance of developing the discrete coun-

terpart is due to the increasing use and capabilities of digital computers and the f
devel(?pment of design methods for sampled-data systems. The great flexibility of ‘
Phe digital computer has spurred experimentation with the design of increas- v
ingly sophisticated discrete-time systems for which no apparent practical imple-

mentation using analog equipment exists. |

|
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Fig. 5-15 DWVD with aliasing (left) and aliasing-free DWVD (right).

By letting u = /2 in (5.9), the WVD becomes

WVD,(, ©) = 2[s(t+u)s*(t - u)exp {~20u }du (5.57)

Assume the interval of the integration (5.57) is A. Applying the Trapezoidal rule
we have an approximation of the integral by ’

WVDs(t, ©) = 243 s(t + nA)s*(t - nA)exp{—j2onA} (5.58)
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If the signal s(¢) is sampled in every A¢ second, At = A, then we obtain the dis-
crete-time Wigner-Ville distribution as

WVDs(mAt, ®) = 2At23[(m +n)At)s*[(m - n)At]éxp{—jEmnAt} (5.59)

Obviously,

WVD[mAt, © + Z’%): WVDs[mAt, ®) (5.60)
Therefore, the period of WVDs[mAt, ®) is /At rather than 2m/A¢ required by
Shannon sampling theory. The formula (5.60) implies that the highest frequency
component in (5.60) must be less than or equal to n/(2At). If the signal bandwidth
is larger than m/(2At), then aliasing will occur (see Fig. 5-15). In order to obtain
an aliasing-free discrete-time Wigner-Ville distribution, we have to double the
sampling rate.

-

(a) s[5 (b)
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original samples 0 21
o + (d) o lowpass \Ar o
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Fig. 5-16 Interpolation filtering.

The simplest way of double sampling is to apply the interpolation filter
(Example 2-5). Fig. 5-16 depicts the procedure for interpolation filtering. To do
an interpolation filter, first insert a zero between each sample. Then apply a low-
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pass filter to remove the image (shaded area in power spectrum). Such an
upsampling process can be described by

N

ylm] = Y slnlylm-2n] (5.61)
n=0

where y{m] is a half-band lowpass filter. y[m] denotes an upsampled sequence. If
the original sample interval is At second, then the interval of the interpolated
samples is 0.5At second. Applying this result into (5.59), we have

T . AL At At A
WVDS[mT, ©0) = Z—Q—Zy[[m + n]T]y*[[m = n]—z-l] exp{~j2mn%} (5.62)
The period of (5.62) becomes 2m/At, which is exactly what we anticipate.

Let the normalized frequency 6 = wA/2. Without loss of generality, we fur-
ther assume that At = 2, then formula (5.62) reduces to

WVDy[m,6) =2 Y y[m+nly*[m -nlexp{-j26n} (5.63)

n = -—co

Formula (5.63) requires an evaluation from minus infinite to plus infinite, which"
is impossible in real applications. To overcome this problem, we impose a run-
ning window w(n], such as

WVDs[m,8) =2 Y wlnlylm+nly*[m—nlexp{-j20n} (5.64)
R
which is called the pseudo Wigner-Ville distribution. For the sake of simplicity,

pse
let win] be a rectangular window" with length 4 L+1, i.e.,

1 In|<2L
win] = 5.65
i { 0 otherwise ( )

* The results obtained later in fact apply for any windows which are symmetric with respect to
zero, e.g., win] = wl-n].
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'

Substituting it into (5.64) yields

2L -1
WVDm,8) =2 E ylm +nly*[m —nlexp{—26n}
n=-2L-1)

0
=2 Y ylm+nly*[m-nlexp{-j26n}

n=-2L-1)
2L -1
+2 Y ylm+nly*[m-nlexp{-j20n}-2y[mly*[m]
n=0
2L -1 .
= 4Req Y, ylm +nly*[m—nlexp{—~26n} - 2y[mly*[m] (5.66)
n=0

If we further digitize the frequency index 0, then (5.66) becomes

e { 4mkn

DWVD,[m,k]=4Res > ylm +nly*[m -n]exp< -j 5T } - 2y[m]y*[m] (5.67)
n=0

for 0 <k <2L. The formula (5.67) is called the discrete Wigner-Ville distribution
(DWDV). Note that, from (5.67)

DWVD[m, & = DWYDIm &+ 3] for i = 0,25 40, (5.68)

If we use the standard 2L-point FFT algorithm to compute the summation in
(5.67), half the output is redundant. Usually, we assume that

y[m +nly*[m-n] = 0 for |n|>L (5.69)
then the formula (5.67) reduces to

' el 2nkn i ]
DWVD,[m, k]=4Re Zy[m+n]y*[m~n]exp E o -2y[mly*[m] (5.70)
n=20

Now, the summation becomes L-point FFT. There is no redundancy. The fre-
quency range of DWVD in (5.70) is 0<k <L. The h.ighest freql.lency Wlthout
aliasing is w/At. Because the formula (5.70) is computationally efficient, it is often
used to estimate the discrete Wigner-Ville distribution. uifl)

Many algorithm tricks have been proposed to overcome the ahasmg prob-
lem. However, no matter what kinds of tricks are used, the requirement is usu-
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ally the same: we must oversample either in the time domain or in frequency
domain. Although there are some variations among the algorithms, the improve-
ments in computational complicity as well as in memory usage are marginal.
There are two advantages of the method introduced in this section. First, it is
closer to the continuous-time WVD. Consequently, many properties of the con-
tinuous-time WVD are carried over to its discrete counterpart. Second, the inter-
polation filter is relatively easier to implement with existing hardware
techniques.

It is worth noting that when the analytical signal is employed, the aliasing
problem is automatically avoided because it is a half-band signal. The negative
frequency compoenents of the analyzed signal are zero. However, this method
only works for real-valued signals. For complex signals, such as those encoun-
tered in the radar applications, the spectra are not symmetric and thereby we
can’t neglect the negative frequencies. In this case, the aliasing problem still
exists unless we apply interpolation filtering or other preprocessing techniques
to the signal before computing the discrete Wigner-Ville distribution.

Summary

Based upon the traditional power spectrum, in this chapter we introduced a gen-

eral formula of the time-dependent spectrum. In particular, we discussed the ,

Wigner-Ville distribution. The reason that makes the WVD so special is that the
WVD better characterizes a signal’s frequency changes than any other schemes,
such as the STFT spectrogram and scalogram, which are popular in the area of
signal processing. The WVD possesses many useful properties for signal process-
ing. Many of them are related to the average of the WVD. Because the average of
highly oscillated portions presumably possess relatively small averages, the use-
ful properties of the WVD are mainly determined by its smooth portions.

One of the major deficiencies of the WVD is the cross-term interference. To
reduce the unwanted terms, we discussed two simple methods, the smoothed
WVD and the WVD of the analytical function. Although they are simple and
quite effective in many applications, they all reduce the cross-terms at the cost of
losing useful properties. The topic of cross-term suppression with minimum cost
will be the main focus in the rest of this book.

Finally, we introduced a feasible numerical implementation of the Wigner-
Ville distribution.




CHAPTER6

Cohen’s Class

I n Chapter 5, we introduced the Wigner-
Ville distribution. In addition to the Wigner-Ville distribution, there are dozens
of other bilinear joint time-frequency representations that have been developed
over the last fifty years (see [23], [26], [139], [140], [156], [197],[30], and [73]) It
is interesting to note that all those bilinear representations can be written in a
general form that was introduced by Cohen [26]. The discovery of the general
form of bilinear joint time-frequency representations facilitates us with the
design of the desired joint time-frequency representations.

Because an easy way of studying Cohen’s class is from the ambiguity
domain, this chapter starts with a brief review of the symmetric ambiguity func-
tion. The general properties of the ambiguity function have been thoroughly
studied in the context of radar and sonar. The discussion in this chapter will be
focused only on those aspects that are of importance for a better understanding
of Cohen’s class. In Section 6.2, we discuss the relationship between the kernel
function and the corresponding bilinear representations. Finally, in Section 6.3,
we study a few well-known members of Cohen’s class in brief, which include the
Choi-Williams distribution, the cone-shape distribution, and signal-dependent
time-frequency distribution.

131
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6.1 Ambiguity Function

In the preceding chapter, we generalized the traditional power spectrum into the
time-dependent spectrum as Eq.(5.3):

P(t,0) = JR(t, T)exp{—jot}dt

If the time-dependent auto-correlation function is chosen as Eq.(5.8):

w3

then the resulting time-dependent power spectrum is the Wigner-Ville distribu-
tion (WVD) (see Eq.(5.9)):

WVD, (¢, 0) = Js(t + %)s*(t - %jexp {~jot}dt

If we take the Fourier transform with respect to the variable ¢ instead of T in

(5.8), then we obtain another popular joint time-frequency representation called
the symmetric ambiguity function (AF), i.e.,

A
»
e

AF (9, 1) = Js(t ; ;)s*(t— ;)exp{—jﬁt}dt

which was first derived by Ville and Moyal. Its relation to matched filters was
developed by Woodward [190]. Formula (6.1) is traditionally named the auto-AF.
Accordingly, the cross-AF is defined as

F, (8,7) = [s(t ( 5 U*(t——)expl ~jot}de (6.2)

Unlike the auto-WVD, which is real for any signals, the AF is generally complex
valued, i.e.,

AF, (9,7) # AF} 4(0,7) (6.3)

The ambiguity function has been widely used in the context of radar and sonar,
and its properties are very well understood. The discussion in this book will be
focused only on those aspects that are of importance for a better understanding
of Cohen’s class.

Based upon the Fourier theorem, for a given ambiguity function AF(9,1),
we can compute the time-dependent auto-correlation function via the inverse
Fourier transform, i.e.,

E%jAFs(ﬁ, %) exp {70t }dd = s(t+§)§*(t—;) (6.4)
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Substituting (6.4) into (5.9) yields 1‘

WVD,(t, 0) = 5=[[AR(8, 7) exp{~jl0t-0¢]}d0dT (6.5)

which indicates that the Wigner-Ville distribution is a double Fourier transfor-|
mation” of the symmetric ambiguity function. Fig. 6-1 illustrates the relations’
between the Wigner-Ville distribution and the symmetric ambiguity function.

F.F;—»
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Fig. 6-1 Relationship between Wigner-Ville distribution and ambiguity functions. i
Example 6-1 AF of a Gaussian function

; . ‘
s(t) = ( j exp{——(t —to) +J0)Ot} (6.6)

{
The time and frequency centers of s(¢) are ¢; and @y, respectively. The corresponding g
symmetric ambiguity function is

AF (8, 1) = exp{—(;ﬁaﬂz + %IZJ}exp L@t + V) } (6.7)

Fig. 6-2 illustrates the real part of (6.7), which is centered at the origin (0,0) and
oscillates. The phase wgt + ¥7y is related to the signal’s time shift ¢, and frequency
modulation .

* Strictly speaking, (6.5) contains one Fourier transform and one inverse Fourier transform.
For the sake of simplicity, in most literature the operation described by (6.5) is simply remem-
bered as double Fourier transformation.
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which says that the partial derivatives of the phase of the symmetric ambiguity
function are equal to the time and frequency center of the Wigner-Ville distribu-
tion. Conversely,

d 0
3Pt 0) =23 = oyyp(t, ©) = oy (6.17)

which says that the partial derivatives of the phase of the Wigner-Ville distribu-
tion are equal to the center of the symmetric ambiguity function. Because the
derivative of the phase is usually considered as the frequency, the location of the
symmetric ambiguity function directly relates to the rate of oscillation of the
Wigner-Ville distribution. In general, the cross-term in the Wigner-Ville domain
is severely oscillated, which implies that the partial derivative of the phase of
the Wigner-Ville distribution is larger. In the ambiguity domain, this is equiva-
lent to the corresponding ambiguity function being away from the origin. The
farther away AF ) ,(8,71) is from the origin, the higher the oscillation of
W‘TDSLSQ(L(D).

! A i v

-y o i O

AFSZ,SI

V.

Fig. 6-4 Mapping between AF and WVD.

Because the highly oscillated WVD; »(t,®) has a very small average
(thereby having negligible contributions to the useful properties), equivalently,
the AF|; ,(0,7) that is away from the origin can often be ignored. Fig. 6—4 demon-
strates mapping between the ambiguity and Wigner-Ville domains.
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Fig. 6-5 The cross-AFs centered in the T-axis correspond to the cross-term in the
WVD, which oscillates in frequency.

If o, = @) = g, that is, the two Gaussian functions have the same frequency
center, then AF|; ,(8,7)in (6.11) reduces to '

1 2 :
AR, 5(9,7) = exp{{@ﬁ%%u—td)’]}exp Ui(@gt-52,)) (6.18)

which is concentrated in the t-axis. The distance between the center of
AF; (8,0 to origin is I#,41, as shown in Fig. 6-5. If [241 >> 0, the AF,; ,,(8,1) cor-
responds to the WVD,, ,(£,0) that strongly oscillates in the frequency domain
and thereby has a negligible average.

Similarly, if ¢ = ¢, = ¢,, that is, the two Gaussian functions have the same
time center, then AF; ,(9,7) in (6.11) reduces to

1
AF,, ,(9,7) = exp{~[za(ﬁ—md)2+%sz}exp{j[o)“‘t—(ﬁ—(z)d)f()]} (6.19)

between the center of AF,; ,(9,1) to origin is logl. If Togl >> 0, the AF,; A0,1)
corresponds to the WVD; »(t,0) that strongly oscillates in time with the re-
quency g. Because of the relatively small average, such WVD; »(t,0) has negli-
gible contributions to useful properties. 2

In order to maintain the useful properties of the WVD, many joint time-fre-
quency representations tend to retain all portions of AF(9.1) that are in the t-

which is concentrated in the ®-axis, as illustrated in Fig. 6-6. The distzice
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In contrast, the WVD of the Gaussian function in (6.6) is ! where %
1 . 5 | t +¢, 0, + 0, ' ‘
WVD, (¢, ®) = 2exp<- &(t—to) - o~ ) (6.8) ! ty = 5 w, = D) ta = 1)1, Wy = 0 -, (6.12)
L ¥ " |

{
Eq.(6.11) indicates that AF|; ,(9,1) is concentrated in (t1-t9, 01-0s), away from th|

which are centered a_t (t9,®0). In other words, the signal’s time shift and frequency origin. AF,, (8,7) has a similar form to AF,, ,(8,7) except for the center in (to-
modulation are associated with the geological center of the WVD. ! £1,-0y). Fig. 6-3 sketches the locations of each individual term in (6.10).
: |
05-
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l AFsl,sZ !
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Fig. 6~2 Ambiguity function of the Gaussian signal (real parts). i

Fig. 6-3 Ambiguity function of two Gaussian signals.

Example 6-2 AF of two Gaussian functions
] Recall that the cross-WVD has a form
2 o i
2 2 oV ! .
st = X el = b [E) exp{— %(t» tl-)2 +_]0.)l-t} (6.9) i
4 . 2
0 i= WVD,, .,(t, 0) = 2exp{— a(t—t#)z-a(m—mu)'} (6.13)
The two Gaussian functions are concentrated in ( 11,01) and (f9,Mg), respectively. The .

corresponding symmetric ambiguity function is

xexp{jl(® - 0, )t + 0yt]}

2

AF (9,1) = 2 AF (9, 1) + AR, o9, 1) + AF, (9, 1) (6.10) j If we write both the Wigner-Ville distribution and symmetric ambiguity function |

i=i in terms of magnitude and phase, i.e.,
where AF;(9,7) are described by (6.7), which are all concentrated in the origin (0,0). VVVD“ s2(t, ©) = Ayyp (L, ®)exp {/Pwvp(t, ®)} (6.14)
AF | »(9,1), is i

| and }
1 o 2 i | {

AR 8Ty = exp{—@(ﬁ—md)2+z(r—td)7} (6.11) ‘ | ARy o 07) = AAF(ﬁ,‘C)e?cp{J(pAF(ﬂ,’c)} (6.15)

| then {
x exp {j(m, -0, + wyt,)} | {

3 J
TP = 0T = e, (6.16)

{
1
|
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axis or ¥-axis. As studied earlier, however, the portions of AF(8,7) in the t-axis or
Y-axis could cause significant undesired terms in the Wigner-Ville domain. On
the other hand, when AF(9,0) and AF(0,t) are far away from the origin, their con-
tribution to the useful properties is limited. We shall discuss this problem in
more detail in subsequent sections.

i

AFs?‘,x 1 AFs 152 9

—® ‘ W ; )
d — d A —

Fig. 66 The cross-AFs centered in the U-axis correspond to the cross-term in the
WVD, which oscillates in time.

Finally like the Wigner-Ville distribution, the ambiguity function is also
closely related to the wavelet transform, e.g.,

! 1-2b
CWT(a, 5)CWT*(a,-b) = =[[AF(x, v)AFW( - ,au)drdu (6.20)
PROOF
The right side of (6.20) is equal to
—jux o= == BN Javy
(];[J’JS(A + %)s*(x - g)e J dxj\ll*(y P 2(,12[3)\!!(3, oz - )e dydtdy
! T T 1-2b T-2b
= ajjs(a_}r + i)s*(ay = i)w*(y + 5 )\V(y — )dyd-c (6.21)

Substitute

<
I
<
e
+
Nl A
jos]
=]
oy
a
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|
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&
N
»
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into (6.21). Because
dydt = |[J|dy'dt' = dy'dt (6.23)

where |J| denotes the Jacobian determinant (see more detail about multi-
variable calculus in Section 5.4), (6.21) becomes

[llj_[s(y')s”:("c')w*(y—‘;—b)w(yl+b)dy'dt' = CWT(a, b)CWT*(a, —b)

a

6.2 Cohen’s Class

So far, we have studied the STFT spectrogram, Wigner-Ville distribution, and
symmetric ambiguity function. In addition to these three bilinear joint time-fre-
quency representations, we can list at least another dozen counterparts. In 1966,
Cohen employed characteristic functions and operator theory to derive a general
class of joint time-frequency representations [26]. It can be shown that all these
bilinear representations can be written in one general form that is traditionally
named Cohen’s class.

According to [26], the time-dependent auto-correlation function is defined
as

R(t,1) = %IJ'AF(& YD (9, 1) exp {jO¢}dO (6.24)

where AF(9,7) is the symmetric ambiguity function, defined by (6.1), and D(Y,71)

is called the kernel function. Based on the convolution theorem, we can rewrite
(6.24) as

R(t,1) = F[AF(9,7)) ® F'[&(0, 1))

egr{-geneo
" jg(u . ;)s*(u~§)¢(t—u,1)du (6.25)

where Q)(t,r)/ denotes the inverse Fourier transformation of ®(9,1). Eq.(6.25) says
that the general time-dependent auto-correlation function proposed by Cohen is
a time-domain linear-filtered function s(¢+7/2)s*(t—t/2) that is the auto-correla-
tion function employed in the Wigner-Ville distribution. Therefore, the difference
between the Wigner-Ville distribution and the member of Cohen’s class, such as
Choi-Williams distribution and cone-shaped distribution, is completely deter-



140 Cohen's Class Chap.6

mined by the nature of the filter ¢(z,t). When ¢(¢,7) is allpass, that is, ®(9,1) = 1,
R(t,7) becomes

R(t, 1) :'i%jAFw, ) oxp (jOt}dD = s(t+§)s*(t—;) (6.26)

which is exactly the Wigner-Ville auto-correlation function. When the kernel
function ®(,7) is a valid ambiguity function of an arbitrary time function Y(),
then C(¢,0) becomes the STFT spectrogram with the window function y(¢). We
shall show this shortly.

Table 6-1
Properties Kernel
1 | time-shift invariant independent of time variable ¢
2 | frequency-shift invariant independent of frequency variable @
3 realness O(9,1) = O(-9,~1)
4 | time marginal P(9,0) =1
5 | frequency marginal o017 =1
6 | instantaneous frequency ®(9,0) =1 and %(D(f}, %) =0
property =0
7 group delay property ®(0,71) =1 and 5%@(‘3# T) ll =0
8 | positivity d(8,1) is an ambiguity function of y(¢)
or signal-dependent

Substituting (6.24) into (5.3) obtains the form of Cohen’s class
C(t,0) = 5=] [AF(S, )®(8, 1) exp{i(dt-0t)}ddde (6.27)
Alternatively, replacing R(2,1) in (5.3) by (6.25) yields
T 1 '
C(t,m) = ”s(u + -7-)3*(u - i)@(t —u, T)duexp{—jot}dt (6.28)

To compute the ambiguity function we have to have the entire time record, which
often is impossible in practice. Because the formula (6.28) does not need to com-

e e e a0

?
1
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pute the ambiguity functions, it is suitable for real implementations.

The significance of Cohen’s work is to reduce the problem of the design of
the time-dependent spectrum to the selection of the kernel function D(9,1). We
list the relations between the kernel functions and useful properties in Table 6

1 without proofs. Readers interested in derivations are encouraged to consult\!
[32].

In general, Cohen’s class could be negative unless the kernel function is sig-,
nal-dependent or it is the ambiguity function of a function ¥t). In this case,]
C(t,») is equivalent to the STFT spectrogram, the square of the STFT. {

PROOF 5
|
Let J

D9, 1) = jy(n;)ﬁ(?—g)exp{_jﬂt}dt (6.29)

Then, its inverse Fourier transform is :

ot 1) = v(t+§}y*( —%) (6.30)%

Substituting (6.30) into (6.25) obtains
Cit o) = J'J'y(t -u+ ;)y*(t -u- ;)s(u + g)s*(u - %)exp{ajw’c}dudt ‘

- o+ Y- (o+ Pero oo+ ) il

7
il el y=u—§ (6.31) !
yields/

Cit o) = HS(x)Y*[t~x]eXp{~j®y}S*(y)Y[t~y]eXPUmy}dxdy = [S(w)® }

which manifestly is non-negative.

Note that when the kernel ®(9,1) is the ambiguity function of a function !
Y(?), the resulting C(t,0) does not satisfy the properties 4, 5, 6, and 7.

From the classical energy concept, the signal’s energy distribution (or
energy density function) obviously should be non-negative. Wigner showed (see 1
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[187] and [188]), however, that the bilinear transform cannot satisfy marginal
conditions and be non-negative simultaneously.

A natural question at this point is, does a non-negative time-frequency dis-
tribution (or time-frequency density function) exist? The answer is yes. In fact, if
we do not limit ourselves to bilinear’ transformations, such as Cohen’s formulae,
(6.27) and (6.25), then we could easily make non-negative time-frequency func-
tions with marginal condition properties. For example, let

s’

P(t,0) = IS () (6.32)
sl

where

s = Jls)l’de = 2= [1S()do

Evidently, P(z,») in (6.32) is non-negative and satisfies time/frequency marginal
conditions. With a normalization, it could be formulated as a joint density func-
tion. But such a time-frequency density function is meaningless for time-fre-
quency analysis, because it does not convey any information regarding a signal’s
local behaviors.

Then, the next question will be, does a meaningful non-negative time-fre-
quency distribution exist? Unfortunately, the answer of this question is, “we
don't know.” Although there are many ways of creating non-negative time-fre-
quency functions, none of them has been proved to truly reflect a signal’s time-
varying nature.

The subject of the existence of a non-negative time-frequency distribution
that also reflects the signal’s time-varying nature so far remains a research topic.
It not only is of interest to signal processing, but also is fundamental in physics.
The reader interested in this topicis encouraged to consult the papers by Cohen
and Posch [27] and Janssen (see [87], [89], and [92]).

All discussions in this section are primarily focused on the continuous-time
cases and therefore all conclusions only hold for the continuous-time signals. The
discrete counterparts were studied by Jeong and Williams [96], Morris and Wu
[128], and Kootsookos et al. [106].

6.3 Some Members of Cohen’s Class

One of the main motivations for studying Cohen’s class for the past ten years has
been to seek a time-dependent spectrum that not only preserves all useful prop-
erties, but also has reduced cross-term interference. As discussed in the previous
section, the portion of the ambiguity function that corresponds to auto-terms is
always connected to the origin, whereas the part of the ambiguity function that
is related to the cross-terms tends to spread somewhere else. This observation
inspires many studies to search for a kernel function ®(8,7) such that the prod-
uct | P9, 1)AF(9,1)| is enhanced in the vicinity of origin and suppressed every-
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where else. At the same time, ®(9,7) should satisfy as many properties listed in
Table 6-1 as possible.
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; L 50+

AR
o
o
]

—“’W\f\MNW—wwj e \53(0

Lo y {
0.000 0002 0004 G d@é D.dUE 0010 'U 013 lsec)

Fig. 6-7 Three-tone test signal.

Fig. 6-7 illustrates a three-tone test signal. The signals s1(z) and sy(t) have
the same frequency center. The signals s4(¢) and s9(t) have the same time center.
Fig. 6-8 plots the WVD of the test signal, which indicates that each pair of auto-
terms creates one cross-term.

VVVDSI,SQ
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R fit A !
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WVDsl,SS
Fig. 6-8 WVD of the three-tone test signal.
Fig. 6-9 depicts the three-tone test signal in the ambiguity domain. It

shows that, except for the cluster centered in (0,0), all other signals are caused
by cross-terms.
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Fig. 69 Ambiguity function of the three-tone test signal.

As discussed previously, the useful properties and cross-term suppression
cannot be accomplished simultaneously. For example, to reduce the cross-term
interference, the product | 0(9,7)AF(9,1) | has to vanish for larger ¢ and t. On the
other hand, to preserve the time and frequency marginal conditions, the follow-
ing must hold:

0 (8, 0)AF(9, 0) = AF(9,0) 6(0, 1)AF(0, 1) = AF(0, 1) (6.33)

which implies that all portions of AF(%,1) in both the t-axis and ¥-axis have to be
kept, no matter how far they are from the origin. The direct consequence is that
the resulting representation will preserve all cross-terms that are created by two
functions that have either the same time center or frequency center.

In what follows, we shall investigate the performances of the three most
popular members of Cohen’s class by the test signal introduced above.

6.3.1 Choi-Williams Distribution

To suppress the portions of the AF that are away from the origin, Choi and Will-
iams [23] introduced the exponential kernel as

O(9, 1) = exp{-0(97)"} (6.34)

It is rather easy to check that the exponential kernel in (6.34) satisfies all prop-
erties listed in Table 6-1 except for the positivity. Moreover, ®(0,0) = 1 and
®(9,7) < 1 for ¥ # 0 and t# 0, which imply that the exponential kernel will sup-
press the cross-terms created by two functions that have both different time and
frequency centers. The parameter o controls the decay speed, as shown in Fig. 6—
10. The larger the o is, the more the cross-terms are suppressed. On the other
hand, the larger the o, the more the auto-terms are affected. Therefore, there is a
trade-off for the selection of the parameter o.
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Fig. 6-10 Exponential kernel with small o (left) and larger 0. (right).
The inverse Fourier transform of the exponential kernel in (6.34) is
ot ) = : exp{ I tz} (6.35)
Janar® 4o’ .

Substituting (6.35) into (6.25) yields

2
CWD(t, o) = ” 1 0exp{ (2;:2) }s(u+;)s*(u~%)exp{—jwt}dudt (6.36)

4ot

which is commonly named the Choi-Williams distribution (CWD) .
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Fig. 6-11 Cross-term suppression by exponential kernel. (Although the exponential

kernel suppresses the portion that is away from the origin, it preserves all cross-terms
that are in the 0-axis and t-axis.)

Fig. 6-11 depicts the process of cross-term suppression by exponential ker-
nel function for the three-tone test signal. Although the exponential kernel sup-
presses the portion that is away from the origin, it preserves all cross-terms that
are in the ¥-axis and t-axis. Consequently, the CWD contains strong horizontal
and vertical ripples. The horizontal ripples are caused by the auto-terms that
have the same frequency center; the vertical ripples correspond to the auto-
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terms that have the same time center. Fig. 6-12 illustrates the CWD of the
{ three-tone test signal. Moreover, the reader should bear in mind that theoreti-
{ cally, the CWD preserves the properties of the Wigner-Ville distribution, but it is
not the case for the discrete-time signal.

Fig. 6~12 CWD of the three-tone test signal.

6.3.2 Cone-Shape Distribution

Another popular representation is the cone-shape distribution that was intro-
duced by Zhao, et al [197]. The cone-shape function can be expressed as

0t T) = { gty Wz2l \ 637

0 otherwise \

g which is plotted in Fig. 6-13. In the ambiguity domain, the cone-shape function
has the form

3 /2 ) ;
[ O, 1) = g(v) |, exp{~jdt}dt = 2g(r)§21£gfizg (6.38)
{ e .
Let
g g(1) = %exp{—atz} (6.39)

Then, (6.38) becomes

i 7
DY, 1) = %%S;Tz)exp{-af} o>0 (6.40)
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The parameter ¢ controls the degree of su
larger the parameter 0, the more the cross
of more disturbed auto-terms). Obviously,

ppression, as shown in Fig. 6-14. The
-terms are suppressed (at the expense

¢w£)={ 5 EEC (6.41)

exp{—ocrz} =0

!
02

(a) larger o (b) small ¢

Fig. 6-14 Cone-shape kernel in ambiguity domain.

Unlike the exponential kernel function (6.35)
of AF in both the 9-axis as well as T-axis, the cone-s
those AF which are in the t-axis. Consequently, the cone-shape distribution is
able to effectively attenuate the cross-terms created by two functions that have
the same frequency center. Fig. 6-15 plots [AF(8,1)| of the three-tone test sig-
nal, ®(3,7) of the cone-shape function, and LD, DAFW,1) 1, Although the cross-
terms in the 9-axis are preserved, the cross-term in the 1-axis is suppr

» which preserves all portions
hape kernel (6.40) suppresses

essed.
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Fig. 6-15 Cross-term suppression by cone-shape kernel. (Although the cross-terms in
the 9-axis are preserved, the cross-term in the t-axis is suppressed.)

Fig. 6-16 depicts the cone-shape distribution for the three-tone test signal.
Compared to the Wigner-Ville distribution in Fig. 6-8 and the Choi-Williams dis-
tribution in Fig. 6-12, the cross-term interference is significantly reduced in the
cone-shape distribution. In particular, the cross-term between two that have the
same frequency center is completely removed. However, the interference created
by two functions with the same time center still exists.

Fig. 6-16 Cone-shape distribution.

In the area of speech analysis, the cone-shape distribution has been found
to be a favorite alternative for the conventional STFT spectrogram. Fig. 6-17
illustrates analysis results of an utterance by a five-year-old boy. The top plot is
computed by the cone-shape distribution, which not only clearly demonstrates
the formant patterns, but also depicts the vertical structures well. Fig. 6-18
plots the same speech signal computed by wideband and narrowband STFT spec-
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trpgrarn, respectively. While the format in the wideband STFT spectrogram
widely spreads out, it is mixed with harmonics in the narrowband STFT spectro-

gram.

Cone:shape Distribution
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e e Y 20-
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0.0000 0.2000 0.4000 0.6000 0.8191 (sec)

Fig. 6~17 “Wood” spoken by a five-year-old boy. (Data courtesy of Y. Zhao, the Beck-
man Institute at the University of Illinois.)

(a) Wideband (b) Narrowband

Fig. 6~18 Wideband and narrowband STFT spectrogram. (While the format in the

wideband STFT spectrogram widely spreads out, it is mixed with harmonics in the
narrowhand STFT spectrogram.)

6.3.3 Signal-Dependent Time-Frequency Representations’

Unlike the previous kernels, which emphasize preserving the properties of the
Wigner-Ville distribution over matching the shape of auto-components, the sig-
nal-dependent kernels aim to optimally pass the auto-components while sup-
pressing cross-components. Since a fixed kernel acts on the ambiguity function
as a mask or filter, it is limited in its ability to perform this function. The loca-
tions of the auto- and cross-components depend on the signal to be analyzed;
hence we expect to obtain good performance for a broad class of signals only by
using a signal-dependent kernel. To find the bilinear time-frequency distribution
that provides in some sense the “best” time-frequency representations (TFD) for
a given signal, Baraniuk and Jones have formulated the signal-dependent kernel
design procedure as an optimization problem (see [6] and [7]).

i COntributed by Richard G. Baraniuk, Department of Electrical and Computer Engineering,
Rice University, Houston, Texas 77251-1892.

[
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The 1/0 kernel method [7]

Given a signal and its AF, the optimal 1/0 kernel is defined as the real, non-neg-
ative function ¢, that solves the following optimization problem

mq?x [N1AF (8, nyo (s, ©)2dvdr (6.42)
subject to
®(0,0) = 1 (6.43)
(B, 1) is radially non-increasing (6.44)
o, 1)*dvds <o (6.45)

the radially non-increasing constraint (6.45) can be expressed explicitly as
D1y, W) 2 (1, ) Vs, vy

where v; and v correspond to the polar coordinates radius and angle, respec-
tively.

The constraints (6.43) to (6.45) and performance measure (6.42) are formu-
lated so that the optimal kernel (OK) passes auto-components and suppresses
cross-components. The constraints force the optimal kernel to be a lowpass filter
of fixed volume a«; maximizing the performance measure encourages the pass-
band of the kernel to lie over the auto-components. Both the performance mea-
sure and the constraints are insensitive to the orientation angle and aspect ratio

(scaling) of the signal components in the (9,7) plane.

By controlling the volume under the optimal kernel, the parameter o con-
trols the trade-off between cross-component suppression and smearing of the
auto-components. Reasonable bounds are 1 < o< 5. At the lower bound, the opti-
mal kernel shares the same volume as an STFT spectrogram kernel, while at the
upper bound, the optimal kernel smooths only slightly. In fact, as o, the optimal
kernel distribution converges to the WVD of the signal.

Analyzing a signal with an optimal-kernel distribution requires a three-
step procedure: (1) compute the AF of the signal; (2) solve the linear program
(6.42) to (6.45) in variables 612 (a fast algorithm is given in [5]); (3) Fourier
transform the AF-kernel product AF(S,1)D(9,7).

The radially Gaussian kernel method [6]

Although the 1/0 kernel is optimal according to the criteria (6.42) to (6.45), its
sharp cutoff may introduce ringing into the OK distribution, especially for small
values of the kernel volume parameter o. For an alternative, direct approach to
smooth optimal kernels, explicit smoothness constraints can be appended to the

e
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kernel optimization formulation (6.42) to (6.45). In [6], the kernel is constrained
to be Gaussian along radial profiles

2 2
OV, 1) = exp{—ﬁ Bk } (6.46)
207(w)

The term o(y) represents the dependence of the Gaussian spread on radial angle
Y = arctan(t/9). Any kernel of the form (6.46) is bounded and radially non-
increasing and, furthermore, smooth if & is smooth. Since the shape of a radially
Gaussian kerne] is completely parameterized by this function, finding the opti-
mal, radially Gaussian kernel for a signal is equivalent to finding the optimal
function Oopt for the signal. A gradient ascent/Newton algorithm solving the
(non-linear) system (described by (6.42), (6.45), and (6.46)) is detailed in [6].

05-p

0458

02 00 o2 4o
FAF(9,1) | D(Y,1) 1 D8,1) AF(9,7) |
Fig. 6-19 Optimal kernel and LAF(S,0)®(9,1)| of the three-tone test signal.

Fig. 6-20 Optimal-kernel distribution for the three-tone test signal.




152 Cohen'’s Class Chap.6

Fig. 6-21 Bat example. (Bat data provided by Curtis Condon, Ken White, and Al Feng
of the Beckman Institute at the University of Illinois.) i

Fig. 6-19 shows the AF domain optimal kernel and product |AF(%,1)®(0,1)!
for the three-tone test signal. Fig. 6-20 shows the optimal-kernel distribution.
As another example, Fig. 6-21 shows a time-frequency analysis of 2.5 ms of an
echo-location pulse emitted by the large brown bat, Eptesicus fuscus.

Extensions

Additional constraints The goal of the optimization problems (6.42) to (6.45)
and (6.42), (6.45), (6.46) is strictly to find the kernels that optimally pass auto-
components and suppress cross-components. However, additional constraints
encouraging additional kernel properties can also be considered. An attractive
feature of the optimal-kernel design formulation is the ease with which it can be
customized to incorporate application-specific knowledge into the design process.
For example, constraints have been developed to coerce OK TFDs to satisfy the
marginal distributions and/or preserve the time support of the signal (see [6] and

(7h.

" Adaptive formulations While the 1/0 and radially Gaussian distributions gen-
erally perform well, they are block-oriented techniques that design only one ker-
nel for the entire signal. For analyzing signals with characteristics that change
over time, for real-time, on-line operation, or for very long signals, adaptive sig-
nal-dependent TFDs are required.

Adaptation of the kernel to track the local signal characteristics over time
requires that the kernel optimization procedure consider only the local signal
characteristics. An ambiguity-domain design procedure such as the radially
Gaussian kernel optimization technique described above does not immediately
admit such time localization, because the AF includes information from all times
and frequencies in the signal. This difficulty has been surmounted, however, by

!
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the development of a time-localized, or short-time, AF [99]. Application of the!
radi.ally Gaussian kernel optimization procedure to the short-time AF localized|
at t.lme to produces an optimal kernel Dypt(9,7; 29) and an optimal-kernel distri-
butxon.frequency slice Copilto, f) at ¢y. Since the algorithm alters the kernel at
each time to achieve optimal local performance, better tracking of the: signal(
changes results. A simpler adaptive algorithm based on the short-time Fourier[
transform is derived in [98].

Summary

Cohen’s class provides a general form of time-dependent auto-correlation func-
tion for the bilinear transformation. The significance of Cohen’s works were to
reduce the design of the desired time-dependent spectrum C(t,0) to the selection
of the kernel function ®(9,7). The Wigner-Ville distribution not only has the sim-
plgst kernel @(9,1) = 1, but also possesses the most useful properties. One of the
major concerns in applications has been the cross-term interference. Because the
mterfgrence usually is associated with high oscillations, the natural way of
reducing it is to make ®(9,1) lowpass. However, there is a trade-off: to precisely
preserve all useful properties, one has to tolerate a significant amount of inter-
ference.

‘The original Cohen’s class was developed for confinuous-time functions, All
relationships between the kernel function ®(0,7) and Cohen’s class C(¢,w) pre-
sented in this chapter only apply for continuous-time signals. Those results can-
not be duplicated in discrete-time cases by simply replacing the continuous
variables ¢ and w with discrete quantities.

Cohen’s class is a typical linear filtering. As an alternative, in Chapter 7,
We~sha11 introduce a non-linear filtering approach, time-frequency distributiori
series, to reduce interference.




CHAPTER7

Time-Frequency Distribution
Series ‘

The main deficiency of the Wigner-Ville
distribution is the so-called cross-term interference. At any time instant, if there
1s more than one frequency tone, then the Wigner-Ville distribution may become
messed up because of the presence of undesired terms. However, the cross-terms
highly oscillate and are localized, which always occur in the midway of the pair
of corresponding auto-terms. On the other hand, useful properties, such as the
time marginal, frequency marginal, and instantaneous frequency property, are

properties. The signal energy and useful properties are mainly determined by a

- few low-order harmonic terms. '
In Section 7.1, we discuss the motivation of the decomposition of the
Wigner-Ville distribution. In principle, such decomposition can be realized by the
2D Gabor expansion. From the implementation point , however, the 2D
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which the dual function can be obtained with the help of elementary linear alge-
bra, the computation of the dual function for a given 2D Gabor elementary func-
tion in general would be much more involved. In particular, the 2D Gabor
coefficient is the 2D inner product between the dual function and the Wigner-
Ville distribution, which is computationally expensive and requires knowing the
complete Wigner-Ville distribution in advance.

Taking advantage of the fact that the Wigner-Ville distribution of a 1D
Gaussian function is a 2D Gaussian function, in Section 7.2, we introduce a 1D
Gabor expansion-based decomposition scheme for the Wigner-Ville distribution.
The resulting representation is called a time-frequency distribution series,
TFDSp(t,w), where D denotes the order of the time-frequency distribution series.
Because the time-frequency distribution series is the Gabor expansion- and
WVD-based time-dependent spectrum, it is also known as Gabor spectrogram in
the industry.

In Section 7.3, we discuss the discrete version of the time-frequency distri-
bution series. Because the continuous-time time-frequency distribution series
has a closed form for the arbitrary signals, the discrete time-frequency distribu-
tion series can be obtained by directly sampling the continuous-time time-fre-
quency distribution series, such as

TFDSp[i, k1= TFDSp(¢, w)|, _ iAt, o = 2k /At

where At denotes the sampling interval. Consequently, all properties possessed
by the continuous-time time-frequency distribution series are automatically car-
ried over to its discrete counterpart (at least well approximate). There is no alias-
ing problem such as occurred in the discrete Wigner-Ville distribution.

In Section 7.4, we discuss the problem of the selection of Gabor elementary
function A[k] and dual function ylk]. In Section 7.5, we address the difference
between Cohen’s class and the time-frequency distribution series. While Cohen’s
class represents the linear operation, truncated time-frequency distribution
series is the result of a non-linear lowpass filtering.

With the time-frequency distribution series, we gain a better understand-
ing of the nature of the cross-term. The concept of the cross-term in fact is ambig-
uous. As introduced in Chapter 2, a given signal can be broken up in an infinite
number of ways. The different decomposition schemes will lead to the different
cross-terms. Hence, cross-terms are not unique. Moreover, the cross-terms are
not always ghosts. When the cross-term is created by the pair of elementary
functions that are close to each other, it has a significant influence on the useful
properties and thereby cannot be simply gotten rid of. It is the high harmonics
that interferes with the meaningful pattern of time-dependent spectra. The use-
ful properties of the Wigner-Ville distribution are mainly determined by a few
lowest harmonics. As shown, the leading terms of the time-frequency distribu-
tion series not only well delineate time-dependent power spectra, but also signif-
icantly reduce the interference.

The concept of the time-frequency distribution series was first introduced
by Qian and Morris [147], in which, however, only the result of the zeroth order
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time-frequency distribution series was reported. The general case and practical
algorithms were further studied by Qian and Chen [152].

7.1 Decomposition of the Wigner-Ville Distribution

The concept of a time-dependent spectrum has proved indispensable in a wide
range o.f gpplications involving non-stationary signals - from radar and sonar to
biomedicine and geophysics. A particularly successful approach to joint time-fre-
quency representation has been driven by the Wigner-Ville distribution. Com-
pared to many other schemes, the Wigner-Ville distribution can better
characterize a signal’s frequency content changes. For example, the conditional
mean frequency of the Wigner-Ville distribution is always equal to the signal’s
ziirl;q)}g,stirelzaneous frequency, the first derivative of the phase. That is, if s(¢) =

2 JowvD, (¢, 0)do |

W), = = =@
plir===copery = ans(t)lzmeVDs(t, w)do = ¢'(t) (7.1)

Note that neither the STFT spectrogram nor scalogram possesses it.

.The relation (7.1) has been considered the most important property for a
qualified time-dependent spectrum. We often use the conditional mean fre-
quency to evaluate whether or not a proposed time-dependent spectrum reflects
a signal’s local behaviors. i

The main deficiency of the Wigner-Ville distribution is the cross-term inter-
fgrence. As we have shown in the previous chapters, the Wigner-Ville distribu-
thI.l often creates highly oscillated terms in places where they are not expected.
It is interesting to observe, however, that the cross-term interference highly
QScﬂlates and is localized. It always occurs in the midway of a pair of correspond-
Ing auto-terms. On the other hand, the conditional mean frequency (7.1) and
other useful properties of the Wigner-Ville distribution, such as time and fre-
quency marginal conditions, depend on the average of WVD only. Hence, if the
WVD is decomposed as the sum of the 2D localized harmonic functions, such as the
2_D Gaussian functions, then we can use low-order harmonics to delineate the
tgne-dependent spectrum with limited cross-term interference. This is because
high harmonic terms have relatively small averages. The useful properties of the
WVD are mainly determined by the low-order harmonics. Discarding the high
harmonics will remove the high oscillation with negligible effect to the other use-
ful properties. Such a decomposition scheme was first reported in [147] and fur-
ther elaborated in [152].

The simplest way of decomposing the WVD as the sum of the 2D localized
harmonic functions is to apply a 2D Gabor expansion [114], ie., v

WYD0) = F Digo ot &) (7.2)
Lkpq

5
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where H(t,w) is specified as the cross-WVD of two Gaussian functions, i.e.,

2 1 .
H;, polts©) = exp{— a(t-tT) - =(0- kQ)z}exp{](pT(o +qQt -kQpT)} (7.3)
| o
When the two Gaussian functions have the same time and frequency centers,
(mTnQ), i.e.,

hih() = exp{-o(t —iT) +jkQ} (7.4)

then (7.3) reduces to

H;p ot 0) = Zexp{- AR (lx(w—kQ)z} (7.5)
which is the joint energy density function of the Gaussian signal of (7.4). The
function of (7.5) is real, which is the special case of (7.3). In general, however, the
complex exponential part in (7.3) will not vanish.

Because the function defined in (7.3) is an optimally concentrated WVD and
related to the signal energy distribution, we consider it an energy atom. Fig. 7-1
plots a typical energy atom described by (7.8), which is concentrated, symmetri-
cal, and oscillates in the joint time-frequency domain.

Fig. 7-1 All energy atoms are concentrated, symmetrical, and oscillating in the joint
time-frequency domain.

The weight of each individual energy atom is determined by 2D Gabor coef-
ficients D;, , .. T and Q are time and frequency sampling st.eps. p and g reflect
the rate of the oscillation of the energy atoms, in the time and frequency
domains, respectively.

Egq. (7.2) demonstrates that the WVD can be constructed in terms of a num-
ber of infinite energy atoms H(¢,w). All these atoms are concentrated, symmetri-
cal, and oscillate in the joint time-frequency domain. In what follows, we show
that the contributions of each individual energy atom to the useful properties are
inversely proportional to the rate of its oscillation.
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In Chapter 5, we proved the time marginal of the WVD is equal to the sig-
nal’s instantaneous energy, that is,

] :
I WVD, (¢, 0)do = |s(1))? (78)
Substituting (7.2) into (7.6) yields

Is@) = YA, Y D,y oexp{- ot - iT) +j(qQt + RQOpT)} (7.7)
P hkg

which shows that the time marginal of the WVD consists of the group of 1D time-
shifted and frequency-modulated Gaussian functions. The weight of each indi-
vidual Gaussian function is

A, = A/O?TneXp{-Z((pT)z} (7.8)

which is inversely proportional to (TY. In other words, the contribution of each
energy atom to the marginal condition exponentially decays as the magnitude of
p increases. The higher the harmonics, the less the influence on the time mar-
ginal. When all atoms are included, the right side of (7.7) manifestly converges to
the signal instantaneous energy |s(t)12. However, the time marginal of the WVD
is mainly determined by a few low harmonic terms.

The reader may verify other properties, such as the conditional mean fre-
quency, by substituting (7.2) into (7.1). It will not be surprising that we will
obtain similar observations for all useful properties introduced earlier. We leave
this as an exercise for the reader. It is generally true that the high-order har-
monics introduce unwanted high oscillation but have limited contributions to the
useful properties. The useful properties are mainly determined by lower order
harmonic terms. Selectively discarding the high-order harmonics allows us to
balance the cross-term interference and useful properties of the WVD.

Thé remaining problem is the implementation of the 2D Gabor expansion
described by (7.2). Based on the expansion theory discussed in Chapter 2, the 2D
Gabor coefficients Di,k,p,q could be computed via the regular inner product opera-
tion, i.e.,

Di, k,p,q = <WVDs(tr (D), ,Yi,k.p,q(ty ®)> (79)

where Y(t,w) denotes the dual function of the 2D Gaussian function H(t,w) in
{7.2).

There are two problems associated with the formula (7.9) from the applica-
tion peint of view. First, unlike the 1D Gabor expansion, it is not trivial, in gen-
eral, to compute the dual function ¥t ) for the given 2D Gabor elementary
function and sampling steps, T and Q. Second, (7.9) is a 2D inner product opera-
tion, which is computationally expensive. In particular, it requires knowing the
entire WVD in advance. These limitations actually prevent the 2D Gabor expan-
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sion from any real applications in which the computational efficiency is a pri-
mary issue.

In the next section, we shall introduce a more practical approach of decom-
posing the WVD. Although the resulting decomposition is not exactly the same
as the formula (7.2), the performance has been found very close to the 2D Gabor
expansion-based algorithm.

7.2 Time-Frequency Distribution Series

Let’s first apply the 1D Gabor expansion to the signal s(¢), i.e.,

si@e ¥ ¥ Buuh. 0 (7.10)
where
1
h=h, (t) = (%)4exp{-g(t-mT)2+ant} (7.11)

The Gabor coefficients C,, ,, are determined by
Cron =[SOV ma(dt = [s()y(t-mT)e?"¥dt = STFT(mT,nQ)  (7.12)

where v,,/(t) denotes the dual function whose shape is optimally close to the
Gaussian elementary function A(¢). As discussed in Chapter 3, such decomposi-
tion is the orthogonal-like Gabor expansion. This type of expansion ensures that the
Gabor coefficients C,, , indeed reflect the signal behavior in the vicinity of [m7T -
Ay, mT + A x[nQ = Ag, nQ + Ay). Fig. 7-2 illustrates the Gabor sampling lattice,
in which each intersection corresponds to the center of one Gabor elementary
function A, ,(2).
Taking the Wigner-Ville distribution with respect to (7.10) yields,

WVDs(t’ ('0) i Z 2 Cm.nCm,',n'WVDh,h'(t’ 0‘)) (713)
mn m'n'
where
) Y
WVD, (t, ©) = 2exp{~ oc(t—m - T] -é(m_”;”‘ Q) } (7.14)

exp{—j’-l——;—z‘Q(m il m')T}exp {lm - m)To + (n —n)Qt]}
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If we let

=k m-m' =p n-n'=gq (7.15)

then WVD,, ,(t,0) in (7.14) have the same form as H(,®) in the 2D Gabor expan-
sion (7.2). In this case, the harmonic frequencies, pT and ¢Q, are determined by
the distance between A, ,(t) and Py n(@). The farther h,, () and k. ,(¢) are
apart, the higher the harmonic frequencies contained in WVDy, p:(t, w).

f'

4 T

noﬂ

moT
Fig. 7-2 Gabor sampling lattice

Fig. 7-3 illustrates the locations of WVDy, 5, (£, 0). Each ellipse is the super-
position of the number of infinite cross Wigner-Ville distributions WVD;, (¢, w)
or energy atoms. For example, all A, ,(t) and Ry p(®), in  which
my = (m+m’)/2 and ng.= (n+n’)/2, will create a WVD;, (¢, 0) that is cen-
tered at (moT,nof2).

Note that (7.13) is not equivalent to (7.2). As shown by (7.15), the selections
of i, k, p, and g are not independent in (7.13). Unlike the case of 2D Gabor expan-
sion, (7.13) implies that each ellipse in Fig. 7-3 only contains certain types of
energy atoms. For example, the DC terms, m = m” and n = n’, only appear in the
Gabor sampling grids (shaded ellipses). The significance of (7.13), however, is
that it can be directly computed by 1D Gabor expansion. This decomposition
scheme not only saves substantial computations, but also is amendable for the
discrete implementation, as we shall see soon.
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Fig. 7-3 Each ellipse represents the superposition of infinite elementary Wigner-Ville
distribution (energy atom). All B, () and hy, - (2), in which (m + m')/2 = mqand (n + n')/
2 = ng, will create a term centered at (myT,npQ).

If the Wigner-Ville distribution is considered as the signal energy distribu-
tion in the joint time-frequency domain, then Fig. 7-3 says that the signal
energy can be broken up into an infinite number of “molecules” (as indicated by
ellipses). All those molecules are concentrated and symmetrical. Moreover, each
molecule is the superposition of an infinite number of atoms. The rate of oscilla-
tion of atoms is different, but they all have the same 2D Gaussian envelope.

Based on the decomposition of the Wigner-Ville distribution in (7.13), we
define the rime-frequency distribution series (TFDS)" as

D
TFDSp(t, ) = 3 Py(t, 0) (7.16)
d=0

where P(1,0) is the set of those WVD,, ;(7.0) which have a similar contribution to
the useful properties and similar influence to the cross-terms. Because the
impact to the cross-term as well as the useful properties are determined by the
harmonic frequencies 1p | T = Im—m'| T and lglQ = ln—n'lQ, Pytw) can also be
considered as the set of WVD,, :(r, ®) in which Im—m'l+ | n-n'l = d,i.e.,

Pt ) = 3 CrpnCr wWVD,, (@) AT,

Im-mi+n-n|=d

" Because it is the Gabor expansion and WVD-based time-dependent spectrum, the time-fre-
quency distribution series is also known as Gabor spectrogram in the industry.
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Substituting (7.14) into (7.17) yields

Pyt o) =2 = CmynC*mvy,,-exp{—jE;Q(m —m')T} (7.18)

Im-m'|+|n-n|=d
v 2 ' =
m+m, \ 1 n+n _\*
exp{—a(t» 5 T) —a(co———z Q)}

exp{Jj[(m -m"HTo+ (n-n")Qt]}

Obviously, the parameter d = (m - m/'| +1n - n'l reflects the rate of oscillation of
WVD,, ,(t,®). The parameter D in (7.16) denotes the order of the time-frequency
distribution series. TFDSp(¢t, ) contains up to Dth order Pt ).
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Fig. 7-4 Manhattan distance.

!

The parameter d can be remembered as the Manhattan distance between
R () and R n(®). The Manhattan distance is the terminology commonly used
in the contents of VLSI (very large scale integration) design, which defines the
distance between two points as the vertical distance plus the horizontal distance.
For example, the distance between aj(xLyl) and ag(x2,y2) is lx1-x21 + Tyl-y21,
as shown in Fig. 7-4, rather than the usual Euclidean distance,

Jix! ~x2)*+ (y1 - y2)°

Apparently, TFDS(t,w) = Py(t,0), when D = 0. In this case,

TFDS (¢, ©) = Py(t,0) = 2 Y ‘Cm'nfzexp{— ot(t—mT)2~é(w~nQ)2} (7.19)

m,n J
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which is non-negative. The right side of (7.19) can be thought of as a 2D interpo-
lation filter. As shown in (7.12), the Gabor coefficients C,,n are the sampled
STFT with the analysis function (1), and thereby the inputs of the 2D interpola-
tion filter 1C,, , | 2 are the sampled STFT spectrogram. The impulse response of
the 2D interpolation filter is a 2D Gaussian function that is optimally concen-
trated in the joint time-frequency domain. Consequently, the zero order time-fre-
quency distribution series is similar to the STFT spectrogram with the analysis
function (). As D goes to infinity, the TFDS,.(t,0) manifestly converges to the
Wigner-Ville distribution. By adjusting the order D, we can effectively balance
the cross-term interference, useful properties, and resolution.

D,D,;IH
" 2z

0000 0002 0004 006 006 0810 o isec)

Fig. 7-5 TFDSy(¢, ®) is close to the STFT spectrogram.
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Fig. 7-6 TFDS;(t,0) has good resolution but no cross-term interference.

Fig. 7-5 to Fig. 7-7 illustrate the TFDS with different orders. When I) = 0
in Fig. 7-5, there is no undesirable term, but the resolution is rather poor (simi-
lar to the STF'T spectrogram). For D = 8 in Fig. 7-6, the resolution is close to the
WVD, but there is no undesirable term. Moreover, it can be shown that
TFDS;(¢,w) well approximate the properties of the WVD. As the order gets
larger, the unwanted term becomes visible and the TFDS converges to the WVD
in Fig. 7-7. In general, the higher the order, the better the resolution. On the
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other hand, the higher the order, the severer the interference. A good compro- I
|

mise usually is between order two to four.
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Fig. 7-7 TFDS,y(1,0) converges to the WVD. (A high-order TFDS improves the
resolution but also introduces interference. A good compromise has been found for
order two to four.)

Fig. 7-8 and Fig. 7-9 compare the Wigner-Ville distribution, the Choi-Will-
iams distribution, and TFDSy(t, ) for three Gaussian functions. Note that all the
unwanted terms caused by the two components with the same time or frequency
center remain in the CWD.

(a) WVD(z,m) (b) Choi-Williams distribution

Fig. 7-8 The Choi-Williams distribution suppresses the cross-term created by two
Gaussian functions with different time and frequency centers, but it preserves the
cross-terms caused by two Gaussian functions with either the same time or same
frequency centers.

Fig. 7-7 and Fig. 7-8 illustrate three cross-terms created by each pair of
M n(t) and R n(t). Traditionally, the cross-terms are always considered as
undesirable and bad. Thereby they should simply be removed. Eq. (7.7) demon-
strates, however, that the cross-term is not always unwanted. The significance of
each WVDy, ;(t,0) depends on the Manhattan distance between those two auto-
terms, hy, ,(£) and Ay, ,(¢). When WVD}, ;(t,@) correspond to the pair of &, (1)
and h,,, ,(¢) which are close to each other, they play important roles for the use-
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ful properties and therefore cannot be neglected, even though they are the
“cross-terms.”

Fig. 7-9 The resolution of TFDS3(t,0) is close to the WVD, but there is no undesirable

term. Moreover, it can be shown that TFDS;(¢,0) well approximate the properties of
the WVD.

As discussed in Chapter 2, a given signal can be decomposed in an infinite
number of ways. Different decomposition schemes will lead to different Ccross-
terms. In other words, the cross-term is not unique. The concept of cross-term in
fact is ambiguous. It is the high-order harmonic terms that we should remove
from the Wigner-Ville distribution rather than general cross-terms. ]

Finally, let’s investigate how the time-frequency distribution series is
related to the mean instantaneous frequency. In what follows, we use the instan-
taneous bandwidth as the measure to evaluate different representation schemes.
The instantaneous bandwidth A (¢) is defined by

~ f(oo— (co),)zP(t, w)dw

A5 ()
JP(t, ®)do

(7.20)

where <w>; denotes the conditional mean frequency defined in (7.1). The instan-
taneous bandwidth A,(#) is the indication of the signal energy spread with
respect to the conditional mean frequency. Intuitively, the good time-dependent
spectrum P(¢,0) should be such that its conditional mean frequency is equal to
the signal mean instantaneous frequency, the first derivative of a signal’s phase.
The instantaneous bandwidth should be as small as possible.

Fig. 7-10 illustrates the narrow window STFT spectrogram and TFDS;3(¢, o)
for the linear chirp signal. As mentioned earlier, the conditional mean frequency
of the STFT spectrogram in general is not equal to the first derivative of the
phase of the signal. When the narrow window is applied, however, the condi-
tional mean frequency computed by the STFT spectrogram is very close to the
first derivative of the phase. Fig. 7-11 depicts the theoretical mean instanta-
neous frequency (the first derivative of the phase) and conditional mean fre-
quency computed by the STFT spectrogram and TFDSg(t,w). In this case, three
lines (theoretical value, mean instantaneous frequencies computed by STFT
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spectrogram, and TFDSg(t,w)) basically are indistinguishable. However, the
instantaneous bandwidth of TFDS5(,0) is much smaller than that of the STFT
spectrogram as shown in Fig. 7-11. The same observation can also be obtained
from the non-linear chirp signals in Fig. 7-12 and Fig. 7-13.

T

Fig. 7-10 STFT spectrogram (left) and TFDSs(z,0) (right) for linear chirp signal.
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Fig. 7-11 The theoretical mean instantaneous frequency and the conditional mean
frequency computed by the STFT spectrogram and the TFDS5(¢,0) basically are
indistinguishable. The energy spread of TFDS3(¢,®) (solid line), however, is much
smaller than that in the STFT spectrogram (dotted line).

As the numerical simulations indicated, the conditional mean frequency of
the TFDS not only well approximates the signal’s mean instantaneous fre-
quency, but also has much smaller instantaneous bandwidth. Although the con-
ditional mean frequency of the WVD is equal to the first derivative of the signal’s
phase, its instantaneous bandwidth widely oscillates for the non-linear chirp sig-
nal.

In addition to the STFT spectrogram, Wigner-Ville distribution, and time-
frequency distribution series, there are more than a dozen other bilinear distri-
butions which presumably preserve the properties of the Wigner-Ville distribu-
tion. However, because they all are developed from continuous-time Cohen’s
class, the properties derived in general do not hold for the discrete-time signals.
On the other hand, the time-frequency distribution series, as shown in (7.18),
has the closed form for arbitrary signals. Then, we could directly sample the con-
tinuous-time time-frequency distribution series to obtain the discrete time-fre-
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quency distribution series. Consequently, all the properties possessed by the
continuous-time time-frequency distribution series will automatically be carried
over to its discrete-time counterpart.

Fig. 7-12 STFT spectrogram (left) and TFDS4(¢, o) (right) for non-linear chirp signal.
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Fig. 7-13 The theoretical mean instantaneous frequency and the conditional mean
frequency computed by the STFT spectrogram and the TFDS5(t,w) basically are
indistinguishable. The energy spread of TFDS4(t,0) (solid line), however, is much
smaller than that in the STFT spectrogram (dotted line).

7.3 Discrete Time-Frequency Distribution Series

In the preceding section, we discussed the time-frequency distribution series for the
continuous-time signals. We showed that the low-order TFDS not only signifi-
cantly reduces the unwanted oscillation, but also well depicts the signal’s time-
dependent spectrum. Another important feature of the TFDS is that the TFDS
has a closed form for arbitrary signals s(¢). The only thing it needs to compute
are the Gabor coefficients C,,, . As discussed in Chapter 3, the Gabor coefficients
are no more than the sampled short-time Fourier transform. And the algorithm
of computing STFT is well established. Because of this nice feature, the discrete
version of the time-frequency distribution series can be obtained by directly sam-
pling its continuous-time counterpart.
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For example, if the signal s(¢) is band limited, then the discrete time-fre-
quency distribution series is defined as

h

DTFDS, i, k] = TFDS y(t, @) for L<k <t
t=iAt,w=§"T}; 2 T

(7.21)

where 1/At denotes the sampling frequency. L denotes the total number of fre-
quency bins. Because the discrete time-frequency distribution series is the sam-
pled version of the continuous-time time-frequency distribution series, the
discrete time-frequency distribution series will automatically inherit (at least
well approximate) the properties possessed by its continuous-time counterpart.
There is no aliasing problem as happened in the Wigner-Ville distribution.

For the sake of presentation simplicity, let At = 1 in (7.21). Without intro-
ducing any confusion, we use TFDSpli,%] for the discrete time-frequency distri-
bution series. Then, the discrete time-frequency distribution series can be
summarized as

D
TFDSpli, k] = Z Pli, k] (7.22)
d=0
where

Pli k) = 3

Im-m|+n-nl=d

The TFDSp(i, %] in fact is the sum of all WVDy, 5 [i,k] in which the Manhattan dis-
tance of the corresponding Gabor elementary functions hm nliland A, [i] is less
Fhan or equal to D. WVD[;,£] is defined as a sampled Wigner-Ville distribution,
ie.,

Cm,ncmnWVth[l, k] (723)

WVD,[i, k] = WVD,(t, ») : (7.24)
t=iAt, 0= I%LA; .
where At denotes the sampling interval. For the Gaussian functions, WVD is

obtained by sampling the formula (7.14), i.e.,

' 2 4 2
WVDhyh,-{i,k]szexp{_a(i*m;mAM) ‘olg(k‘n ;nAN) } (7.25)

n+n'

><exp{j—zl—i-t[(m—m'jAMk+(n—n')ANi‘ 5 AN(m—m’)AM]}

where we assume that A¢ = 1. Note that WVDy, ,[i,k] in (7.25) is completely
determined by the parameters of the Gabor expansion, such as AM, AN, L, and o,
which are independent of the analyzed signal. Therefore, once AM ,AN, L, and o
are determined, we can precompute WVD,, jli,k] and save them in the table.
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Consequently, the evaluation of the discrete time-frequency distribution series
involves no more than looking up the table.
Because WVDy, 5 [i,k] = WVD*, ,[i,k], Pyli,k] can be further simplified as

Pyl k]l = Re{ Z A(m,m' n,n'") (7.26)
(m-mYy+n-nl=d

m+m'

2 2 i 2
Xexp[—oc(i— s AM)~01L(%LT—C)(k—n;nAN)J

><9XP[J%[(m—m')AMIe+(n—n')ANi]]} m>m'

The weight A(m,m’,n,n’) is equal to

(

2165 ”[2 m=m' and n=n'
46, ICF ,zvexp{ﬂ'n “; - AN(m - m')AM} otherwise

Compared to (7.25), the formula (7.26) saves half the computations.

The computation complexity grows as the order D increases. In real appli-
cations, however, the order D is seldom larger than four. When D is bigger than
four, unwanted terms will become noticeable. :

7.4 Selections of h[i] and vy[i]

Based on the previous discussions, it is obvious that the convergence of the time-
frequency distribution series is independent of the selection of the Gabor elemen-
tary function A[(z] and the dual function y{i]. As the order D goes to infinity, the
time-frequency distribution series always converges to the Wigner-Ville distribu-
tion, no matter how we choose i[z] and 7{i]. To avoid unwanted terms, however,
we would like to keep the order of time-frequency distribution series as low as
possible. This implies that zeroth order TFDS, TFDS[i,%], should be as close as
possible to the true time-dependent spectrum. If this is the case, we could obtain
the desired time-dependent spectrum by adding a few lower order harmonics.
The resulting presentation not only well delineates the signal’s time-dependent
spectrum, but also has limited interference. Otherwise, we would have to include
a considerable number of high-order terms to obtain the meaningful time-depen-
dent spectrum. In this case, the results will be similar to the WVD. To better bal-
ance the unwanted terms and useful properties, it is desired that:

« The analysis funcrion Y[t] is localized in both time and frequency domains;
*  hli] and yli] have similar time/frequency centers and time/frequency resolutions.
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These concepts may not be obvious at first glance. In order to get a better
unders.tandmg, let’s look at a couple of examples. First, let’s examine the zeroth
order time-frequency distribution series, eg.,

o e 2
TEUSL Rl =9 5 5 ]Cm,nfzexp{—oc(i-mAM)z—é(i—nj (k*nAN)Q}

M=~ p=_o
Notice that the exponential parts are the Wigner-Ville distributions of Bl
which are concentrated at (mAM,nAN). The weight C, » is the projection of s1g-
nal s[7] on vy, ,[i], that is, Crin= <80mn> Ky, [ilis sui)stantially different from
"o nli], for instance, Ym,n[t] is not centered at (’mAM,nAN), then 1C,, , 1% will not
reflect the signal’s behavior in the vicinity of (mAM,nAN). ’

L=128, dM=16, dN=4
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Fig. 7-15 Although both dual functions lead to perfect reconstruction, their shapes
are dramatically different. Yopil] is optimally close to A[7]. Therefore, it has similar
time and frequency centers to those of A[i]. Yopelt] is optimally concentrated in the joint
time-frequency domain, whereas the right-side dual function is neither concentrated
in time nor in frequency.

Fig. 7-14 and Fig. 7-15 depict the Gabor elementary function A[7] and cor-
responding dual functions y{i]. Although both dual functions in Fig. 7-15 lead to
perfect reconstruction, their shapes are dramatically different. Yopdi] 18 optimally
close to 2[i]. Therefore, it has similar time and frequency centers as those of A[7].
Because Alilis a Gaussian-type function, which is optimally concentrated in the
Joint time-frequency domain, Yop 2] is also localized. On the other hand, the dual
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function depicted on the right side of Fig. 7-15 is neither concentrated in time
nor in frequency’.

TFDS(t, ®) TFDS4(t, ®)

Fig. 7-16 Time-frequency distribution series with optimal (dual function y,,],,[k].
(Because of the good initial guess, TFDS(t,®), we obtain the desired representation by
adding a few low-order harmonic terms.)

TFDS,(t,®)

TFDSlo(t, (0) TFD S35(t, (D)

Fig. 7-17 Time-frequency distribution series with bad dual function. (Although it
converges to the WVD, the lower order TFDS is way off the true time-dependent
spectra.)

Fig. 7-16 and Fig. 7-17 illustrate the TFDS, computed by the two differgnt
dual functions plotted in Fig. 7-15, for the linear chirp signal whose frequencies

" The algorithm of computing Y{%] that is intentionally different from A[k] is introduced in
Appendix B.
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linearly increases with respect to time. In Fig. 7-16, because Yopilt] has the same
time and frequency center as A[i] and is localized, the low-order TFDS well delin-
eates the linear chirp signal with negligible interference. Fig. 7-17 plots the
results of TFDS for the same chirp signal but with dual function {z] (plotted as
shown in the right side of Fig. 7-15), whose shape considerably differs from A[i].
Although in this case TFDS_[i,k] — DWVDI[i k], the low-order TFDS does not
reflect the true time-dependent spectrum. The meaningful linear chirp pattern is
not obtained until the order increases to ten. At the same time, TFDS,4(t,0) has
included substantial interference, as shown. Therefore, to achieve the desired
joint time-frequency representation, y{i] not only has to be localized, but also
should be close to A[i]. The solution is the orthogonal-like Gabor expansion intro-
duced in Chapter 3.

The selection of the variance o that controls the time and frequency resolu-
tion of the Gabor elementary function also affects the performance of the lower
order time-frequency distribution series, though its impact is much smaller than
that in the STFT spectrogram. A good choice depends on the applications at
hand. The principle of the selection, however, is similar to the selection of the
window function for the short-time Fourier transform. If time resolution is
important, for instance, when we try to catch a short duration pulse, then the
larger o is favored. Otherwise, we should use smaller o, which leads to better
frequency resolution.

7.5 Time-Frequency Distribution Series and Cohen’s
Class

The best way to understand the difference between the time-frequency distribu-
tion series and Cohen’s class is from the ambiguity domain. Let’s take the ambi-
guity transformation, with respect to the Gabor expansion in (7.10), yields

AR 2 3, Y 6, .00 AF; .08 %) (7.27)

m,n m'.n'

As discussed in Chapter 6, the partial derivative of the phase of WVDy, ;(t, @) is
equal to the center of AF), ;(%,1) (see (6.17)). Therefore, retaining the low-order
terms of time-frequency distribution series (low harmonics or small partial
derivative of the phase) is equivalent to keeping those AFh) »'(8,7) which are cen-
tered in the vicinity of the origin. The resulting time-dependent auto-correlation
is

R(t, 1) = r/—lz_?ch{AF(ﬂ, 0} do (7.28)

where ${*) denotes a non-linear truncation. If taking the Fourier transformation
with respect to (7.28), we will obtain a truncated time-frequency distribution
series. On the other hand, as long as the kernel function ¢(3,1) is continuous for
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all ¢ and 1, the Cohen’s time-dependent auto-correlation is a typical linear filter,
Le.,

Rt = —e [ @0, AT, 1) 20
2T

As discussed in Chapter 6, AFj, ;(9,1) has the Gaussian envelope that
extends to the entire ambiguity domain. In other words, AF}, ;(9,7) are heavily
overlapped. Therefore, there is no closed form of the kernel function ®(9,1) that
is equivalent to truncating the AF(9,1) in (7.27).
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Fig. 7-18 Three-tone test signal.
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Fig. 7-19 [AF(0,71)! of three Gaussian functions. (Except for the one that is
concentrated in the origin, all other clusters correspond to the cross-terms.)

As we have noticed, many well-known members of Cohen’s class, such as
the Choi-Williams distribution [23], emphasize preserving the properties of the
Wigner-Ville distribution. In order to “precisely” keep the time/frequency mar-

ginal conditions, the kernel has to be

®(9,0) = DO, 1) = 1 V9,1 (7.29)
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In other words, all AF(9,1) that are close to the ¥-axis or 1-axis will be preserved,
no matter how far they are from the origin (0,0) or how important they are to the
useful properties. On the other hand, AF(1,7) concentrated at the 1-axis corre-
spond to the cross-terms caused by two signals with the same frequency center.
AF(8,7) concentrated at the 9-axis correspond to the cross-term caused by two
signals with the same time center. The direct consequence of using the kernel
®(9,1) described in (7.29) is that all cross-terms caused by two signals that have
either the same time or frequency centers will be present.

Fig. 7-19 illustrates the amplitude of the ambiguity function of three Gaus-
sian functions. The corresponding Wigner-Ville distribution is plotted in Fig. 7—
18. Note that, except for the one that is concentrated in the origin, all other clus-
ters correspond to the cross-terms. The one that is centered in the t-axis, AF(1 o,
corresponds to that caused by two Gaussian functions having the same fre-
quency center. Two centered in the ®-axis, AFg9 <3 and AF 5 9, correspond to the
cross-AF caused by two Gaussian functions having the same time center. The
one away from both axes, AFg1 43, corresponds to the cross-term caused by two
Gaussian functions that have different time as well as frequency centers.
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Fig. 7-20 Exponential kernel (left) and corresponding 1®(9,1DAF(S.1)! (right).
(1 (8,0AF(8,7)| contains all portions of AF that are on both the ¥-axis and 1-axis.)
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Fig. 7-21 Ambiguity function corresponding to TFDS4(t,0). (The auto-terms are well
preserved but all cross-terms are removed.)
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Fig. 7-20 illustrates the exponential kernel function
O(8,7) = exp{-a(97)"}

which was first proposed by Choi and Williams [23] and extensively studied by
many others [140]. Because the exponential kernel satisfies (7.29), the product
|90, T)AF(8,1)| contains all cross-terms that are either in the 9-axis or t-axis.

Fig. 7-21 depicts the corresponding ambiguity function to TFDS;(#, ). The
comparison of the Choi-Williams distribution and the low order time-frequency
distribution series is plotted in Fig. 7-22. Although in TFDS;5(¢,®) the high har-
monic terms, starting at four, are removed, TFDS;(t,0) still well approximates
the marginal as well as other properties. This is because the high harmonics
have very limited contributions to the useful properties.

Fig. 7-22 TFDS;(t,w) (right) better delineates the time-dependent spectra than the
Choi-Williams distribution (left).

There is an attitude these days that a “good” time-dependent spectrum
must completely satisfy all the properties listed in Table 6—1 . To do so, one has
to preserve all portions on both the ¥-axis and 1-axis, even if they are far from
the origin. The direct consequences are that the resulting presentations would
contain a tremendous amount of unwanted interference. It is clear now that to
reduce undesirable interference and to preserve some properties, such as the
time marginal condition, the frequency marginal condition, etc., are two conflict-
ing objectives. If we cannot accommodate those two goals simultaneously, which
one is more important? The low-order time-frequency distribution possesses a
very limited interference. Although it does not completely satisfy the properties
listed in Table 6-1 , the differences are small, which could be neglected for most
real applications.
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To retain those AF), ;,(0,7) which are centered in the vicinity of the origin is
somehow similar to applying a kernel function @(9,1), defined as

o071 =4 ! @)2*(7:‘)29 - (7.30)

0 otherwise

The parameters a and & determine the range of the kernel in two axes. The small
radian r corresponds to the low-order harmonics. As the r increases, high har-
monics are included. As r goes to infinity, the resulting time-dependent power
spectrum approaches the Wigner-Ville distribution. However, because of the
sharp cut in the edge of
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the resulting time-dependent power spectrum (double Fourier transform of the
ambiguity function) will have strong ripples. To overcome this problem, Wu and
Morris investigated the kernel with smoothing transition [191].

The results obtained by Wu and Morris have many similarities with those
obtained by the time-frequency distribution series. The fundamental difference
between the members of Cohen’s class and the time-frequency distribution series
is that Cohen’s class represents the linear filtering, and truncating the time-fre-
quency distribution series is typical non-linear processing.

00000 00005  0ODI0 0005 00020 0.00%5 (sec)

Fig. 7-23 Bat sound computed by the fourth-order TFDS. (Bat data are provided by
Curtis Condon, Ken White, and Al Feng of the Beckman Institute at the University of
Ilinois.)

Before finishing this chapter, let’s compare all the different time-dependent
spectra, introduced in this book, for a bat sound. Fig. 7-23 plots the result com-
puted by the fourth-order time-frequency distribution series. The echo-location
pulse was emitted by a large brown bat, Eptesicus fuscus. Fig. 7T-24 depicts
results obtained by other algorithms introduced in the previous chapters. The
STFT spectrogram is non-negative, but it has the lowest resolution. The TFDS
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and signal-dependent kernel distribution have better resolution without the sig-
nificant presence of high oscillations. The Choi-Williams distribution possesses
strong horizontal as well as vertical ripples, whereas the cone-shape distribution
only has relatively weaker ripples along the pime'index.

Signal-dependent kernel distribution

Fig. 7-24 Bat sound computed by different time-frequency transforms

Summary

Using the orthogonal-like Gabor expansion, we can decompose the Wigner-Ville dis-
tribution into the 2D localized harmonic series known as the time-frequency distri-
bution series. The useful properties of the Wigner-Ville distribution are obtained
by averaging the Wigner-Ville distribution and they are mainly determined by
the low-order harmonic terms. The high harmonic terms have very limited con-
tribution to the useful properties, but are directly responsible for the cross-term
interference. Selectively removing the high harmonics enables us to balance the
useful properties and the interference. A lower order time-frequency distribution
series not only well delineates the signal time-dependent spectra, but alse signif-
icantly diminishes those annoying oscillations appearing in the Wigner-Ville dis-
tribution. Discarding the high harmonic terms is equivalent to suppressing the
part of ambiguity functions that is far apart from the origin in the ambiguity
domain. In contrast to Cohen’s class, which is linear filtering on the ambiguity
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domain, truncating the time-frequency distribution series is a non-linear low-
pass operation.

By using the time-frequency distribution series, we can gain a better under-
standing of the nature of the cross-terms. The phrase “cross-term” in fact is
rather ambiguous. First, the cross-term is not unique; it is different for different
decomposition schemes. Second, the cross-term is not always unimportant.
When the cross-term is caused by a pair of auto-terms that are close to each
other, it appears the lower order harmonics and it will play an important role for
the useful properties. It is the high harmonic terms that are undesirable for joint
time-frequency representations.
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its applications. The time-frequency distribution series (TFDS) is the decomposi-
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closely related to the sharpness of both time and frequency resolutions, the Fou-
rier transform-based spectrogram has been found to be inadequate in radar
imaging applications.

Naturally, one would like to ask: Can we devise a system that is able to
accommodate both narrowband and wideband signals? If we can, how do we
make the window function adapt? These are the questions that will be addressed
in this chapter.

In Section 8.1, we briefly introduce the general adaptive representation and
adaptive spectrogram. Although the motivation for the adaptive representation
was joint time-frequency analysis, the scheme of the adaptive representation
turns out to be rather general. This means that not only can we essentially use
an arbitrary function as the elementary function to match the analyzed signal,
but we can also adjust any aspects of the elementary signals. For example, in
addition to adapting the elementary function’s duration, we can also tune up the
frequency changing rate of the elementary functions.

In Section 8.2, we discuss the selection of the elementary function from the
joint time-frequency analysis point of view. Because the Gaussian function is
optimally concentrated in the joint time-frequency domain, it is natural to use
the Gaussian function as the elementary function. The resulting adaptive repre-
sentation is called the adaptive Gabor representation, because it largely resem-
bles the conventional Gabor expansion. The Gaussian function-based adaptive
spectrogram is non-negative and cross-term interference free.

One main issue of the adaptive representation is how to find the elemen-
tary function that best fits the analyzed signal. Section 8.3 is devoted to the algo-
rithm of computing the optimal elementary functions. In particular, we discuss a
heretical approach of selecting the best match between a signal and all the ele-
mentary functions. This approach has been implemented by several authors
with a great deal of success. :

Finally, in Section 8.4, the performance of the adaptive Gabor representa-
tion and other bilinear transformations are compared. We give some guidelines
as to the expected performance of the adaptive spectrogram. For readers who are
interested in the convergence problem of the adaptive expansion, a proof is given
in the appendix. In this proof, it shows that, given enough elementary functions,
the adaptive signal expansion indeed converges.

The adaptive Gabor representation and adaptive spectrogram were inde-
pendently proposed by the authors (see [146] and [151]) and Mallat and Zhang
[122] at about the same time. The adaptive representation initially was moti-
vated by joint time-frequency analysis. Hence, the elementary functions had
mainly been limited to the Gaussian-type functions. As a matter of fact, the
selection of the elementary functions is much broader. We could almost use any
functions as the elementary functions to achieve the adaptive representation.
The adaptive representation introduced in this chapter is not only powerful for
time-frequency analysis, but could also be used for many other applications, such
as data compression and the de-noise process.

= e

8.1 Adaptive Expansion and Adaptive Spectrogram

8.1 Adaptive Expansion and Adaptive Spectrogram

Analogous to the conventional Gabor ex
expansion as

s(1) = ZBphp(t)
p
where the coefficients are determined by

B, = (sh)

which reflects the similarity between the signal s(¢) and the fun

8-5 illustrates the procedure of the adaptive signal decomposition.

h
g p=1
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I =
/ >
h, Byhy

Fig. 8-5 Adaptive signal decomposition.

First, let’s start with p = 0 ich 1
; \ P = 0 and s4t) = s(z), which is the ori
Thefl, ﬁnd the Ay(2), among the set of the desired eleme
most similar to sy(z), in the sense of

’B/;’z = H}zax ‘ <S/7(t)’ hp(l» ‘2
Il

for p = 0. The next step is to compute the residual, s4(¢) by
$p41(8) = 5,(0) =B, h (1)

Without loss of generality, let hp(t) have a unit energy. That is

’

h, () = 1

Then, the energy contained in the residual is

Is, O = s, - 18,7
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1
la and Fig. 8-1b show the STFT spectrogram (square of STFT) computed by a i
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Fig. 8-2 shows the fourth-order TFDS, in which the wideband elementary fvftxtrxllx g ccrrnn §a2§ﬂ1 /7‘ 5
function is used in order to catch a very short time-domain pulse. Compared with i i Gy
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of elementary functions.
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The desire for good resolution in both time and frequency domains is not F1g- 84 STRT spectrogram of reflected signals in Fig. 8-3.

artificial, but occurs in many real applications. Fig. 8-3 illustrates a simple Fig. 84 displays an STFT Spectrogram of the reflected electromagnetic si
radar target of a strip containing an open cavity". A fundamental interest in the nal. As expected, three scattering centers can be identified as v tg nel 1? w
radar community is the nature of reflected electromagnetic signals. Based on the (wideband signals) in the STFT spectrogram. In addition to these scaetrtelr(':a sy
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centers, corresponding to the left and right edge of the strip and the cavity exte- ; 2111:}:'83’ choupled into the cavity and re-radiated at its corresponding I}“) esonancese

i i i i i ough w i i
rior. Therefore, the reflected signal must contain three wideband time pulses ‘ , resolut;gon C: mg:;ntefh esocrc?e insights with the STFT spectrogram, the fr, equency

" A detailed description is presented in Section 10.2, quality of radar imagery ;
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we have

1

Is(O* = 5 [[WVD, (1, @)drdo

21 1 .
» %13p| 5= [JWVD, (1, ©)dider + 5 | J'pg‘quBq*WVD,,phthdw

2 1
= Y18, + 5[] ¥ B,BWVD, , drdo (8.18)

P pP*q
Because of the relation described in (8.15), it is obvious that
zinjj S B,B*WVD, , dtdo = 0 (8.19)
P#q

which implies that the second term in (8.18) contains zero energy. This gives us
the reason to define a new time-dependent spectrum as

AS(1,0) = Y|B,|"WVD, (1, ®) (8.20)
P

Because it is an adaptive representation-based time-dependent spectrum, we
call it an adaptive spectrogram (AS). Clearly, the adaptive spectrogram does not
contain the cross-term interference, as occurred in the Wigner-Ville distribution,
and it also satisfies the energy conservation relation

sl = 2_17_E [[AS(@, w)dido (8.21)

As mentioned in the very beginning of the book, a fundamental issue of lin-
ear representation (or expansion) is the selection of the elementary functions.
For the Gabor expansion, the set of elementary functions is made up of a time-
shifted and frequency-modulated single prototype window function A(¢). In the
wavelets, the elementary functions are obtained by dilating and translating a
mother wavelet y(¢). In those two cases, the structures of elementary functions
are simple and they can be determined in advance. The elementary functions
employed for the adaptive representation, however, are relatively complicated.
Usually, we first select a parametric model based on the applications at hand.
Then, we continuously update the function A, (t). The better performance of the
adaptive scheme is achieved at the cost of the matching process.

Finally, it is worthwhile to note that both the adaptive algorithm as well as
adaptive spectrogram introduced in this section are independent of the selection
of the elementary functions k,(t). Any functions can be used for the basic para-

P
metric model. Both algorithms hold for arbitrary elementary functions. In the

next section, we shall discuss the selection of the elementary functions from the
time-frequency analysis point of view.
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8.2 Adaptive Gabor Representation (AGR)

In principle, the elementary functions used for the adaptive signal expansion of
(8.1) can be very general. Practically, it may not be the case. To better character-
ize a sxgnal’s time-varying nature, it is desirable for the elementary functions to
be logahzed in time and frequency simultaneously. Moreover, the elementary
functions should be such that the resulting optimization algorithm is relatively
easy to be implemented. Because the Gaussian-type signal achieves the lower

bound of the uncertainty inequality, it i i i
¥, it is a natural selection for ad z
sentation, that is, ) e

o174 &
hy(2) = (#’) exp{——f(l—Tp)z}exp{jth} (8.22)

where {TP, Q) is the time-frequency center of the elementary function. o ! is
the variance of the Gaussian function at (Tp, Q). F

‘ The vgriance used in the regular Gabor expansion is fixed, while it is
a_djustable in (8.22). The Gaussian functions used in the regular Gabor expan-
sions are located at fixed time and frequency grid points (m7T, nQ), while the cen-
ter§ of .the elementary functions in (8.22) are not fixed and they ca;l be anywhere
Adjusting the variance value will increase or decrease the duration of the ele-‘
mentary function; adjusting the parameters (Tps Q) will change the time and
frequency (?enters of the elementary function. Thus, the overall effect of adjust-
ing the variance and the time-frequency centers will allow us to better match the
signal s(¢)’s local time-frequency feature.

/

t

y

Fig. 8-6 The WVD of adaptive Gaussian functions.

Fig. 86 plots the joint time-frequency density function of the adaptive

Gaussian functions, where

14

s -
WVth(t, ®) = Zexp{—[(xp(l—Tp) +—-a—'—-}} (8.23)
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Repeat (8.3) to find A 1(¢) that matches s1(¢) the best, and so on. In each step,
we find one elementary function, h,(#), that has the best match with s,(¢). The
main task of the adaptive signal expansion is to find a set of elementary func-
tions, {h,(?)}, that most resemble the signal’s time-frequency structures, and in
the meantime satisfy the formulae (8.1) and (8.2). Table 8-1 depicts the opera-
tions up - to pth steps.

Table 8-1

Residual Projection Energy in Residual

50 = 50 Bq = <s(®), ho(@)> [lso(0]”

51(8) = so(t)>-Boho(t) By = <s1(®), by@)> |ls, (0] = s - |Bg

5p() = 5p.1()-Bpahpy(8) | By = <sy(0), hy(e)> ls, (0" = Isp1OF - B

Intuitively, the residual will vanish if we continue to carry on the decompo-
sitions described by (8.3) and (8 .4). To see this, let 0, be the angle between sp(t)
and hy(t), then

(s, hy B

cos, = —2-2 = & (8.7)
27 sl Tl

Applying the relationship (8.7) to (8.6) yields
sy = s, 10 *(sing, _)* 8.8)

Similarly, |s,_ 1(1)];2 can be written in terms of s,, (). If continuing this process,
finally we have

p-1
ls, (O = [so)” TT (sin8)* < Jso(0]*(5inB )™ (8.9)

i=0

where

|sin® ., = max|sing | Vp (8.10)
8

’n

Assume that at each step p, we are always able to find the optimal hp(t)
that is not perpendicular to s,,(¢), that s,

cos6,# 0 or [sin@,| <1 Vp (8.11)
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then,
[8in 8,0 < 1 (8.12)
Substituting (8.12) into (8.9) yields
Il e et )8 my  pses (8.13)

which says that the energy of the residual signal exponentially decays and con-

verges to zero". In other words we can i
: 1 perfectly reconstruct the signal
on the set. of adaptive elementary functions (A (@)} i i
- Obviously, for a dif'ferer}t signal, its set of adaptive elementary {h (¢)} is also
ifferent. Each set of adaptive elementary functions {4 (¢)} onl WOIPk fi

particular signal, not for all si im LA o 4 st Gébor
i ' gnal, not for all signals in L. Therefore, unlike the regular Gabor

pansmp (as2well as wavelets), the set {hp(t)} constructed above will never be
complete in L*, even if the residual converges to zero.

Now, let’s rewrite (8.6), such as

2

Iy = Is,a 0]+ B, (8.14)

which shows that the signal energy residual at the pth stage could be deter-

Hllned by t/he Slgn 1 X d p p . aIIy O
a es1 ual at +1t}1 Stages luS Bp C()ntl]lulllg to ¢ ut

ls(nl” = EOIB,J‘ i (8.15)

which is the energy conservation e
in the Fourier transform.

Apply the Wigner-Ville distributi t i
s - i 1on to both sides of (8.1) and arrange the

quation, and is similar to Parseval’s relation

WVD.(1, ) = ZB;WVD,,p(z, ®)+ 3 B,B*WVD,, (1, ©) (8.16)
» g

P#q

The first group represents the auto-terms and t

he second
cross-terms. Since il i

1
52 [WVD, (1, w)dido = )2 = 1 (8.17)

*
'} Artioc 1
ne Convergem properties for the gﬁncra] cases are dlSCUSSCd in the appendix
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functions, the SNR is improved approximately 20 dB.

00000 0000 0000 00150  0OXN0 00255 (sec)

Fig. 8—13 Linear chirp signal computed by adaptive spectrogram.

Fig. 8-13 and Fig. 8-14 plot the adaptive spectrogram, WVD, STFT spec-
trogram, and the fourth-order TFDS of a linear chirp signal. In this case, the
adaptive spectrogram does not offer good time-frequency resolution due to the
limited elementary function.

(a) WVD (b) STFT spectrogram

Iz

(c) TFDS,(t,®)
Fig. 8—14 Linear chirp signal.

Fig. 8-10 and Fig. 8-13 are two extreme examples which show the best and
the worst scenarios for the adaptive spectrogram. They do point out general
guidelines in determining how the adaptive spectrogram will perform. In gen-
eral, the adaptive spectrogram using the Gaussian functions will perform well if
the signal of interest is a combination of short duration pulses with quasi-sta-
tionary signals such as the frequency hopper. It does not do well for chirp-type
signals.
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One way of making the adaptive representation more robust is to use a
more general model of the elementary function. For example, use the linear chirp
modulated Gaussian function as the basic elementary function, i.e.,

o \1/4 @, ’ 2
ho(t) = (#’j exp{—-—Z—(t—Tp) }exp{j(th+Bpt ) (8.32)
where the parameter B, allows us to control the frequency change rate. Fig. 8-15
illustrates the joint time-frequency distribution of hy(t) in (8.32). It shows that
not only can we adjust the variance and time-frequency center, but we can also
regulate the orientation of A,(t) in the joint time-frequency domain by varying
the parameter Bp. The linear chirp modulated Gaussian function is more flexible
and thereby it could better adapt the analyzed signal. The resulting adaptive
spectrogram is

AS(1,0) = 22;Bp|2exp{—[ap<;_rp)2+&l—m_n,,_zgpz)ﬂ} (8.33)
P P

which is non-negative.

2Byt

| ol 4

Ty

Fig. 8-15 Linear chirp-modulated Gaussian function.

Although the linear chirp modulated Gaussian function possesses some
attractive features, the resulting matching process of seeking the optimal hp(t) is
much more complicated. So far, no practical optimization algorithm of computing
(o, Tp, @, Bp) has been reported.

Summary

In this chapter, we discussed the adaptive signal expansion and the adaptive
spectrogram. The difference between an adaptive signal expansion with other
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The adaptive spectrogram is rather flexible. By selecting a different vari-
ance, one can obtain good frequency resolution at any frequency band. The same
is true for the time resolution.

(a) Wideband STFT spectrogram (b) Narrowband STFT spectrogram

BRI T

(c) TFDS,(t,w) (d) Adaptive spectrogram

Fig. 8-9 Sinusoidal function plus a time pulse.

Fig. 8-9 illustrates the STFT spectrogram, time-frequency distribution
series, and adaptive spectrogram for the signal introduced in the beginning of
this chapter. Obviously, in this example, the joint time-frequency resolution of
the adaptive spectrogram is superior to all other schemes.

5.0-
2 A.U—EF,:,,
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i 2.0+
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0000 0005 0010 0015 0.020 0025 (sec)

Fig. 8-10 Frequency hopper signals computed by adaptive spectrogram.

Fig. 8-10 and Fig. 8-11 plot the adaptive spectrogram, WVD, STFT spec-
trogram, and the fourth-order TFDS of a frequency hopper signal. As expected,
the WVD suffers from the cross-term interference problem. Both the STFT and
the fourth-order TFDS give a good and easy-to-understand spectrogram, but
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they fail to compare with the adaptive spectrogram for the same signal. The
adaptive spectrogram not only shows good time-frequency resolution, but also
" does not suffer cross-term interference. In addition, it is non-negative.

(a) WVD (b) STFT spectrogram

(c) TFDS 4(t,w)
Fig. 8—11 Frequency hopper signals.
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Fig. 8-12 The SNR exponentially increases. With 40 elementary functions, the SNR is improved
more than 50 dB.

Fig. 8-12 demonstrates the relationship between the number of elementary
functions and the residual error. At pth stage, the SNR is defined by

SNR = 10 1og{—”5ﬂ—z}<d3) (8:31)
lls, L)

Fig. 8-12 indicates that the SNR exponentially increases. Because the frequency
hopper signals in this example are dominated by four tones, there is a very
noticeable jump after the first four elementary functions. By four elementary

|
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index m*AM?. Repeat this process until 1B'12no longer increases, fori = 0,1,2,....
Then, the optimal variance, time center, and frequency center are
i i i nAN, ‘AN
=0 T,=mAM, = m'AM Q@ ~2n—7 = 2nls

and
B. =B

Fig. 8-7 illustrates the matching process described above, which is very similar
to the zooming operation,; first, coarse-search in a larger area. Then, reduce the
searching region and use a smaller scale to zoom in on the object of interest.
Because the basic operations are FFT, the matching process described above is
very efficient. The accuracy of the approximation mainly depends on the size of
time interval AM and frequency interval AN that are used. The finer the inter-
vals are, the better the accuracy. On the other hand, the finer the intervals are,
the more computations involved. Therefore, there is a trade-off between the
approximation accuracy and computation efficiency.

Fig. 8-7 The matching process starts from a coarse variance and time step AM? (large
AM?®) and fine frequency interval ANC. After the match is found at (mOAMPO, nOANY),
the variance and time interval AM! will be reduced and the frequency interval ANY
will increase. Then, continue the matching process around m’ to find the next
matching point (m*AM?Y, n1ANY). Repeat this process until the projection coefficient B*
no longer increases.

Once the best match hplilis found, we can compute the residual by sp+1lt] =
splil - Bphp[i]. Then, we apply the same process to compute the next elementary
function hp41li). The process continues until ”sp+ 1 [i]] <&, where € is a predeter-
mined error threshold.

Although h[i] computed by the procedure introduced in this section may
not be optimal, we can still use them in the AGR. The convergence of the residual
”Sp+ y[7]] , as shown in Section 8.1, is independent of the manner of the selection
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of the elementary functions. The o

ptimal hyli], however, will yield a fast conver-
gent.

8.4 Comparison of AGR and Other Time-Frequency
Representations

To illustrate the usefulness and power of the AGR and adaptive spectrogram
let’s look at the signal :

s() = 8(t=1)+8(1-1,) + exp{joz} + exp{jw,t} (8.30)

which is constituted by two time
sponding STFT spectro
trated in Fig. 8-8,

pulses and two frequency pulses. The corre-
gram, scalogram, and adaptive spectrogram are illus-

S

ty

(a) Scalogram

(b) STFT spectrogram (c) AS

Fig. 8-8 Unlike the wavelet that provides good time resolution at higher frequency

and good freql_lency at lower frequency, the adaptive spectrogram offers good fre-
quency resolution at any frequency band.

Because the wavelet uses wideband windows at the higher frequency band
and narrowband windows at the lower frequency band, the wavelet transform
offers an excellent time resolution and bad frequency resolution at higher fre-
quency band or vice versa. Therefore, the wavelet is ideal for constant Q analysis
such as the octave analysis commonly used in machine vibrational analysis.

The spectrogram by short-time Fourier transform (window FFT) offers a "%

}miform time and frequency resolution at any frequency band. Once the window-
ing function is selected, so is the frequency resolution. Compared with the wave-
lgt transform, the STFT spectrogram can'’t offer very high time resolution at a
higher frequency band without sacrificing frequency resolution. Similarly, the
STFT spectrogram can’t offer very good frequency resolution at low frequency
without sacrificing time resolution. This is the reason in the first place for
researchers to investigate the adaptive spectrogram.
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which is computed by the Wigner-Ville distribution. The joint time-frequency
density function of the adaptive Gaussian functions is an ellipse and centered at
(Ty, Q). As introduced in Chapter 5, the energy concentration of the Gaussian-
type functions is optimal. By using the Gaussian functions of different variance
and different time-frequency center, each Gaussian function will then character-
ize the local behavior of the signal, s(¢), that is being analyzed. If the signal at a
particular instant of time exhibits an abrupt change in time, then a Gaussian
function with a very small variance value may be used to match the abrupt
change. If the signal exhibits a stable frequency for a long time, a Gaussian func-
tion with a large variance value may be used.
Substituting (8.22) into (8.2) yields
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o o, :
s(t) = ZBPhP(r) = ZBP(-E”) exp{—j(r—T[,)z}exp{jQpr} (8.24)
P P

which is called the adaptive Gabor representation (AGR), because it largely
resembles the regular Gabor expansion.

Unlike the Gabor expansion, where the analysis and synthesis functions in
general are not identical, the adaptive representation has the same analysis and
synthesis functions. Once we have obtained the optimal synthesis function hp(t),
we can readily compute the adaptive coefficients B, via the regular inner prod-
uct operation, i.e.,

AN o, )
B, = J's],(t)h*l)(z)dr = (;) J'sp(t)exp{~—21(t~T],)“}exp{—jQpr}dr (8.25)
which guarantees that B , indeed reflects the signal’s local behaviors.

Substituting (8.23) into (8.20) obtains the Gaussian function-based adap-
tive spectrogram, such as

2 1 9
AS(1, 0) = z%in;‘exp{-[apu_Tp)%a—p(@~§zp)‘]} (8.26)

Apparently, it is non-negative.

Because the time and frequency resolutions of the Gaussian function are
determined by a single parameter, o, the computations of the optimal hp(t)
become rather simple. We shall discuss the optimization algorithm shortly.

8.3 Estimation of the Optimal hy(t) of AGR

The formulae (8.24) and (8.26) reveal that the AGR and adaptive spectrogram
can be readily calculated once the elementary functions {hp(t)) are determined.
The question then is the selection of the elementary functions {h,()}. As intro-
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duced earlier, hy(8) should best match Sp(t), in the sense of [Eq. (8.3)]:

B,/ = max |(s,(r), b, (1)) |
hp ‘
COI.ISideI'. that hp(t) is the Gaussian function defined in (8.22), (8.3) is the optimi-
zation with respect to a triplet of (ocp, Tp, Qp). In general, there is no analytical

solutiop of (8.3). Analogous to the zooming process, however, (8.3) can be well
approximated numerically.

First, let’s digitize (8.3) as

Bf* = max | (0. by

P
1

2
0,4 & 2nnAN,
(% : 2 ; 4
= rI}l’[E;X ;S,,[IJ(;) CXP{“EF(I—mAMP) }exp{—] i ”1} (8.27)

To reduce computation, we limit the time and frequency center in the dis-
crete grids (mAM,,, nAN,). AM,, and AN, denote the time and frequency intervals
of the grid. The smaller the AMp and AN, are, the denser the grid. L denotes the
effective length of the Gaussian function hpli] with the largest variance. Appar-
gntly, at each fixed 0y, (8.27) is a regular short-time Fourier transform. When ¢,
Is smaller, (8.27) has a bad time resolution. In this case, | B, |2 will be less sensi}j
tive to the change of mAM,,. On the other hand, when « ispsmaller, (8.27) has a
g(;(;\c; frequency resolution. Consequently, pr 12 is very spensitive to the change of
nAN,.

pLet’s define

" ,.106174.,{ B }
i ZSPLLJ(R') cXplvg(l—mAMp) j (8.28)

Then, (8.27) reduces to the regular L-point DFT, i.e.,

2 ___-nAN |2
B = . me (ER MW (8.29)
P i

Now, the matching process can be described as follows. At stage p, first
start with a smaller o, larger time interval AM?, and smaller frequency interval
ANO, Apply FFT to compute (8.29) and find the maximum, say |BY| 2 and corre-
sponding time index m%AMO. Then, increase the variance parameter to ol and
frequency interval to AN and reduce the time interval AM 1p’co compute (8.29) in
the vicinity of m°AM®, and find the maximum IBY12 and corresponding time
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familiar expansion series such as a Fourier expansion is in the selection of the
elementary functions. In the adaptive expansion, the elementary functions are
highly redundant and they do not usually form a basis. There is quite a degree of
freedom to choose the elementary function. Once the models of the elementary
functions are selected, the adaptive expansion is done by a repeated matching
process. At each step, one elementary function is chosen if it has the maximum
similarity with the given signal at that stage. Once the adaptive expansion is
achieved, the adaptive spectrogram can be readily computed.

Although the adaptive representation and adaptive spectrogram are inde-
pendent of the selection of the elementary functions, we focus on the adaptive
Gaussian representation. This is because the Gaussian function is optimally con-
centrated in the joint time-frequency domain. Moreover, the Gaussian-based
adaptive spectrogram is non-negative and does not contain the cross-term inter-
ference as occurred in many of Cohen’s class of distributions.

Compared with the wavelet transforms, the STFT, the adaptive Gaussian
representation is more flexible and offers good joint time-frequency resolution.
The downside is its computational complexity. Even with the fast algorithm, it is
still considerably slower than the STFT. But in applications where the STET no
longer delivers a satisfactory result, the adaptive Gaussian representation is
surely a good alternative. In general, the adaptive Gaussian representation and
corresponding adaptive spectrogram are especially beneficial to quasi-stationary
signals or very short transient signals.

CHAP‘TERg

Time-Variant Filter

I n addition to the study of a signal’s fre-
quency content changes, another very important application of joint time-fre-
quency representations is in the detection and estimation of noise-corrupted
signals. While random noise tends to spread evenly into the entire joint time-fre-
quency domain, the signal energy is usually concentrated in a relatively small
region. Consequently, the regional signal-to-noise ratio could be substantially
improved in the joint time-frequency domain. By applying joint time-frequency
representation, we could better extract the noisy signal and reconstruct it. Such
processing could be considered as time-variant filtering.

The time-variant filter can be formed based on both linear and bilinear
time-frequency representations [161], such as STFT spectrogram [60], scalo-
gram, ambiguity function [173], and Wigner-Ville distribution (see [15], [70],
[72], [75], and [109]). Compared to the bilinear presentations, the linear trans-
forms have simple reconstruction structures [43]. Therefore, we focus our discus-
sions on the Gabor expansion-based time-variant filter.

One of the main difficulties in designing the time-variant filter is that mod-
ified time-frequency representations usually are not the valid time-frequency
representations. In other words, for a given modified time-frequency representa-
tion, there may be no physically existing signal that corresponds to it. To over-
come this problem, we first introduce the least square error (LSE) method in
Section 9.1. According to this method, the time-frequency representation of the
estimated signal is closest to, in the sense of the minimum square error, the

199
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noise-reduced time-frequency representation. The LSE is one of the most com-
mon technologies. It has been extensively studied for many years. But it may not
be the best solution for many applications. In particular, to solve the LSE, we
need to compute the pseudoinverse, which is demanding in terms of computation
and memory. In many real applications, the data size often is larger than 10,000.
In those cases, it is difficult to apply an LSE algorithm if only conventional per-
sonal computers are available.

As an alternative, in Section 9.2, we present an iterative algorithm. As
numerical simulations indicated, the iterative algorithm not only yields a better
signal-to-noise ratio, but also is amendable for real-time implementation.

9.1 LSE Filter
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Fig. 9-1 Due to the low SNR, the ionized impulse signal cannot be recognized in
either time or frequency domains. However, by joint time-frequency representations,
we can readily distinguish it. (Data courtesy of the Non-Proliferation & International
Security Division, Los Alamos National Laboratory.)

In addition to the area of signal analysis, joint time-frequency representations
are powerful for the detection and estimation of the noise-corrupted signal. Fig.
9-1 depicts the impulse signal received by the U.S. Department of Energy
ALEXIS/BLACKBREAD satellite. After passing through dispersive media, such
as the ionosphere, the impulse signal becomes a non-linear chirp signal. As
shown in Fig. 9-1, while the time waveform is severely corrupted by random
noise, the power spectrum is mainly dominated by radio carrier signals that
basically are unchanged over time. In this case, neither time waveform nor the
power spectrum indicate the existence of the impulse signal. However, when
looking at the joint time-frequency plot, we could immediately identify the pres-
ence of the chirp-type signal arching across the joint time-frequency domain.

In general, random noise tends to spread evenly in the Jjoint time-frequency
domain, while the signal itself concentrates in a relatively small range. Conse-
quently, by joint time-frequency representation, the signal-to-noise ratio (SNR)
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could be substantially improved. Once the interesting signal has been identified
we can mask it from the background noise and reconstruct it.

The above statement applies for any joint time-frequency representations:
both linear and bilinear. For bilinear representations, there is no phase informa:
tion. The reconstruction is always troublesome. On the other hand, the linear
representations have a simple inverse structure. Therefore, we focus our discus-
sion on the Gabor expansion-based time-variant filter.

|| |

R MO

——-—! Noiseless C,, ,

>

A A R IR N R A SR

Masking

Fig. 9-2 Masking the desired signal from Jjoint time-frequency representation.

As shown in Fig. 9-2, the typical procedure of the time-variant filter is first
to take the Gabor transform Gx, where x denotes the noise-corrupted signal
vector. Then, mask the desired signal portion from the background noise to
obtain noiseless Gabor coefficients

g =dih, (91)

where @ denotes

m
aernole I

: 2 mask function. Finally, apply the Gabor expansion to compute
the noise-reduced time

=
)
<
a
3
=
B

5 = HOGx . (9.2)

‘ As discussed previously, the modified Gabor coefficients in general are not
valid Gabor coefficients. In other words, the modified Gabor coefficients may not
correspond to any physically existing time functions, i.e.,

Gs#¢ (9.3)

In this case, we have to estimate the time waveform that is the best in some
sense. The most common criterion is the least square error (LSE) method, which
finds the time waveform whose Gabor coefficients are closest to the desired
Gabor coefficients, in the sense of

¢ = minfe— sl (9.4)
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Fig. 9-3 Map of LSE filtering.
For the discrete-time samples, G is a matrix whose entries are given by

T mk =Y k—mAMIW," for 0<n<N (9.5)

The vector ¢ is formed by masked Gabor coefficients, i.e.,

Cm,n q)m,n: 1 (96)

CouN+n = Cm,n = { 0 ¢ =l

where ¢,,, , denote the entries in the binary mask matrix d>.' The physical int.er—

pretation of (9.4) is illustrated in Fig. 9-3. The Gabor coefficients of the solution

5 of (9.4) are most similar to the desired Gabor coefficients ¢ . .
From the elementary matrix analysis, the solution of (9.4) is the pseudoin-

verse of G, that is,
b e (676G = 4% (©.7)
where
A=66¢ a2=¢c%
The entries of the matrix A are

ayp = ¥ T Ak-mAMIY[K - maMIw Y
= B0k —K ~ gN) Y ylk - mAMIY* (K — mAM]

m
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Ifthe length of y{k] is L, then,

1
— k—=mAMY:[k' = mA k-k|= L
e N%Y{ mAMv¥[k' = mAM] lk—k|=qN< @8

0 otherwise

Note that ay j = a*y k- If vik] is real, then A is real, symmetrical, and a sparse
matrix.
The elements of the vector @ in (9.7) are

N-]
di = X3 Conflk-mAMIW'S = S yik = mAM] 3 CnnWit (9.9)

m on m n=0

In most applications, the signal is real-valued, then

A K . N
Cm. n = Cm,N—n for 0<n«< 5 (91 O)
Consequently, the vector & is also real-valued. In this case, (9.7) can be solved by
the real matrix operation.

When €., are the valid Gabor coefficients for the sequence f'[%], that is,

¢ = Gf (9.11)
substituting (9.11) into (9.7) yields

676)'6% = Gy ¢"Gr = ¥ (9.12)

In this case, the square error § = 0 in (9.4),

At first glance, it seems that we can use the arbitrary analysis function k]
and sampling steps, AM and AN » to implement the time-variant filter. It is not
true in fact. To ensure the existence of the inverse of A in (9.7), Y%l and sampling
steps have to meet certain conditions. An imprudent choice of %) and sampling
steps may result in A being non-invertible and numerically unstable.

The key step of the LSE filtering introduced above is to solve the pseudoin-
verse of matrix A in (9.7). Matrix A is a square matrix whose number of rows/col-
umns at least is equal to the number of samples (depending on the oversampling
rate). When data are large, it would be difficult to solve Al by conventional digi-
tal computers. For example, the number of data in Fig. 9-1 is more than 9,000.
For the double oversampling, the size of matrix A is approximately 20,000 - by -
20,000. Unless using supercomputers, it is impossible to compute the pseudoin-
verse of such a large matrix.

Although the LSE is the most well-known error measure. it may not be the
one that always fits the problem at hand. In many real applications, we often are
more interested in the SNR. As an alternative, we shall introduce an iterative
time-variant filter in the next section.
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8.2 Iterative Time-Variant Filter

The iteration approach can be described as follows. First, map the noisy signal
into the joint time-frequency domain via the Gabor transform G to obtain the
Gabor coefficient vector Gx. If we do not alter the Gabor coefficients, then we
should be able to recover the original signal by the Gabor expansion H, that is,

HGx =k (9.13)

If we apply a mask function @ to filter out some noise and compute the Gabor
expansion, then

X, = HOGx (9.14)

Because the modified Gabor coefficients ®Gx generally are no longer the valid
Gabor coefficients, that is,

Gz, # DGx (9.15)

;; may not possess the desired time-frequency properties.
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Fig. 9—4 Masked Gabor coefficients of ionized impulse signal in Fig. 9-1.
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Fig. 9-5 Comparison of estimation and noise corrupted signals.

Now, let’s repeat the process described by (9.14) and (9.15), and continue
this process; after ith iterations, we have
(HOG)'x = &, =8 (9.16)

From the matrix analysis theory, we know that the iteration in (9.16) converges
as long as the maximum eigenvalue of the matrix H®G is less than one. We can
further prove [194] that, under certain conditions such as when the dual func-
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tions A[£] and k] are identical, the first iteration %, is equivalent to the LES
solutiop. As the number of iterations increases, the time waveform gets smooth
and Gx; will converge to inside of the masked area.

. Fig. 94 plots the masked Gabor coefficients for the example illustrated in
Fig. 9-1. Fig. 9-5 depicts the reconstructed signal after five iterations. In this
example, the number of samples is more than 9,000, which is impossible to be
solved by the LES method introduced in Section 9.1 due to the computational
complexity and memory limitations.

It.is well known that the continuous-time signals cannot be finitely sup-
ported in time and frequency simultaneously. For the discrete-time sequence or
the continuous-time signal that is measured in the discrete time-frequency grids
they could have finite non-zero transform coefficients. ’

n Fpr example, A[k] and y£), illustrated in Fig. 9-6, are biorthogonal to each
other, i.e.,

<Zm.n[k]y TY[kD = 8["1]8[”] (917)

Assume that the signal s[k] = hlk], then the corresponding Gabor coefficients are
C,,,’,, = <§ [k], ?m,n[k]) = <7’l[k]7 ?mm[k]) - s[m]a[n] (918)

which indicates that the Gabor coefficients are a pulse at (0,0), the origin of the

joint time-frequency domain.

L=128, dM=16, Samping Rate = 1
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Fig. 96 A[k] and y{k] are biorthogonal.

Another trivial example is that the analysis function y (t) is a rectangular
pulse, such as

10T
(1) =
f { 0 otherwise (R
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earlier, the results obtained by the first iterations are equivalent to LSE. When
the number of iterations increases, SNR is substantially improved. For the case
of Y,pilk] in Fig. 9-9c, the peak SNR is 15.5 dB, that is, approximately 25%

higher than that achieved by LES.
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Iteration number
Fig. 9—11 “+” corresponds to Ylk] in Fig. 9-9d; “0” corresponds to Y,n¢[%] in Fig. 9-9c.
(Although both (%] are for eight times oversampling, the orthogonal-like dual function
Yopt[k] yields much better results.)

Fig. 9-11 illustrates the impact of oversampling. Although both dual func-
tions used work at eight times oversampling, the orthogonal-like dual function
Yoptl#] yields much better SNR. This example shows that the outcome of the iter-
ative time-variant filter is related to the closeness between analysis and synthe-
sis functions rather than the oversampling rate.

For computation considerations, we would like the sampling rate as low as
possible. On the other hand, to ensure that h[k] and y{k] are similar requires
oversampling. There is a trade-off between the computational burden and the
performance of the time-variant filter. For the given oversampling rate, the
orthogonal-like Gabor expansion introduced in Chapter 3 produces the Yoptl#el

that is most similar to A[k].

Summary

In this chapter, we briefly introduced the concept and implementation of the
time-variant filter. The time-variant filter has been found to be extremely power-
ful for wideband and non-stationary signal estimation. First, we introduced the
LSE algorithm. Although the LSE method is the most well-known approach, it
may not be suitable for some real applications in which the size of samples is
huge. As an alternative, we introduced the iterative method. The iterative time-
variant filter not only is computationally efficient, but also offers better SNR.
Our experiences indicated, in terms of SNR, that the performance of the iterative
time-variant filter sometimes could be 20 ~ 30% better than that accomplished

by the LSE method.

Applications of JTFA

' 7?) demonstrate the effectiveness of
JTFA, in what follows we shall introduce some real application examples in the
areas of radar, medical, and economic data analysis. Although the applications
discussed in this part seem rather specific, the ideas and methodologies behind
these applications in fact are general for all those who are interested. in using
JTFA to solve their own problems.

In Chapter 10, we discuss the application of JTFA for radar image process-
ing. The radar may be one of the oldest areas using JTFA. Many JTFA techniques
were initially motivated by radar applications. Radar systems discussed in this
book, however, are much more advanced than those used in World War II. Unlike
those early radar systems, not only are advanced radars able to measure the dis-
?ance from the target, but they also provide the target image. These advanced
Lmaging radars have been widely used for aerial mapping and target identifica-
tion under all weather conditions.

Imaging radar is also called Doppler-range radar, which is made up of Dop-
pler spectra in each range cell. A main issue in the radar community has been
image quality. Conventional radar processing uses DFT to compute Doppler fre-
guenrcies. Due to atarget’s irregular motion, the Doppler frequency is of time-vary-
ing nature. Consequently, Fourier transform-based radar systems often yiekd
blurred images.

Since the beginning of developing imaging radar, many algorithms have

209
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Assume that signal s(¢) = v (t), then the Gabor coefficients are
Cm. m = <S’ Y}Iz, n> = <Y Y)rz, n>

[¥Ceyy* (¢ = mTy exp {—jnQui Y
8(m)S&(n)

which indicates that, except for Cg g, all other Gabor coefficients are equal to
zero.

For the LSE method, we chose a solution § such that its Gabor coefficients
are optimally close to the modified Gabor coefficients ®Gx . Although the Gabor
coefficients of the estimated signal have minimum distance to the desired Gabor
coefficients, in general they do not completely fall into the desired time-fre-
quency region ®. On the other hand, the solution given by the iteration method
ensures that the time-frequency support of § indeed is inside of the desired
region. Although in this case, the error I', where

T = |ei-aci = le@ac)ys- o6 (9.20)

is not the minimum for i > 1, numerical simulations indicate that the SNR is
improved as the number of iterations increases. The simulations show that the
peak SNR always occurs for i around 5.
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Fig. 9-7 Noise-corrupted linear chirp signal (SNR = 0 dB).
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Fig. 9-8 The improvement is more than 15 dB.

Fig. 9-7 plots a noise-corrupted linear chirp signal, in which the SNR is
close to 0 dB. Due to the low SNR, it is difficult to extract the signal from either
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thg time or frequency domain. To effectively remove the noise, we apply the iter-
ative time-variant filter. Fig. 9-8 plots the reconstructed signal. In this case, the

improvement of SNR is more than 15 dB.
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Fig. 9-9 Dual functions for double oversampling.
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Fig. 9-10 SNR vs. iteration number. (The right plot is the enlarged part of the left

plot; “+” = double oversampling; “0” = eight times oversampling.)

Iteration number

Fig. 9-9 plots the synthesis function A[%] and different analysis functions
Ylk] used in this example. The comparison is illustrated in Fig. 9-10, where “+”
and “o” represent the results obtained by dual functions Yoptl®] in Fig. 9—-9b and
¢, respectively. Because Yoptl®] in Fig. 9-9c¢ (corresponding to eight times over-
sampling) is closer to Alk] in Fig. 9-9a than Yoptl#] in Fig. 9-9b (corresponding to

double oversampling), the performance of “o0” is better than “+” As mentioned
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been proposed for focusing and compensating a target’s complex motion to resolve
the image blurring problem. Most motion-compensation algorithms, however, are
very complicated. Recently, Chen [22] introduced an approach using joint time-
frequency transform, introduced in Chapter 7, to lift the restrictions of the Fourier
transform. Replacing the conventional Fourier transform with a joint time-fre-
quency transform, a high-resolution radar image can be achieved without apply-
ing complicated motion-compensation algorithms. The joint time-frequency
processing-based radar imaging is especially useful for resolving the image blur-
ring in the cross-range.

Another type of smearing in the radar image is caused by so-called non-
point scattering. When cavities or duct-type structures are present in targets,
radar images can be plagued by artifacts due to the complex scattering behaviors
in these structures. These scattering mechanisms appear in the radar image as
blurred clouds which extend down-range and do not correspond to the spatial fea-
tures on the target. On the other hand, the same mechanisms do provide impor-
tant features which, if properly interpreted, can become important factors in the
target classification process. Trintinalia and Ling [178] first successfully applied
the adaptive Gaussian basis representation, introduced in Chapter 8, to decom.-
pose the down-range samples of the complex radar image. The portion of the sig-
nal represented by wideband basis functions is used to reconstruct the radar
image, and the portion corresponding to narrowband basis functions is utilized
for resonant feature identification. The decomposition scheme introduced by Trin-
tinania and Ling not only substantially improves the radar image by removing
the blurring clouds, but also reinterprets the information contained in these
clouds in an alternative feature space to facilitate target recognition.

In Chapter 11, we introduce JTFA for localization of brain functions. The
human brain is often considered to be the most complex biological structure in
existence. It consists of large numbers of neurons and interconnections which pro-
cess and transmit information. Understanding the working brain and nervous
system has been an active subject of research across a wide variety of disciplines.
The result presented in Chapter 11 is related to a problem of major significance in
both basic and clinical neuroscience - the determination of the location of func-
tional areas related to the generation of electrical activity in the human brain.

One major challenge of localizing brain functions lies in the low signal-to-
noise ratio of collected brain signal. The electrical brain signal usually is embed-
ded in background noise. Because of its time-varying nature, it is very difficult to
effectively extract useful electrical brain signals from background noise with con-
ventional filters. Applying the time-varying filter, introduced in Chapter 9 Sun
and Sclabasst significantly improved the accuracy of localizations. The solution
of this problem will provide the capability to answer important questions, by a
non-tnvasive means, concerning activated areas of the brain where information is
processed. In addition, the identification of active neural substrates will aid in
making critical neurosurgical decisions.

In Chapter 12, we briefly discuss a most interesting and controversial prob-
lem, economic data analysis. Traditionally, the economic system is studied by
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probability theory. Economists generally believe that economic data are pureran-
dom walk. Economic movements are toward equilibrium. The stock price disequi-
librium cannot last long in an efficient market. A reasonable goal of buy-and-hold
investment is the average return.

The recent development of nonlinear dynamics suggests that business cycles
may be better understood and modeled by the concept of color chaos. Applying
JTFA, Chen demonstrates the existence of stable business cycles. This observation
not only helps us to better understand the economic system, but also is significant
in utilizing chaos theory to study economic problems. Although JTFA remains a
buzzword to most economists, it has been found to have great potential in the
areas of finance and economics.

JTFA provides a powerful tool for many applications. To solve a real-world
problem, however, it is necessary to fully understand its mechanism and concepts.
For example, what can JTFA offer? Why does the conventional technique not
work? All contributors in this part are not only experts in their own areas, but
also understand JTFA well. We have tried to write this part in a style that
appeals to general readers rather than experts in those particular fields. We are
careful to explain the motivation for using JTFA, while avoiding lengthy back-
ground discussions. Hopefully, readers will find this part both enjoyable and
enlightening.




Applications of JTFA to Radar
Image Processing

R adar has long been used for the detection
and measuring of targets. The advances in radar signal processing further per-
mit radar to make images of terrain as well as moving targets. Imaging radar
has been successfully used to produce high-resolution imagery for aerial map-
ping and target identification in all weather conditions. ’

Radar transmits electromagnetic waves and processes returned waves from
a target to produce a high-resolution image of the target. A target usually con-
sists of a number of scatterers. They can be discontinuities, corners, or cavities in
the target. Each type of scatterer has a different backscattering behavior. This
provides a way to identify the target based on its backscattering behavior.

To obtain a high-resolution radar image, a wide signal bandwidth and
longer imaging time are required. However, due to the time-varying behavior of
the returned signal and due to multiple scattering behaviors of the target, the
radar resolution can be significantly degraded and the image becomes blurred.

Radar utilizes Doppler information in obtaining the cross-range resolution.
The conventional radar processing uses the Fourier transform to obtain Doppler
frequencies. In order to apply the Fourier transform properly, the Doppler fre-
quency contents of the radar data should be stationary during the imaging time
interval. Otherwise, the Fourier transform can cause the Doppler frequency
spectrum to become smeared. Since the beginning of the development of the
imaging radar, many algorithms have been proposed for focusing and compen-
sating a target’s complex motion to resolve the image blurring problem. Most
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algorithms are based on the use of the Fourier transform for image construction.
However, for utilizing the Fourier transform adequately, some restrictions must
be applied. To satisfy these restrictions and to obtain high-resolution images, the
motion-compensation algorithm can be very complicated. Recently, Chen [22]
introduced an approach using joint time-frequency transform to lift the restric-
tions of the Fourier transform. Replacing the conventional Fourier transform
with a joint time-frequency transform, a high-resolution radar image can be
achieved without applying complicated motion-compensation algorithms. The
joint time-frequency processing-based radar imaging is especially useful for
resolving the image blurring in the cross-range.

When cavities or duct-type structures are present in targets, radar images
can be plagued by artifacts, due to the complex scattering behaviors in these
structures. These scattering mechanisms appear in the radar image as blurred
clouds which extend down-range and do not correspond to the spatial features on
the target. On the other hand, the same mechanisms do provide important fea-
tures which, if properly interpreted, can become important factors in the target
classification process. Trintinalia and Ling [178] first successfully applied the
adaptive Gaussian basis representation to decompose the down-range samples of
the complex radar image. The portion of the signal represented by wideband
basis functions is used to reconstruct the radar image, and the portion corre-
sponding to narrowband basis functions is utilized for resonant feature identifi-
cation. The decomposition scheme introduced by Trintinalia and Ling not only
substantially improves the radar image by removing the blurring clouds, but
also reinterprets the information contained in these clouds in an alternative fea-
ture space to facilitate target recognition.

The first section of this chapter mainly deals with the blurred image caused
by irregular translational and rotational motions. Section 10.2 discusses the
extraction of backscattering features from complex scattering mechanisms.

10.1 Radar Range-Doppler Imaging*

Radar transmits electromagnetic waves to an object which consists of a number
of point scatterers and receives the scattered waves from the object. In the radar
receiver, the returned signal from the object is the sum of the returned signals
from the scatterers of the object. The scattering properties of the object describe
the features of the object. Usually, objects have scatterers with a variety of back-
scattering behaviors. Scatterers can be discontinuities, corners, or cavities. The
backscattering from the scattering centers of the object can be simple specular or
diffractive scattering from edges or multiple specular scattering from cavities.
Since the integrated effect of the scattered fields can be measured directly by the
radar, the spatial distribution of the reflectivity corresponding to the object can
be constructed by a radar processor. The distribution of the reflectivity is
referred to as the radar image of the object. The object’s reflectivity is usually

" Contributed by Victor C. Chen, Naval Research Laboratory, Washington D.C. 20375.
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mapped onto a range (sometimes called the slant-range or down-range) and the
cross-range plane and is viewed as a radar image of the object. The range is the
dimension along the radar’s line-of-sight to the object. The cross-range is the
dimension transverse to the line-of-sight.

Because the radar image presents a spatial distribution of the object’s

reflectivity, it should not be judged solely by its similarity to the visual image of
the same object. However, a useful radar image must represent the spatial dis-
_tribution of the radar’s reflectivity faithfully. Therefore, high-resolution radar
images are always demanded. The range resolution is directly related to the
bandwidth of the transmitted radar signal. Stepped-frequency waveforms and
frequency-modulated chirp waveforms are examples of wideband radar sienals
which are commonly used in radar imaging systems to achieve high rangeoreso-’
lution. The cross-range resolution is determined by the antenna beamwidth
which is inversely proportional to the length of the antenna aperture. Thus, a;
lgrger antenna aperture can provide higher cross-range resolution. To achieve
high cross-range resolution without using a large antenna aperture, synthetic
array processing is widely employed. Synthetic array radar processing coher-
ently combines signals obtained from sequences of small apertures to emulate
the results from a large aperture.
. Synthetic array radar includes both synthetic aperture radar (SAR) and
Inverse synthetic aperture radar (ISAR). Traditionally, SAR refers to the situa-
tion in which the radar is moving and the object is stationary; ISAR refers to the
geometrical inverse in which the object is moving and the radar is stationary.
For ISAR, the synthetic aperture is formed by coherently combining signals
obtained from a single aperture as it observes a rotating object. The rotation of
the object emulates the result from a larger circular aperture focusing at the
rotation center of the object.

The idea of ISAR imaging is to use Doppler information to obtain the cross-
range resolution. Due to the object’s rotation, which can be characterized as a
superposition of pitch, roll, and yaw motions, different parts of the object have
slightly different velocities relative to the radar and, hence, produce slightly dif-
ferent Doppler frequencies in the radar receiver. The differential Doppler shift of
adjacent point scatterers can be observed in the receiver; therefore, the distribu-
tion of the object’s reflectivity can be measured by the Doppler spectrum. The
conventional method to retrieve Doppler information is the Fourier transform. In
order to use the Fourier transform properly, some restrictions must be applied.
The Doppler frequency contents of the data should not change within the time
duration of the data. If the Doppler contents do change with time, the Doppler
spectrum obtained from the Fourier transform becomes smeared, and, thus, the
cross-range resolution is degraded. However, the restrictions can be lifted if the
Doppler information can be retrieved with a method other than the Fourier
transform that does not require stationary Doppler frequencies.

The purpose of this section is to discuss how joint time-frequency analysis
can be applied to radar imaging to lift the restrictions required by the Fourier
transform and to retrieve Doppler information without smearing the image in
the cross-range. However, in some cases, the radar images can still be blurred in
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the down-range direction due to the presence of cavities or other duct-type struc-
tures on the target, such as the engine intake of an aircraft. In the next section,
we will discuss how joint time-frequency analysis can be applied to extract the
blurring clouds due to these complex scattering behaviors and to obtain a clean
radar image containing only physically meaningful scattering centers.

Since radar images convey information which may not be obtainable by
other imaging means, they are widely used in many areas, such as remote sens-
ing and wide-area surveillance (see [124], [165], and [184]). SAR has been suc-
cessfully used for ground mapping, and ISAR has shown promising results for
imaging and classifying moving targets in all weather conditions.

10.1.1  Synthetic Aperture Radar Imaging of Moving Objects

It is necessary to describe why a radar can generate a range-Doppler image of a
moving object before describing how the range-Doppler image is constructed in a
radar system.

Object

0
o

Center of
rotation

| _~ Radar

~
Fig. 10~1 Geometry of the radar image of an object.

The geometry of the radar imaging of an object is shown in Fig. 10-1.
Assume at a time ¢ = O that the distance from the radar antenna to the geometric
center of the object is Ry The object is described in Cartesian coordinates with
its origin located at the geometric center. For simplicity, it is only necessary to
show a planar object with the radar located on the plane of the object along the y-
axis.
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First, consider a point scatterer located at (x(,y,) at time £ = 0. The range of

the point scatterer from the antenna is

Lt B i :
ro = (Ry +dj +2dyRysing,)">

i 2 S AL . B ‘
vz)}}er: dy = (xg+p) is the. distance of the scatterer from the origin of the
object, and 6 = arctan( Yo/%p) is the initial rotation angle of the point scatterer.
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where ¢ is the velocity of the wave propagation.
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where vp is the radial velocity of the point scatterer.

I .When the ob.].ect is rotatir}g with an angular rotation rate Q about its geo-

metric center, at time ¢, the point scatterer is rotated to (x,,) . Then, th
> »

of the point scatterer becomes b

2
ro = (Ry +dy +2dyRsing )"

Vx;here Qt = 90 + Qf. When the range of the object is much greater than the radius
oi rotation, i.e., Ry >> dy, the range of the point scatterer becomes

r(t) = R, +x8in Qs + Yocos 2t
where

Xg = dycos8,

=3

and

Yo = dysing

Thus, when the object has a complex translational and rotational motion, the
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range of the point scatterer becomes
r(t) = rg+vpt +x58inQr + y,cos Qs
and the phase of the received signal is

2(rg+ Vpt + y, + x, SIn Q1 + y,c08Q1)
r(t) 0" VR 64y 0
O (r) = ,.711',]‘2—( = 2xf:

Because the time-derivative of the phase is frequency, by taking the time-deriva-
tive of the phase, the Doppler frequency shift induced by the object’s motion is

1d 2fd %,

2F 9
To = gag®Ar) = Tar®) = TOr* T @00 = fp +fp

rot
where the Doppler frequency shift induced by the translational motion is

2f

==V
Fop, = g

trans

and that induced by the rotational motion is

rot

2
fp = ?f(xOQw_,\-Ota) (10.2)

where it has been assumed that Qr is very small, hence, cosQr=1 and
sinQr= Qr . The first and second terms of (10.2) come from the linear and qua-
dratic parts of the phase function, respectively. Clearly, the quadratic part of the
rotational Doppler frequency shift is a function of time. Therefore, the rotational
Doppler frequency shift is time-varying, even if the rotation rate is constant.
Because the Doppler frequency shift is related to the geometric location of the
scatterer (x(,yq), another scatterer at a different geometric location in the object
may have a different Doppler frequency shift.
Based on the returned signal from a single point scatterer, the returned sig-
nal from the object can be represented as the integration of the returned signals
from all scatterers in the object:

ol = .]’.[p(x:)’)exp{fizﬂfz?r}dxd)’ (10.3)

The reflectivity function of the object constructed by measuring the Doppler
spectrum at each range cell is mapped onto a range-Doppler plane and the radar
image becomes a range-Doppler image. Since the Doppler frequency shift can be
positive or negative, sometimes the radar range-Doppler image of an object can
be upside-down. However, the geometric correspondence between the scatterers
within the object and the points on the range-Doppler plane can be found; this
correspondence provides a basis for object identification from radar range-Dop-
pler images.
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. Fig. 10-2 illustrates an ISAR geometry [184] in which an object has trans-
lational and rotational motion with a rotation angle in the global (u,v) coordinate
system. The range R(t) and the rotation angle 0(t) of the object are functions of
time. They can be determined by initial range Ry and rotation angle 8¢ , initial

velo?ity Vg and angular velocity Q, initial radial acceleration ap and angular
acceleration o, and other higher order terms:

1
R(1) = R0+0Rr+§aRt2+
and

8(r) = 8, +Qr+ %oczz-a-

The range of a point scatterer at (x,5) in the local coordinate system
becomes r(¢) = R(¢) + xcos 8(2) = ysinb(t). Substituting this range into (10.3) gives
the baseband signal in the receiver as

o R
Smr)=em{ﬁmv{Q}Hpuwmmﬂfﬁnugquﬁonhuw (10.4)
where the components of the spatial frequency are determined by

2f
£ = Zeosor (10.5)

e

and

. 2f .
5y = Zsimocr (10.6)

Radar

Center of
Rotation

Fig. 10-2 An ISAR geometry.

. The objective of radar processing is to estimate the object’s reflective den-
sity function p(x,y) from received baseband signal samples. the so-called fre-
quency signature S(f¢). From (10.4), it is apparent that if the object’s range is
known exactly and the velocity and acceleration of the object’s motion are con-
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stant and known exactly over the imaging time duration, then the extraneous
phase term of the motion exp{-j4nfR(t)/c} can be removed exactly by multiplying
exp{j4nfR(¢)/c} on both sides of (10.4). Therefore, the reflective density function
p(x,y) of the object can be obtained simply by taking the inverse Fourier trans-
form of the phase-compensated frequency signature S(f,t)exp{j4nfR(t)/c}). The pro-
cess of estimating the object’s range R(¢) and removing the extraneous phase
term exp{y4nfR(t)/c} is called focusing, or gross translational motion compensa-
tion. Then, the inverse Fourier transform can be used to construct the reflective
density function of the object. For SAR, the motion compensation is facilitated by
measuring the actual motion of the radar platform. In ISAR, the actual motion
can be measured by a range-tracker or estimated by a motion-compensation
algorithm which estimates motion parameters and compensates motion with
respect to object’s range, velocity, acceleration, and other higher order terms.

MOVING OBJECT RADAR IMAGE

03 ot
LIRS " s WXL
e -2 wfxty - y4,) i e
e Z Te(xy)e
Xy AN Doppler
Fi fy = 21, sin 8/
fy= 21y cos 6 /c Dutput
Range Gate
f N Bursts J ’/
no.1 no.2 1-DFFT (M
Received Signal  ——]

\

M pulses 2Rt
Transmitted Stepped- 4 Motion
Frequency Signal / Compen. T
M ——f 1-DIFT [|M
o S

N2
Fig. 10~3 Ilustration of stepped-frequency inverse synthetic radar imaging of a mov-
ing object.

Now, it can be seen how the radar imaging system is built and how a range-
Doppler image is constructed. Fig. 10-3 shows a block diagram of a radar imag-
ing system using stepped-frequency waveforms to illustrate the process of syn-
thetic radar imaging. The stepped-frequency radar transmits a sequence of N
bursts. Each burst consists of M narrowband pulses. Within each burst, the cen-
ter frequency of each successive pulse fm is increased by a constant frequency

step Af:
n=fo+mdfilm=0,1,...,M~1}

where fj is the base frequency. The total bandwidth of the burst, i.e., M times the
frequency step Af, determines the radar range resolution. The total number of
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bursts, N, determines the Doppler or Cross-range resolution. The returned pulse
is heterodyned and quadraturely detected in the radar receiver. The received sig-

pals are measured at the pulse repetition rate at evenly spaced MN time
Instants '

gy = (m+nM)ATIm = 0,1, M- 1 = 0,1,..N-1}

nature of the object, S rnitn):

‘ The rgceived frequency signatures of the bursts can be treated as the time
history series of the object’s reflectivities at each discrete frequency. The radar

s_igpgtures. Therefore, N range profiles (i.e., the distribution of the object’s reflec-
tivities in range), each containing M range cells, can be obtained. For each range
cell, the N range profiles constitute a new time history series, which is sampled
at the baseband with N in-phase (I-channel) and N quadrature-phase (@-chan-
nel) data. Then, the Doppler processing takes the discrete Fourier transform
(DFT) for the time history series and generates an N-point Doppler spectrum, or
.proﬁle By combining the M Doppler spectra at M range cells, finally, the M-b_‘;f-N
Image is formed. Therefore, the radar image is the object’s reflectivities mapped
onto the range-Doppler plane. P

The range or slant-range resolution Arg, is determined by the bandwidth of
t}.le radar signal. For a stepped-frequency signal with jf frequency steps of step-
ping frequency Af, the range resolution is

¢
sr = ThRy

The Doppler resolution A f, is approximately 1/7, where T is the imaging
time duration or the observation time. The Doppler information is used to obtain
the cross-range; the cross-range resolution. is determined by the angle extent of
the synthesized apertures during the imaging time duration, and has the form

——“
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10.1.2  Conventional Motion-Compensation and Residual Phase
Errors

Motion compensation is a very important step to achieve a clear radgr image. As
was mentioned earlier, because of the motion between radar and object, the pro-
cess of estimating the motion and removing the extraneous phase term‘ exp{-j4
nfoR(t)/c} is called focusing. This is the first step of the m}otmn—compensamon pro-
cedure and compensates only the motion of the whole object. .

In contrast with SAR, ISAR uses the object’s pitch, roll, and yaw motwgs
and measures the Doppler spectrum to generate images of the obj:ect. As is
known, Doppler processing using Fourier transforms is adequate only in the case
that the scatterers remain in their range cells and that their Doppler freq'uency
shifts are constant during the entire observation time. If the scatte.rers drift out
of their range cells or their Doppler frequency shifts are time-varymgl, then the
constructed image becomes blurred. The complete motion-compen§at10n proce-
dure should be a process of establishing aligned range and stationary phase
change-rate for all individual scatterers. :

Conventional motion compensation is a gross compensation for the whole
object. It performs mainly the range tracking and Dopple.r trgcking. When an
object is moving smoothly, conventional motion compensation is good enough to
produce a clear image of the object. The conventional appr(.)ach for range track-
ing uses a simple hot-spot tracking [17]. It is based on a single domlnant sca?-
terer and performs curve-fitting to its unwrapped pbase function. Or}ce it
localizes a single dominant scatterer in the ohject, it relies on the phase history
information of this scatterer as a reference phase to correct the whole Doppler
spectrum. At each Doppler frequency, the correction is performed by multiplying
the complex conjugate unwrapped phase function to the complex.dgta a§ each
range cell. The Doppler tracking of the object can be c_ioneAby> sl1d1ng-w1qdow
Doppler measurement. It computes the Doppler centroid vm'thm a short time-
sliding window and makes curve-fitting to the Doppler centr(pd curve. Then, the
smoothed curve is used to generate a phase-correcting function for motion com-
pensation. o '

However, when an object has a complex motion, such as pitching, yawing,
rolling, or maneuvering, conventional motion compensation for the whqle object
is not sufficient to produce an acceptable image for viewing and analysis. There
is a limit on the amount of an object’s rotation that the radar imaging technique
can tolerate. When an object’s rotation is beyond the scope of thg limit, the Dop-
pler spectrum becomes smeared. Generally, for a large §h1p vvlth slow motion,
the image smearing could be minimal. However, for an aircraft with maneuver-
ing, the image smearing could be significant. ) »

In this case, a more sophisticated motion-compensation procedure for each
individual scatterer is needed. The goal is to keep each scatterer within its range
cell and to maintain constant Doppler frequency shift for each of them. Thus, the
Fourier transform can be applied properly to construct a clear image of the
object.

10.1 Radar Range-Doppler Imaging 228

When a dominant or reference scatterer is well motion-compensated, other
scatterers may still drift through their range cells. This kind of Doppler spec-
trum smearing may be alleviated by applying so-called polar reformatting, which
attempts to eliminate other scatterers’ drifts through their range cells. From
(10.5) and (10.6), the spatial frequencies £, and /, are sinusoidal functions of the
rotation angle 6. In order to take advantage of the fast Fourier transform, the

dimensional rectilinear grid, i.e., the sample points on the polar sampling grid
must be conformed to the desired sample points on a rectangular sampling grid
[184].

The smeared Doppler spectrum caused by large rotation angles or long
observation time can also be alleviated by using the sub-aperture approach [2].
In this approach, by estimating the frequency variation with time, the size of the
time - window should be chosen small enough such that there is no significant
phase error during the short time interval. Thus, the Fourier transform can be
applied, and sub-images can be generated without significant blurring. By calcu-
lating sub-spectra for sub-apertures, the frequency shift from one sub-aperture
to the next can be found. Then, a correction function is generated from the fre-
quency-shift function, and focusing is performed via phase correction and time-
domain interpolation. This approach may combine sub-apertures coherently to
achieve higher resolution.

The sub-aperture approach is basically a short-time Fourier approach and
uses the time-variation property of the Doppler spectrum. Since the time window
of the short-time Fourier transform (STFT) is fixed, there is a trade-off between
the time window and the frequency window. High time resolution (or short time
window) results in poor frequency resolution, and high frequency resolution
results in poor time resolution. To enhance the resolution with the STFT, super-
resolution spectrum analysis may be applied in some cases,

In the case of an object with significant maneuvering, even sophisticated
motion compensation is still not sufficient and the residual of the motion is still
large. With large residuals of the motion or phase errors, individual scatterers
may still drift through range cells; thus, the Doppler spectrum may still be time-
varying. Therefore, the resulting image becomes blurred if the Fourier transform
is used.

Motion-induced time-variation in the Doppler spectrum has been used by
sub-aperture algorithms, which attempt to perform time-frequency processing to
resolve a blurred Fourier spectrum to a certain level of resolution. If a high-reso-
lution time-frequency analysis can be used to replace the Fourier transform,
then the restrictions of the F ourier transform can be lifted. Thus, there is no
need to eliminate the drift through range cells and no need to keep Doppler fre-
quency shift constant for each scatterer. By using high-resolution time-frequency
analysis, the motion of the individual scatterer is actually examined at each time
instant. Since each scatterer has its own range and its own Doppler shift at each
time instant, there is no scatterer overlapping, and therefore, no image blurring
occurs.
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10.1.3 Motion-Induced Time-Varying Doppler Spectrum

As was mentioned earlier, the restrictions imposed by Fourier‘transform pro-
cessing can be lifted if a processing method other than the Fourier transform is
used to deal with the time-varying Doppler spectrum. From a frequency analysis
point of view, the complex motion causes the Doppler fr‘equency to be time-vary-
ing. Therefore, the time-varying Doppler frequency sl'nft can be very well ana-
lyzed, and the image blurring caused by the time-varying Doppler spectrum can
be resolved without applying sophisticated motion compensation. Or} the other
hand, since the time-varying Doppler frequency shift can also be induced by
uncompensated phase errors, the time-varying Doppler processing can also help
in resolving the image blurring due to these errors. '

It is necessary first to examine the relationship between mot1qn and the
time-varying spectrum before introducing joint time-frequency an.a]ysmr for Dop-
pler processing. When the object in Fig. 10-2 has complex t.rans_latwnal and rota-
tional motion, the phase of the returned signal from the object is

_ysin®
. (rh = 27‘f%rc(—’) g 27tf?.[R(z)+xcosec(t) ysinB(r)]

where it is assumed that R(¢) = Rg + vp t and 6(t) = 6, + Qt.
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Fig. 104 (a) Fourier spectrum and (b) time-varying spectrum for a single range cell.

Since the time-derivative of phase is frequency, by replacing 6(¢) with GOth
and R(¢) with Ry+vpt and taking the time-derivative of the above phase function,
the Doppler frequency shift can be derived as
- A

ID s = = VR

trams
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and
Ip, = g[x(-—sineoﬂ ~cos 60021) - (cos6,Q - sinGOQQt)]

where 8 is the initial object angle. From this equation, it is clear that when Vg
or Q is changing with time, the Doppler frequency shift is time-varying. Even if
the rotation rate Q is constant, the rotational motion-induced Doppler frequency
shift is still time-varying.

Another source of time-variation in the Doppler spectrum may result from
the uncompensated phase errors due to irregularities in the object’s motion, the
fluctuation of the rotation rate, the fluctuation in localizing the rotation center,
inaccuracy in tracking the phase history, and other variations of the system and
the environment. From the relationship between the range and the phase given
in (10.1), the phase is very sensitive to range variation. For example, for a wave-
length of A = 3 em, even a 0.1 em range error can cause 24° phase deviation.
Since the residual phase errors may vary with time, the Doppler frequency also
varies with time. As is known, the Fourier spectrum does not support the instan-
taneous frequency spectrum with time. By representing the time-varying Dop-
pler spectrum with the Fourier transform, the Doppler spectrum becomes
smeared, as shown in Fig. 104, where the Fourier transform (Fig. 10-4a) and a
time-frequency transform (Fig. 10—4b) are applied to a real data time history
series. Therefore, the Fourier mapping of the object’s scatterers becomes blurred,
while the time-frequency mapping is clear for each time instant.

Because of the time-varying property of the Doppler spectrum, an efficient
way to resolve the smeared Fourier spectrum and blurred radar image is to
apply a joint time-frequency transform. The Joint time-frequency transform actu-
ally decomposes the phase function into instantaneous time slices. At each time
slice, the Doppler frequency components are fixed, possessing the Doppler reso-
lution provided by the Jjoint time-frequency transform.

To achieve superior resolution and unbiased estimation of the instanta-
neous frequency spectrum, the time-frequency distribution series (TFDS) can be
applied. The TFDS is an efficient way to achieve focusing and to resolve the
image blurring problem caused by the time-varying property of Doppler spec-
trum. In the next sub-section, applications of the Jjoint time-frequency transform
to the range-Doppler radar imaging system to achieve superior image resolution
will be discussed.

Since ISAR image construction is essentially a process of spectral analysis,
super-resolution techniques of modern spectral estimation [103] can also be used
to construct sharp images during a short observation time. Super-resolution does
generate sharper spectral peaks than the Fourier spectrum’s. However, spurious
peaks can be introduced into the spectrum if the size of the autocorrelation
matrix is not adequate. In noisy data situations, since the least square solution
is sensitive to noise, spectrum perturbation may occur. Also, the amplitude of the
peak spectrum may not be proportional to the strengths of the scatterers, and
some weak scatterers may be missed. Further, super-resolution depends on the
selected order and could become unstable. Compared with super-resolution, joint
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time-frequency analysis provides a natural way to achieve superior resolution,
while the super-resolution approach simply sharpens the Fourier spectrum and
generates a pseudospectrum.

10.1.4  Joint Time-Frequency Analysis for Radar Range-Doppler
Imaging

Thus far, discussion has centered on the basic concept of radar range-Doppler
imaging and the conventional radar imaging system based on the Fouri.er trans-
form. To achieve superior resolution and unbiased estimation of the instanta-
neous frequency spectrum, the time-frequency properties of thfs joint tirpe-
frequency transform are very useful. By replacing the conventional Fouqer
transform with a joint time-frequency transform, a 2D range-Doppler Fou.ner
frame becomes a 3D time-range-Doppler cube. Sampling in time yields a time
sequence of 2D range-Doppler images which can be viewed [21]. Each individual
time-sampled image from the cube provides not only higher resolution, but also
the temporal information available within each observation time.

Next will be presented an example of the application of the TFDS tq the
construction of a high-resolution range-Doppler image. The objective of the simu-
lation is to explore the potential benefit of time-frequency analysis in construct-
ing range-Doppler images.

Z-axis (meter)
)

Y-axis (meter)

20 g0

X-axis (meter)

- Fig. 10-5 An aircraft characterized by scatterers.

Fig. 10-5 shows a simulated aircraft in terms of its 3D reﬂectiyity dengity
function p(x,y,2), which is characterized by scatterers along with their reflectivi-
ties. The aircraft is initially located at a point in three-space (xg = 70 m, yg =
1600 m, zg = 100 m). It has only translational motion with a velocxlty of 120m/s
along a track at 130° from the u-axis in the global coordinate (u,v) in Fig. 10-2.
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The translational motion can induce an equivalent angular rotation of the air-
craft with an angular velocity of 4.3,

In this simulation, the radar is assumed to be operating at 9000 MHz. A
total of 64 stepped frequencies are used in each burst. To achieve 1.0 m range
resolution, a total of 150 MHz bandwidth is required, and, therefore, the step-
ping frequency is 2.34 MHz. The pulse repetition frequency used in the simula-
tion is 20,000 pulses/s, which is high enough to cover the entire aircraft. The
observation time should be long enough to achieve the desired resolution. Here,
0.82 s observation time, or 256 samples of the time history series, is assumed.
Therefore, the radar image consists of 64 range-cells and 256 Doppler frequen-

cies. For the above initial kinematic parameters of the simulated aircraft, the
cross-range resolution is 0.44 m.

A fluctuation in the velocity

V(1) = v(0) + Av(r)
can induce an equivalent radial velocity fluctuation as well as an equivalent
angular velocity fluctuation. Tt is interesting to introduce a velocity fluctuation
by assuming that Av() is a sinusoidal function of time. Even if the fluctuation
causes a maximum velocity variation of only 0.5m/s with the velocity specified
above (which results in a maximum range fluctuation of 0.1 m), the uncompen-
sated phase error due to this fluctuation can cause the constructed image to be

blurred, as shown in Fig. 10-6a, where range and Doppler tracking have been
applied.

(a)

(b)

ted data with uncompensated phase
time-frequency transform.

Fig. 10-6 Radar image of the aircraft from simula
errors by using (a) Fourier transform and (b) joint

Clearly, the uncompensated phase error causes the Doppler spectrum to
vary with time. Dealing with the time-varying Doppler spectrum using conven-
tional Fourier transform processing blurs the image. If the Fourier transform is
replaced with a joint time-frequency transform implemented by the TFDS, as
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illustrated in Fig. 10-7, a single image frame becomes a sequence of temporal
image frames. In other words, the joint time-frequency transform resolves the
single image frame into a stack of its temporal frame elements. Each temporal
frame element’s range-Doppler resolution is higher than that of the single Fou-

rier frame.
%

Joint Time-Frequency Processing

Frequency
Domain
Signatures

Range Processing
(1-D IDFT)

ISAR Image Cube

Range

Range
Profiles

Time History

Fig. 10-7 Block diagram of ISAR image construction using joint time-frequency trans-
form.

For comparison, the image constructed with the Fourier transform is shown
in Fig. 10-6a. Fig. 10-6b shows one frame from the image sequence constructed
with the joint time-frequency transform. The joint time-frequency transform
yields a much improved representation of the time-varying spectrum: the
blurred Fourier image is resolved into a sequence of time-varying images; the
sequence not only has higher resolution, but also illustrates the Doppler chang-
ing and range walking from time to time.

10.1.5

Conventional radar imaging uses the Fourier transform, which assumes that the
contents of Doppler frequencies are not changing during imaging time. However,
in most cases, this assumption is not true. Due to an object’s motion and rota-
tion, the motion-induced Doppler frequency shift is actually time-varying. The
time-varying Doppler spectrum can also result from uncompensated phase
errors due to an object’s irregular motion and inaccuracy in tracking the phase
history. Therefore, by representing the time-varying Doppler spectrum with the
Fourier spectrum, the Doppler spectrum becomes smeared.

Summary
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To represent time-varying spectra, a joint time-frequency transform is
desirable. The joint time-frequency transform can very well represent the local
time-frequency structures of the radar data. Replacing the conventional Fourier
transform with a joint time-frequency transform converts a 2D range-Doppler
Fourier frame into a 3D time-range-Doppler cube. By sampling in time, a time
sequence of 2D range-Doppler images can be viewed. Each individual time-sam-
pled image from the cube provides not only higher resolution, but also the tempo-
ral information associated with each imaging time.

10.2 Backscattering Feature Extraction’

ISAR imaging has long been used by the microwave radar community for signa-
ture diagnostic and target identification applications. ISAR is a very robust pro-
cess for mapping the point scatterers on the target. For instance, in a typical
signature diagnostic application, a target is mounted on a pedestal in a radar
anechoic chamber and irradiated with an electromagnetic plane wave. The back-
scattered wave is then sampled over multiple frequencies and viewing angles (by
rotating the target on the pedestal). By processing these samples via the ISAR
imaging algorithm, the ISAR image of the target is formed that usually consists
of a collection of discrete point scattering features, or scattering centers. These
scattering centers on the target can be identified in the image plane as a function
of down-range and cross-range and are useful for pinpointing those elements on
the target which are the dominant contributors to the radar cross section (RCS)
of a target in signature design applications. Similarly, in target identification
scenarios, the ISAR image is acquired by tracking a maneuvering target over
time using a stationary radar, in essence gathering multi-look data on the tar-
get. The formed image is then compared against existing templates in order to
identify the unknown target.

While simple targets can be modeled as a collection of point scatterers, real-
world targets contain many non-point scattering mechanisms. For instance, air-
craft signatures consist of not only scattering centers, but also resonances from
sub-skin line features such as inlets, cockpits, and antenna windows. These scat-
tering mechanisms appear in an ISAR image as blurred clouds which extend
down-range and often do not correspond to the spatial features on the target. On
the other hand, the same mechanisms do provide important features which, if
properly interpreted, can become important factors in the target classification
process. In this second part of the chapter, we shall discuss the artifacts in the
ISAR image associated with the non-point scattering physics of realistic targets
and ways to extract them using joint time-frequency techniques. This section is

* Contributed by Luiz C. Trintinalia and Hao Ling, Department of Electrical and Computer
Engineering, University of Texas, Austin, Texas 78712-1084. This work was supported by the
Joint Services Electronics Program under Contract No. AFOSR F49620-95-C-0045 and in part
by the Air Force Wright Laboratory through DEMACO subcontract DEM-95-UTA-55. “The
United States Government is authorized to reproduce and distribute reprints for governmen-
tal purposes notwithstanding any copyright notation hereon.”
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organized as follows: We first give a brief overview of the ISAR imaging principle
and show how non-point scattering mechanisms can create artifacts in the
image. We then describe how time-frequency processing, in particular the adap-
tive spectrogram, can be applied to remove these non-point scattering features
from the ISAR image. Finally, we present several processing examples, using
data from numerical simulation and actual chamber measurement, on how this
processing can lead to a cleaned image and how the non-point scattering features
can be displayed in an alternative feature space to provide additional informa-
tion on the target feature.

y A

0. 0

Fig. 10-8 Ideal scattering center excited by plane wave.

10.2.1 ISAR Algorithni and Effects of Non-Point Scattering
Mechanisms on ISAR Imagery

Inverse synthetic aperture radar imaging provides a way to map data gathered
at multiple frequencies and aspect angles into a two-dimensional image (the
ISAR image) whose points correspond to x-y coordinates in space (called down-
range and cross-range, respectively). For a target containing an ideal scattering
center with strength A at the position (xy, ¥,), when excited by an electromag-
netic wave incident at an angle 6 and frequency f (see Fig. 10-8), the resulting
scattered field can be written as

S(£,8) = Aexp(-j2k,x~ j2k,¥,) (10.7)
where
2
k, = T[fcose, k, = cib sin@
¢ : ¢

If we take the inverse Fourier transform of (10.7) with respect to the variables
2k, and 2k,, we obtain

5(x,¥) = AB(x ~ xg)8(y - ¥,) (10.8)

This is the essential idea behind the ISAR processing: ideal scattering centers
correspond to ideal points in the ISAR image. Of course, due to limited band-
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width and aspect angle, we will see a spot of finite size, rather than a point, in
the image.

Yy A

i
Yo! e

,>///" |

v
g - e —— >X
(e Xo
— S
=

Fig. 10-9 Small cavity excited by plane wave,

Real targets, however, cannot always be suitably represented by a collec-
tion of scattering centers. Cavities, ducts, and other sub-skinline structures
present in real targets produce scattered signals that have very strong frequency
dependence and cannot be well focused in the ISAR plane. Consider, for example,
the small cavity depicted in Fig. 10-9. Disregarding the scattering contribution
from its exterior and assuming, for simplicity, that the energy coupled through
its small aperture will be isotropically radiated at a single frequency f, (one of
the resonance frequencies of the cavity), we can write the expression for this

scattered signal as
eXP(‘ﬂ"x"O —J2kyyo )
a+j2n(f-f,)

In deriving this expression, we assumed that a damping resonance frequency
(with damping factor o) starts to radiate from the aperture (x(, y,) when the inci-
dent wave reaches the cavity.

S(f.8)=4 (10.9)

|

4 cm x 4 cm cavity
with 1.5 cm opening

f ]'50117

Fig. 10-10 Conducting strip with small cavity and fin.
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10.2.2 " Time-Frequency Processing of ISAR Images

ISAR

For signals that contain both scattering-center mechanisms and resonances, nei-
ther the time domain nor the frequency domain analysis will be able to reveal g1l
the features present in it. In such cases, the time-frequency plane is the orﬂy dis-
play that will allow us to discriminate these two phenomena (as well as other

cross-range (m)

1 1.2 1.4 1.6 1.8 2
down-range (m)

Fig. 10-11 ISAR image obtained for the geometry shown in Fig. 10-10. Simulation
was carried out for /= 5-15 GHz and 6 = 0-60°.

If we further assume that data are gathered over a rectangular window in
the k-plane along the k, axis, having a small angular aperture

k

1

=k k), =406
but large bandwidth (Ak,>>Ak,), the corresponding expression in the ISAR plane
can be shown to be

s(x, y) = Bsinc[Ak (v - y)Jexp(j2kqx) exp (~20.x/ ¢)u(x - xg) (10.10)

We notice that the ISAR feature of this signal, while still localized around the
cross-range of the cavity aperture, spreads out in the down-range direction. As
an example, consider the simple structure of a strip containing an open cavity,
shown in Fig. 10-10. We generated the scattered data using a standard two-
dimensional moment method simulation. The simulation was carried out for fre-
quencies from 5 to 15 GHz, with an angular aperture of 60°. Fig. 10-11 shows
the obtained ISAR image for this target, with the outline of the target superim-
posed on it to facilitate the identification of the scattering mechanisms. As
expected, three scattering centers, corresponding to the left and right edge of the
strip and the cavity exterior, can be identified in the image. Besides these scat-
tering centers, we also see a large cloud, spreading through the down-range,
which corresponds to the energy coupled inside the cavity, and re-radiated at its
corresponding resonance. This cloud not only makes the image more crowded,
but may in some cases obscure some other important scattering centers. This
portion of the scattered signal contains information on the resonance frequency
of the cavity.

more complex dispersive mechanisms). The short-time Fourier transform (STFT)
is the most standard procedure and a simple to obtain a time-frequency display.
This processing technique involves the use of a sliding window in the time
domain. For each position of this window, a Fourier transform of the windowed
data is generated, and therefore we can obtain an image (called the spectrogram,)
showing the spectrum of the analyzed signal for each position of the window. By
using this technique, we obtained a time-frequency display of the backscattered
data for the geometry depicted in Fig. 10-10, at a single angle of § = 25°. In this
display, shown in Fig. 10-12, we can identify the scattering centers as vertical
lines and the resonances as horizontal lines.

Frequency (GHz)

o 2 4 6 8 10 12 14 16 18
Time (nsec)

Fig. 10~12 STFT of backscattered signal from the geometry shown in Fig. 10-10 for 0
=25° and f = 50 MHz 10 18 GHz.

It would be interesting then to combine this time-frequency processing with
the ISAR imaging technique so that we can still pinpoint the positions of scatter-
ing centers in space and the positions of the resonances in the frequency domain.
To accomplish that, we process each line (cross-range) of the obtained ISAR
image using the STFT engine, thus generating a third axis for this display. Since
we will be sliding our window along the down-range, this new axis will be pro-
portional to k,, which for a small angular aperture is proportional to the fre-
quency. This new display has three dimensions: down-range, cross-range, and
frequency. Each frequency slice of this “cube” will be a narrow-bandwidth ISAR
image, and so it will allow us to identify scattering centers, which will be present
in all slices, and resonances, which will appear only in the slices close to the res-
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onance frequencies. Fig. 10-13 shows such a display, obtained for thp same
example referred to earlier. It is possible now to identify the three sca}ttermg cen-
ters, and also to estimate the resonance frequencies present in the mgr}al (which
show up as large clouds in some slices). However, even though we gained some
insights with this new display, the frequency resolution came at the cost of losing
down-range resolution.

down-range

-40 =35 . =25 -20 -15 -10 -5 0

Fig. 10-13 Joint time-frequency ISAR display obtained by applying the STFT to the
ISAR image in Fig. 10-11.

Clearly, a different processing engine is needed other than the ‘STFT tp
gain frequency resolution, without sacrificing the down—rangg resolution. This
engine is the adaptive Gabor representation (AGR), to be described next.

10.2.3

The adaptive Gabor representation was introduced in the signal processing com-
munity by Qian et al (see [146] and [151]). Since the rigorous treatment of this
algorithm can already be found in Chapter 8, only those aspects that are closely
related to our application are described here. The basic idea of th1.s procedurg is
to expand a signal s(¢) in terms of a set of localized Gaussian functions . (f) with

an adjustable standard deviation O, and a time-frequency center (¢, Ip):

Adaptive Joint Time-Frequency ISAR

s() = Y Bphy (1) (10.11)

r=1

where

2
hp(1) = ( Ttop2 )*O'Zsexp{—gi-_?—)—}exp{jzm"pr} (10.12)

20[;

The coefficients B, are found one at a time by an iterative search procedure. One
begins at the stage p = 1 by choosing the parameters o, Iy, and f,, such that hp(t)
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is most “similar” to s(t), i.e., for which the inner product between s(¢) and hp(t) is
the largest. The next B, is found using the same procedure after the orthogonal
projection of s(¢) onto hp(f) has been removed from the signal. This procedure is
iterated to generate as many coefficients as needed to accurately represent the
original signal.

Several comments are in order. First, it can be shown that the norm of the
residue monotonically decreases and converges to zero. Therefore, adding a new
term in the series does not affect the previously selected parameters. Second,
because this representation is adaptive, it will be generally concentrated in a
very small sub-space. As a result, we can use a finite set of elementary function
(7,(#)} to approximate the signal, with a residual error as small as one wishes.
Also, since random noise in general is distributed uniformly in the entire Space,
this sub-space representation actually increases the signal-to-noise ratio.
Finally, the major difficulty in implementing this algorithm is the determination
of the optimal elementary function at each stage. In our implementation, we
used the same guidelines as those given in [151].

The adaptive spectrogram has two distinct advantages over conventional
time-frequency techniques such as the short-time Fourier transform. First, itis a
parameterization procedure that results in very high time-frequency resolution.
More importantly for our application, this representation allows us to automati-
cally distinguish the frequency-dependent events from the frequency-indepen-
dent ones through the extent of the basis functions. From expression (10.12), it
can be seen that scattering centers, i.e., signals with very narrow length in time,
will be well represented by basis functions with very small 6,. Frequency reso-
nances, on the other hand, will be better depicted by large Op.

We can now replace the STFT engine by the adaptive Gabor representation
in the procedure described in 10.2.2. In our implementation, we run the adaptive
Gaussian algorithm for each line (cross-range) of the ISAR image, thus extract-
ing a set of Gaussian basis functions that adequately represent that image. Since
the data are in effect parameterized using the adaptive Gabor representation, we
no longer have to create the three-dimensional display, like that shown in Fig.
10-13, using the STFT. This saves us from having to store a very large three-
dimensional image.

Once we obtain the parameterized representation of the data, we can dis-
tinguish the scattering-center mechanisms from the resonance information
based on the variance of the time-frequency basis. Those with small variances
correspond to the scattering-center mechanisms. Using only the Gaussians in
this set, we can reconstruct our ISAR image (by simply adding up the selected
basis functions), and thus generate a clean, enhanced image that contains only
scattering-center information. We can also reconstruct the ISAR image using
only the large-variance Gaussians, those related to the resonances and other dis-
crete frequency events. It is, however, more meaningful to view these frequency-
dependent mechanisms in the Fourier transform domain of the ISAR image. By
doing so, we will obtain a dual frequency-aspect display where resonances and
other frequency-dependent mechanisms can be better identified. The procedure
is illustrated graphically in Fig. 10-14.

—m
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Standard ISAR Image

Use adaptive Gaussian
@— representation to
paremeterize each line

by {prtp)fpacp}
down-range

Reconstruction Reconstruction using
using bases with bases with large ¢
small followed by 2D FFT

Cross range

Cross-range

down-range frequency

Fig. 10-14 By applying the adaptive joint time-frequency procedure to each cross-
range line of the standard ISAR image, we can separate the original image into two
new images based on the width of the Gaussian basis function: an enhanced ISAR

image containing only scattering centers and a frequency-aspect image containing
only resonance information.

10.2.4 Examples

We shall now present two examples of the adaptive joint time-frequency ISAR
processing. The first example is based on numerically simulated data for a per-
fectly conducting plate containing a long duct open at one end, shown in Fig. 10—
15. Fig. 10-16a shows its ISAR image at 40° from edge on. The scattering data
were simulated numerically using a method of moment electromagnetics code.
We notice in the image that, in addition to the three scattering centers corre-
sponding to the two edges of the plate and the mouth of the duct, there is also a
very strong return outside of the target. This return corresponds to the energy
that gets coupled into the duct, travels down the length of the duct, hits the end
and reflects back to the duct mouth and is finally re-radiated towards the radar.
Fig. 10-16b shows the enhanced ISAR image of Fig. 10-16a, obtained by apply-
ing the above algorithm and keeping only the small-variance Gaussians. We see
that only the scattering-center part of the original signal remains in the image,
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aspect display of the high-variance
ines. They correspond to the cut-off

as expfzcted. Fig. 10~16¢ shows the frequency-
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Fig. 10-15 Conducting strip with a long cavity.
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Fig. 10~16 Standard ISAR image (a) of conducting strip with a long cavity in Fig. 10—

15, obtained for f = 2-13 GHz, 6 = 25°.55° Enhanced ISAR image (b) and frequency

aspect display (c) obtained by applying AGR to the ISAR image in (a),
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Inlets

Fig. 10-17 VFY-218 model
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Fig. 10-18 Standard ISAR image for VFY-218 model in Fig. 10-17a obtainegi forf=8
- 16 GHz, 6 = 0° ~ 40°. Enhanced ISAR image (b) and frequency aspect display (c)
obtained by applying AGR to the ISAR image in (a).
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The second example uses the chamber measurement data of a 1:30 scale
model Lockheed VFY-218 airplane provided by the EMCC (Electromagnetic
Code Consortium) [182]. The airplane has two long engine inlet ducts, as shown
in Fig. 10-17, which are rectangular at the open ends, but merge together into
one circular section before reaching a single-compressor face. As we can clearly
see in the conventional ISAR image of Fig. 10-18a for the vertical polarization at
20° near nose-on, the large cloud outside of the airframe structure is the inlet
return. Fig. 10~18b shows the enhanced ISAR image of Fig. 10-18a, obtained by
applying the above joint time-frequency ISAR algorithm and keeping only the
small-variance Gaussians. We see that only the scattering-center part of the
original signal remains in the image, as expected. Notice that the strong return
due to engine inlet has been removed, but the scattering from the tail fin
remains. Fig. 10-18c shows the frequency-aspect display of the high-variance
Gaussians. A number of equispaced vertical lines can be seen between 10.5 and
13.5 GHz. Given the dimension of the rectangular inlet opening, we estimate

that these frequencies correspond approximately to the cutoffs of the second and
higher modes in the waveguide-like inlet.

10.2.5 Summary

In this section, we presented an example of how the adaptive spectrogram can be
applied to the range axis of the ISAR image to process data from complex targets
containing not only scattering centers but also other frequency-dependent scat-
tering mechanisms. This application is the exact dual of what was described in
the first part of this chapter, where the joint time-frequency technique is applied
to the cross-range (or the Doppler frequency) axis of the ISAR image for motion
compensation. The adaptive spectrogram is well suited for the present applica-
tion not only because of its robustness and high resolution, but because the fre-
quency extent of the resulting Gaussian basis functions allows the natural
separation of the scattering mechanisms into target scattering centers and reso-
nances. The computational cost of the adaptive search algorithm is high. How-
ever, once obtained, the parameterized feature set can be used to very quickly
reconstruct the ISAR image. The adaptive Jjoint time-frequency ISAR algorithm
allows the enhancement of the ISAR image by eliminating non-point scatterer
signals, thus leading to a much cleaner ISAR image. It also provides information
on the extracted frequency-dependent mechanisms such as resonances and fre-
quency dispersions. This is accomplished without any loss of resolution.
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e subject of
research across a wide variety of disciplines. Although investigations by life sei-

entists on biological and biochemical issues concerni

and electroencephalography
, Which measure the magnetic and electrical fields, Both MEG and EEG
provide excellent temporal resolution, with the EEG being far less costly. Cur-
rently, the EEG and its variant, the event-related potentials (ERPs), are the
most widely used methods of assessing brain function.

Our investigation is related to a problem of major significance, in both basic
and clinical neuroscience: the determination of the location of functional areas
related to the generation of electrical activity in the human brain. The solution of
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this problem will provide the capability to answer important quest.ions, in a non-
invasive means, concerning activated areas of the brain where information is
processed. In addition, the identification of active neural substrates will aid in
making critical neurcsurgical decisions.

In this chapter, we first provide a biological background about the nervous
system, its function, and the contribution of the neurons tq the observed EEG.
Then, signal processing méthods applied to the EEG are bn.eﬂy c.hscussed, with
particular emphasis on time-frequency analysis. We then briefly introduce tech-
niques for source localization based on mathematical models of a volume conduc-
tor and a dipole current source, formulated as the inverse problerp of the EEG.
Next, our approach to the problem of noise-suppression in the mult-lchannel EEG
is described using time-frequency analysis and synthesis_techmques. In this
approach, we compute the time-frequency distribution series (TFDS) for each
channel of the EEG and the result is weighted and averaged. This process sup-
presses cross-terms in the individual TFDS and produces a .single. time-fre-
quency distribution. Regions of interest which contain the desired signals are
specified on this distribution to exclude the undesired components of .the EEG
from the localization process. The signal of interest is reconstructed using txmf?-
frequency synthesis and the source of the functional activity in the brgin is esti-
mated and mapped numerically by solving a least-squares problem. Finally, we
apply this method to localize sleep spindle data, an EEG pattern observed during

sleep.

11.1 Biological Background of the Brain

The individual nerve cell, or neuron, is the basic functional unit of the nervous
system involved in the transmission of information [100]. The neuron copmsts of
three parts: 1) a dendritic branching through which input 1nforrr{at‘10n is traps—
ferred to the cell, 2) a body (or soma) which serves to integrate this information,
and 3) an axon, which is a segment transferring information to other neurons.
Each neuron is in contact through its axon and dendrites with other neurons, so
that each neuron is an interconnecting segment in the network of the nervous
system.

A synapse is a specialized site of contact between neurons. The axon of a
neuron may terminate in only a few or in many thousands of synapses. A thou-
sand synaptic terminals per axon has been estimated as a rough average. The
dendrites and soma of a single neuron may receive synaptic contact from several
hundred to over 15,000 axons. Within the central nervous system, nerve cellg are
highly interconnected. It has been estimated that there are 1010 neurons Wlthﬁﬂ
the brain of man, and that the number of synaptic junctions approaches 10-*.
The number of possible peérmutations of neuronal interconnections in even a
small region of the central nervous system is very large indeed. _ .

The brain, in which the longest distance between any pair of p01nts~ls
approximately 17 em from the front to back, integrates neuronal functional units
forming topological regions. Within these regions exist compact groups of neu-
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rons, called nuclei, which are often anatomically identifiable. Tracts of axons
connecting these nuclei can be traced from region to region, and it is to such rel-
atively complex nuclear regions that the various functions of the nervous system
are related, and which are the putative sites of the generators for electrical activ-
ity observed on the scalp. When the brain is involved in a certain task, corre-
sponding nuclei are activated and information is processed and transmitted. The
global effects of these activities may be observed as a non-stationary signal,
which has been termed the electroencephalogram (EEG), and is thought to be
the synchronized sub-threshold dendritic potentials of many neurons summed.
The EEG is normally recorded from the human scalp, and typically has ampli-
tudes from 10 to 100 uV and a frequency content from 0.5 to 40 Hz. Signals of 10
to 30 iV are considered low amplitude and potentials of 80 to 100 pV are consid-
ered high amplitude. The spectrum of the EEG is divided into four dominant fre-
quency bands: 8-band (0-4 Hz), 6-band (4-8 Hz), o-band (8-13 Hz), and B-band
(13-30 Hz).

11.2 The Need for Signal Processing

The EEG was first discovered by Berger in 1924, who was thus the first to open a
window on the functional world of the brain. However, what he observed was
“noisy” and “chaotic® waves. Since then, considerable research has been con-
ducted to explain these mysterious waves. Fig. 11-1 shows a segment of the EEG
recorded from a male adult during sleep, where it can be observed that the wave-
forms are quite complex in structure and their morphological shapes vary
sharply with a short period of time. Traditionally, the EEG is read by clinicians
whose interpretations are based on their experience. As a result, uncertainty is
involved due to the level of training received and the form of graphics presented.
In recent years, computer signal processing has gained popularity in the EEG
community (see [66] and [162]). The spectral characteristics of the EEG can now
be evaluated efficiently using the discrete Fourier transform. This method
assumes that the observed data are stationary over short periods of time (on the
order of 2 to 4 s). Under this assumption, the frequency hand classification refer-
enced above, which summarizes the spectral content of the EEG, provides a con-
venient basis for data analysis and comparison; however, this classification is
not effective when the EEG exhibits significant non-stationarities. Recently,
time-frequency analysis techniques (see [32] and [73]) have been applied to the
EEG and other related measures such as event-related potentials (ERPs) (see
[56], [162], and [163]). These techniques provide a new perspective in which the
time-dependent spectrum of the EEG can be observed. Earlier applications were
dominated by the spectrogram, which was based on the windowed short-time
Fourier transform [104]; later the Wigner-Ville, Page, and Rihazcek distribu-
tions were applied to the EEG and ERPs (see (561, [102], [162], {1631, and [183]).
After extensive studies on the general class of distributions initialized by Cohen
[26], the Choi-Williams distribution was developed and applied to the EEG and
electrocorticogram [189]. In addition, the cross time-frequency distributions
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which measure the time-frequency coherence of a pair of signals were used for
analyzing multichannel EEG (see [162] and [163]) and for identifying epileptic

seizures [189].
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Fig. 11-1 A segment of a multichannel EEG of an adult male subject during sleep.
Only five channels are shown out of a total of 64 channels recorded. This EEG

segment belongs to Stage 2 Quiet Sleep, where a sleep spindle is present between the
fourth and seventh seconds.
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Most previous applications of signal processing to the EEG have focused on
finding temporal and spectral properties of the signal such that hypotheses
relating to changes of these measures with respect to different physiological and
pathological conditions can be tested: In this and other investigations (see [44],
[62], [101], and [129]), in contrast, the geometric space of the head is the domain
of interest. We are focused on the non-hypothesis-driven issue of localizing the
neuronal substrates in the brain responsible for the generation of the observed
patterns in the multichannel EEG (see [171] and [172]). This approach requires
not only the development of mathematical models for the volume conductor of
the head and optimization algorithm to solve the source parameters (to be dis-
cussed), but also sophisticated signal processing techniques to extract the
desired signal from various noise interferences. As indicated previously, the
EEG is a complex signal reflecting an extremely large number of microscopic
neuronal activities. Some of these activities are related to the event of interest,
while the rest may be considered to be noise interference. Besides this undesired
neurological interference, the EEG is also contaminated by other biological and
environmental noise as well, such as muscle activity, the electrocardiogram, 60
Hz components from the power line; variation in electrode contact impedance,
and electromagnetic emissions. The solutions to the source localization problem
could be meaningless without filtering the EEG. Traditional bandpass filtering
may be applied when the signal and noise do not share the same frequency
bands; however, this is seldom the situation. Time-frequency analysis techniques
provide powerful alternatives for isolating the signal of interest from the con-

11.3 Joint Time-Frequency Analysis and Synthesis 245

centrateﬁi thpugh its time-frequency profile may be complex in shape. This sug-
gests a uitering strategy to transform the EEG into the time-frequency domain
isolate the patterns that reflect the event of interest, and then reconstruct the

11.3 Joint Time-Frequency Analysis and Synthesis

.In order to localize the event of interest within the brain, an array of electrodes
is affixed to the scalp to record the signals emitted from the source. A larger

N,
Pw) = Y 0P (1, ) (11.1)

c=1

where N, .is the number of channels, and o is the weight, o, = 3. /S with §,
and S, being, the energy within the frequency band of inte;est andc’the totzgl
energy for the signal in channel ¢, respectively. This averaging produces a single
distribution allowing a pre-discrimination of the noise by emphasizing the chagn-
pel§ Where the signal is strong. In addition, the cross-terms present in each
individual time-frequency distribution are reduced because the noise compo-
nents are often less correlated among the EEG channels than the signal compo-
nents. The phase differences in the noise may also help to cancel the cross-terfns
when they are highly oscillatory in the time-frequency plane. In order to esti-
m.ate the energy ratio w,, we apply a bandpass filter to all channels of the EEG
with a pair of fixed cut-offs which cover all possible frequencies of the signal. The
values of these cut-offs may be obtained from studies in neurophysiology. .

The selection of the time- requency distribution P.(t,0) in (11.1) is rather

effectively. In our case, this order was chosen bet i
shows the average TFDS for the signal in Fig. lkl)itlv.veen tW.O e il 1.2

. Once the average TFDS is obtained, it is represented in an image form in
Wl'.uch the regions of interest (ROI) are specified. The ROI identifies the bound-
aries of the time-frequency components of interest by incorporating a priori
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knowledge, obtained from neurophysiological studies, into thg sub:_s-equent signal
processing. The coordinates of the boundar_y are convert_ed into & binary ma;k
(Fig. 11-2b). This mask is then used to selec‘.c the ROI in each ch?nnel of the
time-frequency distribution for the reconstruction of the noise-free signal.

Frequency (Hz)
7

Froquency (Hz)
>

4
Time (s)

4
Time (s)

(a) (b)

i i hown in Fig. 11-1. The
Fig. 11-2 (a) The weighted average of 64 TFDSs fo.r the EEG s [
slgep spindle signal can be clearly observed in the high-frequency plane. (b) The region
of interest selecting the sleep spindle signal in (a).

TFDS

o

%74/
A X
N

Gabor sampling lattice

Fig. 11-3 The ROI is first identified in the highly _redundant TFDS image and then
mapped into the corresponding Gabor sampling lattice.

The process of constructing a time-domain signal fr'om a modified t}me-gre-
quency distribution is known as time-frequengy synthesis. Methodg of txmeé.reé
quency synthesis based on quadratic distributlor.ls have been extenswely stu 1}6;
(see [15], [42], [108], and [144]). Generally speaking, featu.res.of the signal can be
visualized more easily from a quadratic time-frequency distribution, .such as the
STET spectrogram, Wigner-Ville distribution, or TFDS, than from a hI.leaI.‘ repre-
sentation, such as the Gabor or wavelet transform; howevel‘“, quadratic distribu-
tions are highly redundant in terms of the large data size compared to the
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original signal. As a result, signal synthesis based on quadratic functions
requires a high computational cost, which represents a significant problem in
our case since, for each data segment, 64 channels of the EEG must be processed.

In order to solve this problem, we take advantage of the close relationship
between the TFDS and the Gabor transform (discussed in Chapter 3). We use the
TFDS to specify the ROI in the time-frequency plane where the features of the
signal can be observed in high resolution. We then project the resulting ROI onto
the Gabor sampling lattice to mask the Gabor coefficients, as shown in Fig. 11-3.
This process eventually forms a linear representation of the time-frequency fil-
tered signal after a few interactions (see Chapter 9 for detail). Since the Gabor
coefficients are used twice in the computation of the TFDS and signal recon-
struction, and the Gabor transform is a linear representation, this analysis-syn-
thesis method provides an ideal vehicle to carry the signal between the time and
time-frequency domains in this EEG application.

11.4 Model-Based Source Localization

In the source localization problem, the geometric space of the head is the domain
of interest. The values of the filtered EEG signals

{0e(19)}

forc =1, 2,..,N,, at a selected time f, provide the information about the dipole
location r = (x, y, z) and dipole moment m = (my, my, m,) at 1,. The dipole model is
valid when the actual source of functional activity is a set of densely packed, acti-
vated neurons.

Selving for the source parameters from the observed EEG has been formu-
lated as the inverse problem [101]. Theoretically, a system has an inverse if and
only if its input/output relationship is unique; however, this is not the case here
since two different sources may produce identical waveforms at all recording
channels. Therefore, this inverse problem is generally ill posed. In addition, a
model of the head, including its geometry and conductivity, must be utilized to
solve the source parameters r and m. The simplest model of the head includes a
spherical volume conductor with shells of isotropic conductance [11]. Other com-
plex models employ more than one dipole, more realistic head shapes, and non-
homogeneous conductivity values (see [33] and [63]) which are more precise, yet
more computationally expensive.

The relationship between the current source and the potential value can be
formulated as the following general form:

VIe(MmVVn = s(y) (11.2)
for re Q and
onlp
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where Q denotes the geometric space of the head, B the boundary of Q, V(y) the
potential in response to the source at location v, o(y) the conductivity tensor (gen-
erally anisotropic), s(y) the current source function, and V the gradient operator.

3 3.Ey.
V= (5 o)

When o and s are known and the boundary condition on B is imposed, V may be
solved analytically for some simple geometric shapes, such as a layered sphere-
like volume conductor excited by a dipolar current source (130]. In more realistic
models, an analytic solution does not exist and the finite boundary or finite ele-
ment method must be used.

Once the relationship between the source and the scalp potential is estab-
lished, a numerical optimization is applied with respect to the six parameters in
r and m and the measured EEG. Assuming the dipole can be translated and
rotated within the head volume conductor without constraints, the optimization
process minimizes the following sum of the squared errors (usually called the
residual variance) over all channels of the EEG:

N, 2
25:1 [‘/C =H C]7

X e w5

c

R=

c=1

where V, and V. are, respectively, the theoretical and actually measured poten-
tials for channel c, and N, is the number of channels. This optimization process
may be carried out by a variety of algorithms, such as the simplex, steepest
descent, and Newton-Raphson algorithms.

11.5 Experimental Results

In this experiment, the time-frequency filtering method is used to extract pat-
terns of the sleep spindle signal from the multichannel EEG and localize these
patterns. Previous studies have shown that the EEG waveforms are remarkably
different when a person is alert and asleep. An alert person displays a low ampli-
tude EEG of mixed frequencies in the 8 to 13 Hz range, while a relaxed person
produces large amounts of sinusoidal waves (with a narrow bandwidth between
8 to 18 Hz), which are particularly prominent at the back of the head. Three
alert-sleep states have been distinguished: waking (W), quiet sleep (QS), and
rapid eye movement (REM). In the adult human, QS is further differentiated
into four stages on the basis of brain, muscle, and eye activity. QS, REM, and
occasional momentary wakings occur in a periodic sequence throughout the
night, taking approximately 90 min in the adult human,

As an individual goes to sleep, o-activity is replaced by a lower amplitude,
mixed-frequency voltage (Stage 1 QS), which within minutes has superimposed
1-to 2-s bursts of 12- to 14-Hz activity called sleep spindies (Stage 2 QS) (middle
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portion in Fig. 11-1), the activity investigated in this experiment. Several min-
utes later, high-amplitude slow waves (0.5 to 3 Hz) appear and mark the onset of
Stage 3 QS. After about 10 min, these slow waves dominate the EEG and the
deepest stage of sleep, Stage 4, is reached. After a return through these stages,
REM sleep occurs, approximately 90 min after sleep onset.

Previous studies [67] have shown that sleep Stage 2 in which sleep spindles
appear occupies more than 50% of the total overnight sleep time in a typical -
adult. Animal studies (see [166] and [119]) suggest that sleep spindles are gener-
ated in the thalamus (a relay nucleus located near the center of the head) with
Propagation to the cortex via thalamocortical projections. This study was
designed to test the hypothesis that the thalamus is the origin of sleep spindles
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Fig. 114 Results of five channels of the reconstructed sleep spindle using time-
frequency analysis and synthesis of the raw EEG shown in Fig. 11-1. A comparison
between these two figures indicates that the background noise is effectively removed
by the time-frequency technique. Dipoles are localized at the time slices indicated by

«,»

+” symbols below channel Cz.

We recorded spontaneous EEG (sampled at 256 Hz) from three sleep-
deprived male subjects of ages 26, 28, and 39 using a 64-channel amplification
and acquisition system. To avoid aliasing, an analog bandpass filter with cut-off
frequencies of 0.1 Hz and 70 Hz were utilized before digitization. Electrodes were
placed at the sites defined in the International 10-20 System and at the mid-

notated by a trained sleep scorer. A total of 38 segments of EEG containing sleep
spindels were identified and selected for this study. Each segment contained 64
channels of data with 2,048 samples per channel. In order to reduce the bord er
effect in the process of computing time-frequency distributions, we positioned
the spindle signal near the center of each segment. The segmented data were
then down-sampled by a factor of four after digital lowpass filtering (cut-off fre-
quency 25.6 Hz). A set of typical traces of the EEG (recorded from five of the elec-
trode sites) has been previously shown in Fig. 11-1.
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Fig. 11-5 Histogram of the strength of the dipole current in each of the x, y, _and z
coordinates. A more spread distribution of the current moment can be observed in the
z-axis than in the x- and y-axes. This indicates that the source current of sleep
spindles tends to be stronger in parallel to the direction of the vertex of the head.

Fig. 11-6 (a) Localized dipoles (with time-frequency processing) at “+” symbols in Fig.
11-6 are superimposed with the MRI sectional image of the subject. The dipoles
(cross patterns) are concentrated in the neighborhood of the thalamus as suggested by
the previous animal experiments. (b) Localized dipoles without time-frequency
processing, but with the traditional bandpass filtering (Order-8 Butterworth) between
10 Hz and 16 Hz.

Finally, to compare these results with the ones obtained using traditional
bandpass filtering (Order-8 Butterworth filter, cut-offs, 10 and 16 Hz), we local-
ized dipoles at the same time slices corresponding to Fig. 11-6a. These results
are plotted in Fig. 11-6b where the patterns are scattered due to the influence of
noise. As shown in Table 11-1 , the average residual variance is 60% larger
(0.0619 vs. 0.0389).

11.6 Conclusion
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Table 11-1 Spindle Source Locations for Three Subjects
Subject Locations Stand Dev. Res. Var. | No. Dipoles
No. 1 (0.1007,-0.0064,0.1961) (0.1937,0.1129,0.1349) 6.09% 1,042
No.2 (-0303,-0.0055,0.0948) (0.1141,0.0729,0.1237) 3.35% 444
No. 3 (0649,0.0316,0.1999) (0.1533,0.1064,0.1265) 5.43% 1,073

11.6 Conclusion

We have shown that time-frequency analysis and synthesis techniques are very
useful for extracting signals from multichannel EEG. These techniques aid in
exploring the inner workings of the brain by finding the sources that are respon-
sible for the extracted EEG patterns. Qur application of these techniques to the

reconstruction of sleep spindles has provided a reliable input to the source local-
ization algorithm.




CHAPTEH12

Economic Data Analysis

Because economic data, such as the stock
price index, usually are good indicators of general economic trends and market
sentiments, economic data analysis has attracted a great deal of attention in the
area of signal processing. Historically, there are two approaches that dominate
the financial community. One is developed by the fundamental school from aca-
demia and the other is advocated by the technical school from Wall Street.

Fundamentalists believe that the stock-price change follows a random walk.
In other words, the history of prices has no power in predicting future prices.
They also believe that economic movements always go toward equilibrium.
Therefore, a proper trading strategy should be selling high and buying low,
because the price disequilibrium cannot last long in an efficient market. A rea-
sonable goal of buy-and-hold investment strategy, they suggest, is the average
return. Fundamentalists ignore the existence of business cycles. Their theory is
also weak in explaining market instability, such as the stock market crash.

People from the technical school gauge price levels and cyclic patterns from
time series. Therefore, they are also known as chartists. Chartists make their
trade decisions based on the trend and level information obtained from their
graphics. They suggest that a rising trend signals the time to buy and a falling
trend indicates the time to sell. A typical example of trading strategy is the so-
called five percentage rule. That is, buy if the price goes up five percent or sell if

" Contributed by Ping Chen, Ilya Prigogine Center for Studies in Statistical Mechanics & Com-
plex Systems, The University of Texas, Austin, Texas 78712
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the price goes down five percent. The “level gauging” has a chance to beat the
market, because price adjustments are usually slow and often over-reacted.
However, the magnitude of unexpected shocks is not predictable. Consequently,
it is hard to make the level gauging optimal. The trading strategy employed by
the technical school is more like an art rather than a science.

Although it is impossible to precisely predict stock movements, we do see
certain patterns possessed by the economic data series. For example, a stock
index such as FSPCOM (which is also known as Standard & Poor 500 composite
index, or simply, S&P 500), in Fig. 12-1, grows exponentially in general. Like
FSPCOM, most aggregate economic indices can be roughly considered as a
steady growth plus residual fluctuations. While the trend represents the long-
term movement, fluctuations contain the information regarding short-term
changes.
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Fig. 12-1 FSPCOM (also known as S&P 500) series can be viewed as a smoothing
trend plus a short period fluctuation. (Data source is CityBase.)

Traditionally, the fluctuation is treated as white noise. However, we have
found that it is not true when the joint time-frequency analysis is applied. In
fact, if the trend is properly removed, we could clearly observe some business
cycles, though they evolve with time. These observations may fundamentally
change current understanding of the market mechanism. It is the goal of this
chapter to briefly introduce those exciting developments in the financial commu-
nity.

As we know, for any given economic data, we could have many different
ways to detrend them. Different detrending schemes will result in different fluc-
tuations around the trend (the difference between the trend and raw data). Dif-
ferent fluctuations (or residuals, in econometric literature) will lead to different
time-frequency patterns. So, the first issue for economic data analysis is how to
detrend it so that the fluctuations lead to meaningful time-frequency patterns.
In Section 12.1, we investigate, from a time-frequency analysis point of view,
some well-established trend-cycle decomposition algorithms, such as log-linear
detrending (LLD) and Hodrick-Prescott detrending (HP). Although joint time-
frequency analysis remains a buzzword for most economists, it has been found to
have great potential in the area of economics.

In Section 12.2, we apply the time-variant filter to extract deterministic
cycles. In Section 12.3, we use time-frequency analysis to test historical events,
such as the oil price shock in 1973 and the stock market crash in 1987. In Section

v
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12.4, the potential of applications of time-frequency analysis to study determin-
istic color chaos is presented.

In this chapter, we mainly use monthly FSPCOM and FSDXP (S&P 500
dividend yield) to demonstrate the effectiveness of time-frequency analysis. FSP-
COM consists of the 500 largest corporation stock prices, which is a most popular
value-weighted index and has an important role in applied finance theory. Tradi-
tionally, FSPCOM is used as an indicator of general market trends. In the finan-
cial community, we also use the rate of returns of FSPCOM to evaluate
investment performance.

12.1 Trend-Cycle Decomposition

The common techniques for economic data analysis is first to break up a compli-
cated economic data series into two relatively simple subsets: long-term trend
and short-p\eriod fluctuations (difference between the trend and raw data). We
call such processing the trend-cycle decomposition. With the help of trend, we set
the long-term framework. Based on the information extracted from the short-
time fluctuations, we make a short term adjustment.

Obviously, the trend-cycle decomposition of a given data series is not
unique. A different perception for a fluctuation pattern leads to a different
detrending strategy. For example, fundamentalists believe that stock-price
changes follow a random walk. They use the first difference (FD) of a logarithmic
time series to find monthly growth ratio*, ie.,

s(m+1)

R (12.1)

FD(m) = logs(m+1)-logs(m) = log

where s(m) denotes the raw data.
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Fig. 12-2 FD for FSPCOM behaves as random noise (both mean and stand and devia-
tion are computed based on log scale).

As shown in Fig. 12-2, the instantaneous growth rate in general is erratic.
FD series appears as a typical random noise. Therefore, the process of FD is also

* Because most economic aggregate indexes have exponential growth trends, economists usu-
ally use a logarithm scale to linearize the curve.
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called pre-whitening in econometric literature (that is, to make the fluctuation
look like random noise).

Based on FD, the fundamentalist computes the mean and variance of stock-
price changes. While the mean estimates an expected return, the standard devi-
ation measures the risk of the investment. Applying FD, fundamentalists in fact
idealize the economic movements. Based on their approach, the mean and vari-
ance of F'D series are constant, or at least slow changing, which apparently is not
what our everyday experience tells us.
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Fig. 12-3 LLD is linear, which implies that the growth rate is constant.

A more general detrending is the decomposition of the logarithmic time
series into trend series and cycle series. The simplest one is the LLD, given by

LLD(m) = a+bm (12.2)

where coefficients a and b are computed by a regular linear regression algorithm
based on the logarithmic time series log s(m). As shown in Fig. 12-3, LLD implies
an idealized economic path with constant exponential growth.
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Fig. 12-4 Compared to LLD in Fig. 12-3, HP trend is closer to the raw data.
Fig. 124 illustrates the Hodrick-Prescott trend [81]. Hodrick and Prescott
suggest that the desired trend should not only be smooth, but also has to be as

close to the raw data as possible. Mathematically, the HP trend is determined by
minimizing the following function

Z[logs(m) - HP(m)]2 + 7»2{ [HP(m + 1)-HP(m)] ~ [HP(m) - HP (m - 1 )]}2

The first summation reflects the closeness between HP(m) and the raw data. The
second summation is the second difference of the trend, which is the measure of
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the smoothness of the trend. The parameter A balances the closeness and
smoothness. When & = 0, HP(m) = log s(m). As A gets larger, HP(m) becomes
smoother, but more different from log s(m). For A = oo, HP(m) reduces to
LLD(m). In practice, A = 402 for quarterly data and A = 1202 for monthly data
[81]. ‘
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Fig. 12-5 The bottom plot is the time waveform of fluctuation LLD.(m). The long
period of LLD cycles has no clear connection with business cycle theory.

Fig. 12-5 and Fig. 12-6 depict conventional power spectra and time-depen-
dent spectra” for LLD cycles LLD (m) and HP cycles HP,(m), respectively. The
LLD.(m) and HP(m) cycles are computed by

LLD.(m) = logs(m)—-LLD(m) (12.3)
and
HP_(m) = logs(m) -~ HP(m) (12.4)

Although the LLD trend (see Fig. 12-3) has a smoother trend than HP’s,
LLD cycle LLD, () does not possess any useful patterns in business cycle theory.
For government policy making, the monthly data are good enough to study busi-
ness cycles that are in the range of two to seven vears. Most reliable economic
data are shorter than fifty years, which are not long enough to judge the cycle
pattern longer than twenty years. )

The characteristic period of HP,(m) is pretty close to our perception of busi-
ness cycles. The time-dependent spectrum in Fig. 12-6 exhibits a stable four-
year business cycle (0.25 period/year), one U.S. presidential term. This observa-
tion confirms a consensus among most economists, that is, economical move-
ments are strongly influenced by institutional cycles in politics. In contrast, no
relevant economical business cycles appear in the LLD case.

Although the conventional power spectra (right plots in Fig. 12-5 and Fig.
12-6) also indicate the four-year cycle, it is not clear, based on the power spectra

" All time-dependent spectra presented in this chapter are computed by the low-order time-fre-
quency distribution series introduced in Chapter 7.
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alone, whether or not the four-year cycle has dominated the last fifty years. On
the other hand, the time-dependent spectra well delineate how business cycles
change over time, which enables us to better understand the economic mecha-
nism.
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Fig. 12-6 The bottom plot is the time waveform of fluctuation HP (m). The time-
dependent spectra clearly exhibits a stable four-year business cycle (0.25 period/year).

It has been found that the detrending scheme has substantial effects on the
results of joint time-frequency analysis. The less smooth the trend is, the shorter
the implied period of cyclic fluctuations. For government policy studies, HP i
desirable. However, for speculative investors, high-frequency samples (such as
days or minutes) are needed. For their applications, the applicable detrending
algorithm should reflect shorter cycles than that obtained by the HP method.
This is an ongoing research topic. In this section, we only discuss cases that most
economists find interesting.

We have shown that, by using joint time-frequency analysis, we could
obtain some interesting information that is not available in either time or fre-
quency representation alone. In what follows, we shall briefly discuss the signifi-
cance of those new findings for the economic community.

12.2 Extraction of Characteristic Period via Time-Variant
Filter

By applying joint time-frequency analysis, we see that most economic move-
ments contain strong time-varying cycles as well as substantial random noise.
Because observed deterministic cycles evolve over time, it is difficult to effec-
tively separate them from random noise by conventional techniques, such as a
bandpass filter.

It is interesting to note that while the noise tends to evenly spread into the
entire joint time-frequency domain, deterministic cycles are continuous and con-
centrated in the time-frequency domain. Consequently, we can apply the time-
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variant filter, introduced in Chapter 9, to extract time-varying deterministic
cycles. :

Fig. 127 illustrates the original time series as well as the filtered economic
time series. Obviously, the filtered economic time series is much smoother. More-
over, it closely resembles the original time series. The correlation coefficient
between the filtered and original series is 0.85. Their ratio of standard deviation
is 85.8%. This suggests that the variation of the stock price mainly follows rela-
tively simple patterns. Random noise only plays a minor role in business cycle
movements. Such an observation is close to the chartist’s intuition and contra-
dicts the fundamentalist’s assertion.

The magnitude of random noise is a critical parameter in finance theory. So
far we do not know the pricing mechanism of stock prices. But we do know how
to estimate the price of derivative securities whose value depends on the assogi-
ated security price. A proper measurement of standard deviation is cri.tical. in
option pricing theory [12]. Economists are puzzled by the gap between implied
volatility derived from option prices and historical volatility of stock prices calcu-
lated from FD detrending. A consistent volatility may be obtained by a proper
detrending.

TETE B 2 o |
Fig. 12-7 The filtered time series closely resembles the original time series. The cor-
relation coefficient between the filtered and original series is 0.85.

=3 L

From the time-frequency representation of a filtered time series, we can
define a characteristic period by tracing the dominant instantaneous frequen-
cies. For the deterministic process, the time path is a continuous line in the time-
frequency domain. From our analysis of a large number of economic indicator_s,
we have found that economic indicators often have their distinctive patterns in
time-frequency representation. The characteristic period time pattern can be
considered as the “fingerprint” of an underlying deterministic process. It can be
used for economic diagnosis.
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internal instability of the economic system. It is worth noting that such observa-
tion cannot be obtained by any currently used analysis techniques.

Moreover, the extraordinary resilience of the stock market can be revealed
from the variability of the characteristic period under shocks. These events gen-
erated only minor changes, 17% in 1974 and 14% in 1987, in characteristic peri-
ods of FSPCOM and FSDXP.

As our testing indicated, the characteristic period path can be a useful tool
in economic diagnosis. Further studies of time-frequency patterns of pertinent
economic indicators may shed new light on historical events, such as military
spending and changing monetary, fiscal, or tax policies.

12.4 Time-Frequency Analysis for Detecting
Deterministic Chaos

The recent development of non-linear dynamics suggests that business cycles
may be better understood and modeled by the concept of color chaos. Color chaos
here refers to the non-linear oscillator generated by a low-dimensional continu-
ous-time non-linear deterministic system, which can be characterized by non-lin-
ear differential equations or non-linear difference-differential equations. Linear
oscillators are characterized by an integer dimensionality. For example, the
dimension of a periodic motion is one. The dimensionality of deterministic chaos
is a fractal number (see [18] and [65]). Conceptually, we can consider that chaos
is a mathematical model that behaves between the two extreme models, linear
oscillator and white noise. In other words, it is not as simple as the linear oscilla-
tor, but it is also not completely random.

The main tasks of applying chaos theory are: detecting of deterministic
chaos and characterizing the chaos system. Without delving into any details, we
should point out that there is no single approach that is able to exclusively iden-
tify chaos. Usually, we have to employ a package of complementary approaches
to reveal the existence of deterministic chaos [19]. In most cases, however, the
continuous-time color chaos possesses well-defined deterministic cycles.

The difficulty of quantitatively describing chaos systems mainly is due to
the pollution of random noise. In early studies of experimental chaos, spectral
analysis played an important role [57]. Because deterministic cycles in non-con-
trollable experiments usually evolve over time, it is hard to effectively separate
them from background noise by the traditional bandpass filter. In this section,
we shall see that joint time-frequency analysis would be a good alternative for
those conventional techniques.

The Fourier spectrum of white noise is flat. On the other hand, the linear
harmonic oscillator appears as sharp peaks at the basic frequency and its higher
harmonics, such as 2f, 3f, .... The “color” of chaos implies that a characteristic fre-
quency exists over a noisy background. The time series of color chaos looks like
random noise, whereas its spectrum has a wider cluster and sub-harmonic fre-
quencies at f72, f/3, .... Based on our previous discussions, it is obvious that the

A
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time-dependent spectrum is much more powerful in detecting deterministic
cycles than either time or frequency representations alone.

From the time-dependent spectrum, we first can check whether time-vary-
ing deterministic cycles exist. If so, it would be important evidence of continuous-
time deterministic chaos. Then, we can apply the time-variant filter to effectively
separate background noise and useful time-varying patterns. It is much easier to
describe the clean deterministic cycle mathematically than noise-corrupted sig-
nals.

A popular tool in non-linear dynamics is the phase portrait in the phase
space. The phase portrait is a 2D plot, X(m+T) vs. X(m), where T is a fixed time
lag in the order of characteristic period. Obviously, the phase portrait reflects
the structural relationship between X(m + T) and X(rn). Because white noise is
uncorrelated, its phase portrait appears structureless. On the other hand, deter-
ministic cycles usually possess clear patterns.

fitered sequence 5 raw data
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.00~ .00~
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Fig. 12-11 While noise dominates the fluctuation derived from S&P 500, a much
clearer pattern appears in a filtered sequence. The time delay 7 = 60 months.

Fig. 12-11 compares the filtered FSPCOM HP cycles with the original
FSCOM HP cycles. The phase portrait of filtered FSPCOM HP cycles shows a
clear pattern of deterministic spirals, a typical feature of color chaos. Standard
tests in non-linear dynamics show more evidence of deterministic chaos from fil-
tered time series. Its fractal dimension is about 2.5 (see [19] and [20]).

The finding of color chaos from the stock index may build a bridge between
the fundamental school and the technical school in finance theory, which would
explain the difficulty in economic forecasting encountered by fundamentalists.
Chaotic movements have an intrinsic limit of predictability. In addition to risk
characterized by normal distribution of stock-price changes, investors are facing
additional uncertainties: the changing market trends and changing characteris-
tic frequency. Although business cycles have significant components of determin-
istic chaotic cycles, we only have a limited predictability. Sophisticated investors
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One important finding is that stock market indicators have quite similar
patterns from their characteristic periods, such as those in FSPCOM and FSDXP
in Fig. 12-8. It is not accidental that FSPCOM and FSDXP demonstrate similar
patterns during most historical shocks. This observation suggests that the eco-

nomic system acts in fact like an organism. Its time rhythm can be an indicator -

of adapting to environmental changes.
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Fig. 12-8 Characteristic periods for FSPCOM and FSDXP yields.

Chartists often use level knowledge in addition to trehd knowledge in spec-
ulative trading. Because the magnitude of unexpected shocks is not predictable,
the “level gauging” method is not reliable in forecasting turning points. However,
the characteristic frequency of the stock market is more stable over time. This
observation can lead to a new strategy of “period trading”: buy in a rising period
and sell before a falling period. '

12.3 Economic Diagnosis of Historical Events

Like all other sciences, one primary interest of economists has been the relation-
ship between events and their causes. For example, what causes market crises?
Are they caused by an external reason or an economic system’s internal instabil-
ity? If we consider the economic system as an organism rather than a sandpile,

.then business cycles can be thought of as a heart rhythm that provides some

clues to diagnose the historical economic events.

Two dramatic events in recent economic history were the oil price shock
and stock market crash. In October 1973, OPEC (Organization of Petroleum-
Exporting Countries) raised the price of oil 66% and doubled it three months
later in January 1974. This action shocked the stock market. That stock-price
disturbance, as most economists now agree, apparently was external in nature.
This assertion can also be verified by a joint time-frequency analysis.
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Fig. 12~9 Characteristic periods of FSDXP and FSPCOM were both shifted after the
oil price shock in October 1973. It is suggested that corresponding stock market
changes were caused by external forces, the oil price shock.

Fig. 12-9 depicts characteristic periods of FSDXP and FSPCOM betyveen
1972 to 1975. Note that both of them were shifted after OPEC raised the price of
oil, which indicates that the stock-price change was caused by an external force.
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Fig. 12-10 Characteristic periods of both FSPCOM and FSDXP changed before the
stock market crash in October 1987. It is suggested that the stock market crash
resulted from some internal instabilities.

While the nature of the oil price shock is relatively easy to understand,
there is less agreement about the cause of the stock market crash on October 19,
1987, when stock prices plunged more than 25% within one day. For thos.e Wl}o
suspect external causes, there were not any scapegoats. For those who believe in
internal reasons, there was no solid evidence. Fig. 12—10 shows that as early as
four months before the stock market crash, characteristic periods of both FSP-
COM and FSDXP already moved. If we accept that the cause comes before the
effect, then we would conclude that the stock market crash was caused by an

e ssvr]
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armed with time-frequency analysis may have a better chance to beat average
investors, but no one can be a sure winner in an evolving economy.
Fundamentahsts may argue that perfect competition will eventually elimi-
nate deterministic patterns in the stock market, if people follow the winner will
drive down any profit margin. This possibility can be true only in the idealized
linear world with perfect information and instant adjustment. In practice, non-
linear interaction and time-delay in response often increase overshooting of busi-
ness cycles. That is why market fluctuations always coexist with business cycles.

Conclusion

In this section, we demonstrated that joint time-frequency analysis has great
potential in studying stock market movements. By properly detrending, the com-
plicated economic behavior could be characterized by a long-term trend plus

short-time business cycles. Using the time-variant filter, we can largely remove -

the random noise in stock-price changing. Moreover, time- -frequency analysis
may be used for economic diagnosis of historical shocks and economic forecasting
of turning points. The characteristic frequency, or the “color” of deterministic
cycles, provides further clues of color chaos, a hot topic in advanced research in
physics, as well as economics.
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Appendices

A. Critical Sampling Discrete Gabor Expansions

This appendix is devoted to the proof of the necessary anii sufficient conditiqn of
hlk] of the discrete Gabor expansion at critical sampling . For critical sampling,
AM = N, (3.49) reduces to

[pldlq] AT)

for 0 < p < N and 0 <q < 2(AN-1). Then (A.1) can be written in a matrix form as

W o 0 0 0 0||H, H, Hay
0 Wo 0 0 0|H, Huy O
0 0 W o 0 0l}.. Hyny 0
Hy*=0 0 0 W 0 0||Hp, O 0 V*=0
00 0 0 W ollo 0 H,
0 0 0 0 0 w| |0 H, 2 e

A-2)

where H is (2AN-I)N- by-L block matrix. Each block H, is an N-by-IV diagonal
matrix given by

h{gN] 0 -
} 0 RgN +1] ... 0
. =
q e -
0 0 HgN+(N-1)]

W is an N-by-N DFT matrix, a special Hermitian matrix, i.e.,

1 1 1 1
1w w2 . W
w=1 W? w* L WD

1 VV—(N-I) W—Z(N-l) W~(N-l)(N-l)

where W = exp(j2r/N). Because W™ = W*/N, multiplying both sides of Eq. (A.2)

" Proved by Zhanbo Yang, Department of Mathematics, Shawnee State University, Ohio
45662. :
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by W yields a4

the augmented matrix, namely 3, is a linear combination of the first I,

H i ‘ i many columns, namely the columns of H. This implies that there are L con-
i il ANl £ stants, a;,j = 0, 1, 2,..., L-1, not all zero, such that :
| Hy, 0 0 : g
: HAN—] 0 0 3 g Lz_]a E = i’\ . (A8)
- A e g B e % el (A3) % -l '
Y g g o % Recall that H can be partitioned into (2AN-] ) row blocks. And each block
¢ consists of N rows. Then (A.6) can be written in terms of (2AN-1)N linear
: ;
0 H, s 0 g equations. For example,
i % At the zeroth row block, the &k linear equation is”
e e 1.7 AN-1 1
U=(=,—,..—) (A.4) Y an.khlgN+k] = — (A7)
N N}'V N s N
For presentation c.onvenience, we write (A.3) as At the nth row block, where n = 1,2,..,AN-1, the kth linear equation is
Hy=+v A5 AN_1-n
il gy Y auashll@+n)N+k] = 0 (A8)
where H is a block matrix as indicated in (A.3). In each block, there are N rows. g=0

THEOREM

(1) The linear system (A.1) has a solution k] iff for each k, k = 0,1,..N-1,
the set {h[gN+k] : q = 0,1,...,AN-1} is exclusively non-zero, i.e.,

h{k] ® A[N+k] @ h[2N+E] ® ... RI(AN-I)N+k] 0.
(2) If (A1) has a solution, then it is unique and given by
! Alj1=0
YUl =1 N&[j]
0

otherwise

wherej=0, 1, 2,..., L~1.

PROOF

Since (A.5) is equivalent to (A1), we will discuss the proof with respect to
(A.5) only.

Necessity (=)

From a standard linear algebra theorem, a linear system (A.5)Ahas a solu-
tion iff the coefficient matrix H and the augmented matrix le} have the
same rank. In other words, the solution of (A.5) exists iff the last column of

SRR SR s

At the nth row block, where n = AN, AN+1,... 2AN-2 the kth linear equation
is

n-AN d

> Can-1-gn+ kP [(@+ R —AN)N + k] = 0 (A.9)
qg=0

In (A7) to(A.9), k=0, g - N—l.*Now, let’s prove the following proposition
with the mathematical induction”

Proposition:
Foreach p = 0,1,...,AN—-1,

(@) apn,p # 0 implies that A[pN+k] # 0 and all hlmN+k] = a,,n.z = 0 for all
m=0,..,AN-JTandm #p

(b) A[pN+k] # 0 implies that
= __*__1 #0
UN+k = NRGN+E]

and all 2[mN+k] = a,,p, = 0 for all m = 0,1,... AN-1 and m #p.

" Mathematical induction principle: Let P(n) be a proposition which depends on an arbitrary natural number
n, if (1) P(0) is true, (2) the assumption that P(0),..., P(n~1) are true implies that P(n) is true, then the propo-
sition is true for all natural numbers n.
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Proof of the Proposition:
First, let p = 0.
(a) if az, # 0, then for n = AN-1(from (A.8)) we have

ay, h[(AN-1)N+k] = 0
which implies A[(AN-1)N+£] = 0. .Using' this result for n = AN -2, we obtain

ap h[(AN=-2)N+k] + ap,p, h(AN-1)N+k] = 0

vields

aj h[(AN-2)N+k] = 0
which implies

h[(AN-2)N+k] = 0

Continuing this process up ton = 1 yields

hlmN+k] =0 (A.10)
for 1 < m < AN. Applying (A.10) into (A.7) leads to
1
a,hlk] = N

which implies A[k] = 1/(a,N)#0. Now, let’s examine n = AN based on
(A.9).

a(AN-1)N+k PlE] = 0

Because h[k] = 0, the above equation implies anN-nN+k = 0. Using this
result for n =AN+1, we obtain a(yy_g)n,% = 0. Continuing this process up to
n = 2AN-2 yields

QN+ = 0 (A11)
for 1 <m < AN.
End of proof for part (a) at p = 0

(b) Because (A.7) to (A.9) are symmetric in h[mN+k] and a,,p, s, a similar
process can be used to show that if h[k] # 0, then all other A[mN+k] and
QN+k are zero for m =1,...,AN ~1.

End of proof for the part (b) at p = 0

Now, let’s assume that the proposition is true for p = 0,...,g-1 < AN-1. We
are going to show that it is also true for the case of p = g.

S

Since the induction hypotheses assume that the proposition holds for p=
0,...,q-1<AN-1, it must be true that if (a) apnyk # 0 or (b) A[pN+k] # 0, then
apNsk = AmN+k]=0form = 0,..,g-1,q, ... AN-1 and m #p. In other words,
if (&) appyp # 0 or (b) A[pN+k] # 0, then apN+k = RpN+k] =0 for p = 0,...,g-1 <
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AN-1 (otherwise, it will contradict the induction hypotheses). The remain-
ing question is what about a,,pn,; and AlmN+k] for m = g, g+1,...,AN—1 when
(@) agnr # 0 or (b) hlgN+k] # 0. In the following, we will prove that if (a)
agn+r # 0 or (b) AlgN+k] # 0, then a,,n,; = h[mN+k] = 0 not only for m =
0,1,2,..,g-1 (as shown abave) but also for m = ¢, g+1, ..., AN-1. :

Let’s rewrite (A.7) to (A.9) by omitting all 0 = 0 (caused by apN+k = RIPN+E]
=0forp =0,...,g-1 < AN—|) as
At n =0, the kth linear equation is

AN -1

Y apyshImN+ ] = (A12)

m=gq
At n =1,2,.., AN-1—q, the kth linear equation is

AN-1-n
S Gy phlm+n)N+k] =0 (A.13)

m=gq

At n = (2AN-1)-g,...,2AN -2, the kth linear equation is

n—-AN
> AaN-(-mpyy+rh (M +n—AN)N+k] =0 (A.14)

m=gq

The rest of the proof is similar to the case p = 0. For example, starting with
n = (AN-1)—g from (A.13) with agpy, # 0, one can prove that 2[gN+1] # 0 and
@mN+k = AmN +k] = 0 for m # ¢. Then, examine n = (2AN-1)—g from (A.14)
with hlgN+1]# 0. Obtain @, .z = A[mN +k] = 0 for m # q.

End of proof for parts (a) and (b)atp = ¢
By the induction principle, the proposition is true for all p = 0,...,k-1.
End of proof for the proposition

This proposition implies that if (A.5) has a solution, then each set {A[mN+k]
:m =0,1,..,AN-1} must be exclusively non-zero. Moreover,

1 Al
Q. N+k = Nh[mN+k]
0 otherwise

mN+k]#0

End of proof for the necessity

Sufficiency (<)

Assume that each set {A[mN+k] : m = 0,1,..,AN-1} is exclusively non-zero
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fork=0,..., N-1. Let h[mkN+k] = 0 and
AEE Wi
Nk T Nh[mN + k]
and h[m;N4j] = apin,j = 0 forj#i . It is easy to see that equation set (A.7) to

(A.9) are satisfied. In other words, Eq. (A.5) has a solution.
End of proof for part (1) of the theorem

(2) - If (A.5) does have a solution, then by part (1) of this theorem, for each
index & = 0,...,N-1, the set {h[mN+k]) : m = 0,1,...,AN-1} is exclusively non-
zero. There is an index my, such that A[m,N+k] = 0. It is easy to verify that

1

Nh[

-—_—r-nT\7_+_k] h [mN #* k] #0
0 otherwise

YImN+k] =

is the solution.

End of proof

i

B. Optimal Dual Functions

For a given function h[k], the corresponding dual function y{%2] may not be
unique. In Section 3.5, we discussed the solution of y{£] that is optimally close to
h[k). The resulting Gabor expansion is called the orthogonal-like Gabor expan-
sion.

From the definition, it is clear that the Gabor transform and Gabor expan-
sion can be considered as perfect reconstruction filter banks. In those applica-
tions, the analysis and synthesis functions could often have dlfferent
requirements; one may intentionally pursue y{£] that differs from R{ET" In this
section, we shall investigate a general optimal algorithm that allows Y] to be
optimally close to an arbitrarily desired function d[k], for a given h[%].

We formulate the problem as follows. For a given function h[k] and the
sampling pattern (determined by the time sampling interval AM and the number
of frequency channels N), find a dual function y{2] that is most similar to, in the
sense of least square error (LSE), a desired function d[k], i.e.,
|2
r =

r (A.15)
T:HY =1

Ll
where d[k] is a unit energy function. Obviously, when d[k] =
to (3.56), which leads to the orthogonal-like Gabor expansion.

In general, (A.15) is a least square problem with an equality constramt
given by

hlE], (A.15) reduces

Hy* = (A.16)
where H is a p-by-L matrix and Il is a vector with p-element. Both of them are
defined in Section 3.5. Without loss of generality, let’s assume that H-has a full
row rank. (Otherwise, we always can employ SVD to alleviate the rank defi-
ciency problem as introduced in Section 3.5.)

By QR decomposition [58], we have

H, (A17)

il
)
lal
&~

Where @ is orthonormal and R is upper triangular. Substituting (A.17) into
(A.16) obtains

(A.18)

* As mentioned in previous sections, hlk] and k] are dual functions; they are exchangeable.
We can use Y{k] as analysis filter and A[k] as synthesis filter, or vise versa.
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Q"y = ﬁ (A.19)

x=®RH'} (A.20)
Because Q@7 = I, left multiplying @ to both sides (A.19) yields

1= QB = 2. @) U = Qx+Qy (A21)

where

From (A.18),

where
xe R” ye RE-P

Hence, :y is the sum of two orthogonal vectors,
Q.x+Qy
Consequently,
W = 1217+ l5I° (A.22)
Expanding the error formula (A.15) yields

b
= min 2
vHY =

' = min
YHY =

3|’ [] _Re(y"d))

ﬂ%ﬂnd - = J (A.23)

Then, minimizing I" with respect to \;/ is equivalent to

Re(i’Ta)
max < = max & (A.24)
vHY = i Y THY* = it

Replacing ¥ with (A.21) and [ with (A.22), Eq. (A.24) becomes

Re(:"Q7 3)+Re57Q,7)
el JiP + B2

It is interesting to note tThat the maximum of & occurs Wwhen y is in the same
direction as the vector Qy d , regardless of the value of ”y” . Let

X " =
max oo ,& = max

(A.25)

y=1Q/d (A.26)

where ¢ is real and positive. Then the problem of (A.25) is equivalent to maximiz-

bl

E
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ing £ with respect to ¢. By replacing y with (A.26), (A.25) becomes

Re(x7QT 2) +|

QyTauzt N A+Bt

max, Jll§l|2+lJQyT3] > 3e maxbom = max,, ¢ (A.27)
where
A=RexTQ]d) B=[Q 3" =P
Obviously,
lim¢ = B = |q,3)] (A.28)
ForA =0,
T . (A.29)

o= 3
N(C+BtYY

In this case, £ does not have an extreme for the finite ¢. In other word§, (A.15)

does not have a solution if the desired function d is perpendicular to @, x .
When A #0, the first derivative of &, with respect to ¢, equal to zero yields

an unique solution ¢ = C/A. Next, we compute the second derivative to see

whether or not ¢ = C/A corresponds to the maximum of g

Fig. A=1 Error curves (§ attains the maximum only for A > 0).

The second derivative of £ with respect to ¢ is

= BC __oaBi_3BC_ac) (A.30)

g =
J(C + Bty



274

Appendix
Replacing ¢ = C/A, (A.30) becomes

g = L(BC+AY (A.31)

When A > 0, &(¢) is convex and attains its maximum at ¢ = C/A > 0. When A
<0,E@)is concave and increases to QyTa as t goes to infinity; this corresponds
to an unbounded y , which is impractical. Hence, the solution of (A.15) exists only
for A = Re(?cTQx 8) >0. Fig. A~1 depicts the error curves.

Substituting (A.26) and ¢ = C/A into (A.21), we can readily obtain the solu-
tion of (A.15) as

I=*

e U )
Re(z" QT B)QyQy

Y= Qx+ (A32)

and the minimum error is

r- 2[] _«/“RE(J?TQZ 3)”2+”QyTa”2]

E

(A.33)

C. Existence of Adaptive Representations

The convergent properties of the adaptive representation, introduced in Section
8.2, are valid only under limited cases where finite signal points are used. In
those circumstances, the rate of convergence is indeed exponential. The residu-
als eventually vanish. In what follows, we shall investigate more general cases.
As a matter of fact, the adaptive matching process is always convergent, but the
residuals are not necessarily equal to zero .

Let’s define S as a Hilbert space and V as any closed subspace in S con-
structed by an orthogonal projection P such that P: X—V. It is a linear map com-
pletely characterized by the property

s-Ps 1V, (se8) (A.34)

Eq.(A.34) indicates that the mapping function P divides S into two subspecies, V
and an orthogonal complement of V. Assuming for the moment that such a map
exists, we can show that Ps is the unique point in V closest to s. To do so, let v be
any point in V; due to property (A.34) we have

ls=ol” = (s = Ps)y+ (Ps—v)I” = ls-Ps|>+ |Ps —v|*2 s -Ps|]*  (A35)

This shows that the distance between a point s in S and any point in V is always
greater than or equal to the distance between s and its orthogonal projection
point Ps. The existence of Ps as the closest point to s comes from the basis theo-
rem that for any closed convex set in a Hilbert space, each point of the space has
a unique closest point in the convex set. To prove that Ps, as the closest point to
s, satisfies , let v € V, vy, = Ps and A > 0. Because vy is the closest point to s, we
have

0< s ~vo-Av|*~ s - v|® = 2(s - vy, Av) + A%u|? (A.36)

Since A > 0, we have

0<2(s—vpv)+ Alv)? (A.37)

Letting A | 0, we obtain <s—vg,u> 2 0. Since v is an arbitrary point in V, for the
point —v in V we also have <s-vy,~v> 2 0 which leads to <s—vg,u> < 0. Therefore,
we must conclude <s—vy,v> = 0. Hence, (s-vy) L v and (s—vg) L V. v, 1s the projec-
tion point of s and s—v is the residual part, as discussed in the previous sections.
To also prove that P is linear, we note that {ox+By)—~(aPx+BPy) L V because for v
eV,

(ox + By - oPx - BPy, v) = a{x-Px, v) + By —~Py,v) =0 (A.38)

Therefore (aPx+BPy) = Pox+py), by the unicity of the closest point.

*Proved by Junjiang Lei and E.Ward Cheney, Dept. of Mathematics, University of Texas, Aus-
tin, Texas 78712-1084.
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The easiest theoretical construction of mapping P is to use any orthonormal
base {ugy} for V. Then

Ps = 3 (s, U, (A.39)

It is easy to define that the mapping P defined in Eq.(A.39) has the property
shown in (A.34), because for each ug we have

(s =Ps, ugy= (s, up)—(Y (s, ug)ug, up)

(s,ug) =Y (s, u4) (ug, up)

o

(s, uﬁ> —<s, ”B> =0

]

In the case of adaptive expansion, we do not use the orthonormal base but rather
we use a new set of elementary function {k(z)} to construct the mapping P.
Assume that the subspace V can be accessed by a set of elementary function
{h(#)}. Furthermore, assume that each A(f) is normalized. Thus V = span(H)
where

Hc{he S |h@) = 1} (A.40)
It is explicitly permitted that H be redundant, i.e., that it conta

i R

at ins many more
vectors than are needed to generate V. In other words, H may be linearly depen-
dent. Now let s(z) be any element of S. We wish to construct Ps, the point in V
closest to s. The following algorithm serves this purpose.

Algorithm:

Given s, define sy = s. Select a number & e (0,1). Proceed inductively. If s, is
known, select h, € H so that

|(sn,hn)j 2 osup (s, h)| (A.41)
he H

Define v, = <sy, h,>h, and s,,; = s,~v,,. v, is the projection component of
sp, and s, ; is the residuals component. Eq.(A.41) shows that we start with
the largest of all projection components and then proceed to take smaller
ones. Since

(s, R)hll= [<s, WIAI= I(s, h)] (A.42)

we seek an h,eH for which l<s, h,>!| is large. Ideally, we would select
hyp€ H so that I<s, 2,> is a maximum. But such an A, need not exist and a
larger one is sufficient. This is why the constant o is present. One hopes

AR
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that
Ps= Y v, =Y (s, hh, (A.43)
n=0 n=0 '

We will show that is true. Notice that Eqs.(A.39) and (A.43) are quite simi-
lar in form, except in the former case, the expansion is done by an orthogonal
base and is done using a redundant set of elementary functions.

Lemma 1 The vectors in the algorithm have these properties:

Sn+l—1-hn’ Sn+1 -Lvn (A44)
loal” = [Csm ol = Jsal = 50 (A.45)
8= mi]vi FilL, formzn (A.46)
IsI* = 3 o + ool (A.47)

i=0

PROOF
To prove (A.44) , simply write

<Sn + 1 hn> = <Sn - vn! hn) = <Sn,v hn) o <Un7 hn)
= (8, R0~ (s ) (R, k) =0

To prove (A.45), use (A.44) and the Pythagorean law, i.e.,

”Snuz = Nsn +1F Un”2 = ”Sn+ 1”2 + ”vn”Z (A48)
To prove (A.46), write

s, = (Sn_8n+1)+(sn+l—sn+2)+"'+(Sm—l—sm)+sm
= Up b Uit Ky 5 8 8,

To prove (A.47), use the property (A.45) as follows

2

I = ol =l + (fou = ol + . + s

P 5 5 _“57“ll'z)"*'“snwkln2
= lool ™+ Joul ™+ oo+ ol + fsn )

ol
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Lemma 2
iy X g il
[(Vis ] < 0 o] o]
PROOF
”vi"”vm” = |(s; hi>”<3ms By 2 I(Si, hi>|a‘<sm, hl
= of( (s )by, 50| = af(vy, s,
Lemma 3 If (w;} € /¥ and w,, > 0 for all n, then for each n,
k
inf wy,; )y, w =0 (A.49)
k>n j=0

PROOF

Fix n and e > 0. Put 2, = 3 f_ qw;. Select m > n so that 3;, .w?<e/2.
Select p > m so that w2, < €/2. Select

je{m+1,m+2, ...,p}

so that
w; = min{w, 1, Wy, 4, -oes Wyl

Then

p N
inf wyz, Swiz<wz, = wjlz,+ Y w;
k>n i=m+1 }

P p

2

s e

= Wy + 3, wamSwz + Y w;Se/l+e/2
i=m+1 i=m+1

= £

Since € was arbitrary, we conclude that inf w #2p = 0.
k>n

Lemma4 Ifq >k, then the points s;, and sq produced in the algorithm sat-

isfy

ool < Il = s+ 267 S o 50

e T e ey

e e

S S R 0
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PROOF
Since
”Sk”2 5 ”(sk i sq) % sq”2 & ”Sk o sq"2 +2(sp - Sg» sq> ¥ “Squz (A;51)

we have, with the help of Eq.(A.46) and Lemma 2,

2 q-1 1
loi= ol = Isall* + ol = ~2(si=5,5) = 2 3, (v,.5,)
i=k

<23 [Guepl <27y 3 o

Lemma 5 The sequence {s,} produced by the algorithm is a Cauchy
sequence. In other words, ||s,| converges as n approaches infinity.

PROOF

Let £ > 0. By (A.45), it is apparent that the sequence |s,| is monotonically
decreasing to a limit, L > 0. Select NV so that

s} < L7 + €
for all n > k. Let m > n'> N. By (A.47),
: 3
2o <=
i=0
Hence, Lemma 3 can be applied to obtain an index g > m such that.

Pool 2 o] <&

By Lemma 4, for each k in the range N <k < g, we will have

P % 2
Iow sl < eul® = I+ glool 3 o< 49 -7+ S = 14 2)
i-k

Jsi=sql <&, [(1+ 2) (A.52)

This leads to

e
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Therefore, we have
£ 2
[5m =5l <l = s + s - 5,0 <2¢, [ 1 + a) (A.53)

With the above lemmas, we have the following theorem.

THEOREM

The series Zf‘; ov; produced by the algorithm converges to the orthogonal
projection of s onto V = span(H).

PROOF

By Lemma 5, the sequence {s,,} is convergent and we are at liberty to define
y =lim s,. By letting n = 0 and m — «~ in Eq.(A.46), we obtain

s= YUty (A.54)
i=0

By (A.46) and (A.53), the series Y [ ¢v; converges. Since v,eV and V is
closed, 3,/ ov; € V. It remains to prove that y L V. By, <s;, h,,> — 0. For
any i € H, we have, by the definition of 4,,,

[{8 s B0 2 0 (5,0 1) ' (A.55)

Let n — 0 in this inequality to get <y, h>=0forall » eH. Hencey L V.

Joint Time-Frequency Analyzer

biomedical samples, etc.

Joint Time-Frequency Analyzer
perate  Windows Help

¥ wo Gaussian

Fig. J-1 Front Panel of Joint Time-Frequency Analyzer

I n order to get a better understanding
about the JTFA algorithms introduced, we include a demo disk of joint time-fre-
quency analyzer introduced in the book. The joint time-frequency analyzer is a
software-based instrument, developed by National Instruments Corporation,
which allows users to analyze signals in time and frequency domains simulta-
neously. The analyzing signal could either be in the data file or acquired from
outside via data acquisition boards. Except for the data-acquire portions that
require extra hardware, this software basically preserves all other features of
the original joint time-frequency analyzer. With this demo software, the reader
can use different JTFA algorithms to test 11 built-in time-varying signals, such
as the sum of multiple Gaussian functions, linear and non-linear chirp signals,

Fig. J-1 illustrates the front panel of the joint time-frequency analyzer. The
operations of the Joint Time-Frequency Analyzer are rather straightforward.
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The reader can press Ctrl+H to ask on-line help whenever he/she needs. The
demo provides the following JTFA algorithms introduced in previous chapters:

* Adaptive spectrogram;

e Choi-Williams distribution;

¢ Cone-Shape distribution;

e Gabor spectrogram (or time-frequency distribution series);
e STFT spectrogram,;

e Wigner-Ville distribution

In addition to these built-in algorithms, the complete joint time-frequency ana-
lyzer also allows users to design their own kernel for Cohen’s class. But such
capability is not available in this demo version.

Press it to display
instantaneous spectrur

Fig. J-2 The right plot displays the power spectrum at ¢ = 0.018 sec. The time instant
is controlled by the cursor.

Press “Save” to save  data selector
results into spreadsheet

Fig. J-3 Save the results into the spreadsheets.

As shown in Fig. J-1, the front panel mainly consists of three plots. The
bottom one displays the time waveform. The right plot is the conventional power
spectrum. By pressing the button, as shown in Fig. J-2, it will switch to the
instantaneous spectrum, the profile of a spectrum at the particular time instant.
The time is controlled by the cursor. The large plot in the top middle is the joint
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time-frequency representation, which roughly sketches the signal’s time-fre-
quency energy distribution. The reader could choose either linear or dB display.
By pressing “Save,” as shown in Fig. J-3, the reader could selectively save time
waveform, spectrum, or joint time-frequency representation to a spreadsheet.

In what follows, we shall briefly compare the performance of different algo-
rithms for different signals.

Sum of Two Gaussian Functions

The first example is the sum of two Gaussian functions, which is set as default.
It is easy to see that the resolution of the STFT spectrogram is subject to the
selection of the window function; the short window gives better time resolution
and poor frequency resolution, or vice versa. It is impossible to accommodate
both time and frequency resolution by the STFT spectrogram.

The Wigner-Ville distribution has much better time-frequency resolution.
But it suffers from cross-term interference, in particular, when the WVD is com-
puted from the real signal directly rather than using the corresponding analyti-
cal function.

For this example, we could find that the adaptive spectrogram and Gabor
spectrogram have the best performance. When applying the Gabor spectrogram,
the reader could start with zeroth order and then increase the order to one, two,
three, etc. As the order increases, the resolution gets better. However, if the
order is too large, say ten, then the cross-term starts to appear. A good compro-
mise between the resolution and cross-term interference is usually of order two
to four.

The above observations also apply for four Gaussian functions and the fre-
quency hopper signal.

Linear Chirp with Gaussian Envelope

In this example, we would like to investigate the strengths and weaknesses of
the adaptive spectrogram. Although the adaptive spectrogram yields a superior
performance for the sum of multiple Gaussian functions and the frequency hop-
per signal, its result of the linear chirp signal is not so pleasant. This is because
the elementary functions used in the Gaussian-based adaptive spectrogram are
complex sine-function-modulated Gaussians, which are not efficient to match the
rapid frequency changes, such as the chirp-type of signals. The Gaussian-based
adaptive spectrogram is good at those signals whose frequency contents do not
change very fast.

In this example, both Wigner-Ville distribution and Gabor spectrogram pro-
duce very good results.
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Rectangular Pulse

By the example, we shall show the trade-off of using the analytical functions for
the WVD. First, let’s turn off the “Analytical” button to compute the Wigner-Ville
distribution directly from the real sample. For this particular sample, the result
obtained by the WVD is very good. It not only satisfies all useful properties, such
as time marginal conditions, but also does not have cross-term interference.
Next, press the “Analytical” button and compute the WVD with respect to the
analytical function. As shown in Fig. J—4, there is severe distortion in the low-
frequency band. Obviously, the analytical function’s WVD does not satisfy the
time marginal conditions. In most cases, such as multiple Gaussian functions
and the frequency hopper signal, using the analytical functions, we could sub-
stantially reduce the cross-term interference of the WVD. On the other hand, as
shown in Fig. J—4, the analytical function’s WVD alters the original WVD, espe-
cially, in low frequency band.

"MHz

0000 0002 000 0006 008 0010 003 sec)

Fig. J-4 WVD of using analytical function (there are sever distortion in the low fre-
quency band. Apparently, the analytical function’s WVD do not satisfy the time mar-
ginal condition)

The reader could try other algorithms. To catch the abrupt jump, we have
to use a short-window STFT spectrogram. If looking at the instantaneous spec-
trum, we will see that the resulting frequency resolution is very bad. However, if
applying the fourth-order Gabor spectrogram with the wideband elementary
function, we will see both good time and frequency resolutions.

Speech Signal

The speech signal usually is dominated by huge low-frequency components. To
balance the high- and low-frequency portions, we often first apply the pre-
emphasis filter, as shown in Fig. J-5. The range of the pre-emphasis parameter
is 0 ~ 1. The larger the parameter is, the more the lower frequency portions are
suppressed.

,. ,‘ " —
A e S D S R o
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Because of the cross-term interference, neither the Wigner-Ville distribu-
tion nor the Choi-Williams distribution are suitable for speech analysis. The
preferable algorithms for speech analysis are STFT spectrogram, Gabor spectro-
gram, and cone-shape distribution.

N
i Switch to
{ Pre-emphasis filer

Fig. J-5 Apply the pre-emphasis filter to balance the low and high frequencies.

Biomedical Signal

Joint Time-Frequency Analyzer
erate  Windows Help

1/8 band

1kHz

Gabor

Fig. J-6 Subband filtering

In this example, the sampling rate is 1 kHz. But the majority of signals are
below 50 Hz. To zoom in on a signal in the frequency domain, we could first apply
a subband filter, as shown in Fig. J-6. In this case, we chose to display an eighth
of the band. For most biomedical signals, neither STFT nor Gaussian-based
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adaptive spectrogram are good candidates. A good choice for a biomedical signal
usually is the Gabor spectrogram or the Choi-Williams distribution. Due to the
cross-term interference, the Wigner-Ville distribution is seldom used for biomed-
ical signal analysis.

Summary

In addition to the examples discussed above, the reader can also test other sam-
ples provided by the demo with different parameters and algorithms. Every algo-
rithm introduced in this book has its own strength and weakness. The selection
of the algorithm to use is very much application-dependent. In general, however,
the STFT and Gabor spectrogram (or time-frequency distribution series) are rel-
atively robust and computationally efficient. In particular; the lower order Gabor
spectrogram not only has a satisfactory resolution, but also substantially reduces
the cross-term interference. Although it does not completely satisfy some useful
properties, the difference often could be neglected in most applications.
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affine correlation, 120
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auto-correlation function
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time-dependent auto-correlation function, 103, 132, 139
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Choi-Williams distribution, See Cohen’s class
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cone-shape distribution, 146, 178, 282
signal-dependent time-frequency representation, 149
symmetric ambiguity function (AF), 132, 173
cone-shape distribution, See Cohen’s class
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continuous-time Fourier transform, See Fourier transform
continuous-time wavelet transform, See wavelets
critical sampling, 53, 265
cross-range, 215
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dilation equation, 88

dilation, 76-90

discrete Fourier transform, See Fourier transform
discrete Gabor expansion, See Gabor
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discrete time-frequency distribution series, See time-frequency distribution series

(also known as Gabor spectrogram)

discrete Wigner-Ville distribution, See Wigner-Ville distribution

Doppler, 215
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dual function, 17, 54, 271

E

energy atom, 158
exclusively non-zero, 65, 270
expansion, 15-21

F

Fourier series, See Fourier transform

Fourier transform
continuous-time Fourier transform, 21
discrete Fourier transform (DFT), 23
Fourier series, 16

frame, 17

frequency bandwidth, 33

frequency marginal condition, 103, 140, 176
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discrete Gabor expansion, 61
Gabor expansion, 52
Gabor transform, 54
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periodic discrete Gabor expansion, 57
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short-time Fourier transform (STFT), 47
Two-dimensional Gabor expansion, 157
windowed Fourier transform, 47

Gabor expansion, See Gabor

Gabor spectrogram, See spectrogram
Gabor transform, See Gabor

Index

Gaussian characteristic function, 26, 49
group delay, 111

H

Haar wavelet, See wavelets
harmonic, 16
Hermitian function, 30

I

images, 27
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instantaneous frequency property, 109, 157, 166
interpolation filter, 26, 126

inverse synthetic aperture radar (ISAR), 215
inverse transform, 16

J
Jacobian determinant, 119, 121, 139

K
kernel function, 139, 173

L
least square error (LSE), 68, 199, 271

L-fold expander, 26
linear filtering, 139, 174, 177
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M

Manhattan distance, 163

mean frequency, 31
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mean time, 31

mother wavelet, See wavelets
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multiresolution analysis, 87
multivariable calculus, 118
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non-linear truncation, 173, 177
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non-negative time-frequency distribution, See time-frequency density function
non-stationary, 15

0

orthogonal-like Gabor expansion, See Gabor
orthonormal, 17
oversampling, 53, 208

P

Parseval’s formula, 31, 95
perfect reconstruction filter banks, 96, 271
periodic discrete Gabor expansion, See Gabor
piecewise approximation, 81
Poisson-sum formula, 38, 59
power spectrum
power spectrum, 21
time-dependent power spectrum, 103, 132
pseudo Wigner-Ville distribution, See Wigner-Ville distribution

QR decomposition, 271
quadrature mirror filters, 90

R

range, 60

range-Doppler imaging, 216

rank, 69, 266, 271

rectangle window function, 25, 124, 284
redundant representation, 50, 276

S

sampled STFT, See Gabor

sampled Wigner-Ville distribution, See Wigner-Ville distribution
sampling rate, 57

sampling theory, 18

scale, 29, 77-95

scaling function, 87

scalogram, 80, 118

scattering, 230

self-dual, 17

Shannon sampling theory, 126

Index

short-time Fourier transform (STFT), See Gabor
signal-dependent time-frequency representations, See Cohen’s class
signal-to-noise ratio (SNR), 200
sinc function, 17 .
smoothed Wigner-Ville distribution, See Wigner-Ville distribution
spectrogram
adaptive spectrogram, 188, 282
Gabor spectrogram, 156,.162, 225, 242, 282
STFT spectrogram, 48, 118,282
stationary, 15 ‘
STFT spectrogram, See spectrogram
symmetric ambiguity function, See Cohen’s class
synthesis function, 16, 57
synthetic aperture radar (SAR), 215

T

tiling, 78 ‘

time duration, 33

time marginal condition, 103, 140, 159 -
time-dependent auto-correlation function, See auto-correlation function

time-dependent power spectrum, See power spectrum

time-frequency density function
non-negative time-frequency distribution, 142
time-frequency density function, 142

time-frequency distribution series (also known as Gabor spectrogram)
discrete time-frequency distribution series, 169
time-frequency distribution series (TFDS), 162, 225, 242

time-variant filter, 201, 247, 258

transformations, 16

translation, 77-83

Trapezoidal rule, 125

Two-dimensional Gabor expansion, See Gabor

U
uncertainty principle, 30, 36, 48, 53, 189

A"

valid Gabor coefficient, 201

valid short-time Fourier transform, 51
valid time-frequency representations, 199
valid Wigner-Ville distribution, 112
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W

wavelet series, See wavelets
wavelet transform, See wavelets
wavelets
continuous-time wavelet transform, 76
Daubechies wavelets, 93 ‘
Haar wavelet, 86
mother wavelet, 75, 77
sinc wavelet, 93
time-scale representations, 75
wavelet series, 80, 82
wavelet transform (WT), 76, 138
Wexler-Raz identity, 55, 59
Wiener-Khinchin theorem, 22,-102
Wigner-Ville distribution
discrete Wigner-Ville distribution, 128
pseudo Wigner-Ville distribution, 127
sampled Wigner-Ville distribution, 169

smoothed Wigner-Ville distribution (SWVD), 119, 121

Wigner-Ville distribution (WVD), 104, 132, 157,
window function, 47
windowed Fourier transform, See Gabor
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