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Tractable Maximum Likelihood Estimation for Latent Structure
Influence Models with Applications to EEG & ECoG processing

Sajjad Karimi, Student Member, IEEE, and Mohammad Bagher Shamsollahi, Senior Member, IEEE
Brain signals are nonlinear and nonstationary time series, which provide information about spatiotemporal patterns of electrical

activity in the brain. CHMMs are suitable tools for modeling multi-channel time-series dependent on both time and space, but
state-space parameters grow exponentially with the number of channels. To cope with this limitation, we consider the influence
model as the interaction of hidden Markov chains called Latent Structure Influence Models (LSIMs). LSIMs are capable of detecting
nonlinearity and nonstationarity, making them well suited for multi-channel brain signals. We apply LSIMs to capture the spatial and
temporal dynamics in multi-channel EEG/ECoG signals. The current manuscript extends the scope of the re-estimation algorithm
from HMMs to LSIMs. We prove that the re-estimation algorithm of LSIMs will converge to stationary points corresponding to
Kullback-Leibler divergence. We prove convergence by developing a new auxiliary function using the influence model and a mixture
of strictly log-concave or elliptically symmetric densities. The theories that support this proof are derived from previous studies
by Baum, Liporace, Dempster, and Juang. We then develop a closed-form expression for re-estimation formulas using tractable
marginal forward-backward parameters defined in our previous study. Simulated datasets and EEG/ECoG recordings confirm the
practical convergence of the derived re-estimation formulas. We also study the use of LSIMs for modeling and classification on
simulated and real EEG/ECoG datasets. Based on AIC and BIC, LSIMs perform better than HMMs and CHMMs in modeling
embedded Lorenz systems and ECoG recordings. LSIMs are more reliable and better classifiers than HMMs, SVMs and CHMMs in
2-class simulated CHMMs. EEG biometric verification results indicate that the LSIM-based method improves the area under curve
(AUC) values by about 6.8% and decreases the standard deviation of AUC values from 5.4% to 3.3% compared to the existing
HMM-based method for all conditions on the BED dataset.

Index Terms—Coupled Hidden Markov Models, Latent Structure Influence Models, Auxiliary function, Baum-Welch algorithm,
Learning problem, EEG.

I. INTRODUCTION

COUPLED hidden Markov models (CHMMs) are prob-
abilistic functions that use interacting Markov chains

to model complex dynamical systems. CHMMs are used
by many applications involving multi-channel time series,
such as sign language recognition [1], Audio-Visual Speech
Recognition (AVSR) [2], [3], EEG and ECG classification
[4]–[6], dynamic Functional Connectivity (dFC) in fMRI [7],
disease interactions [8], freeway traffic modeling [9], [10],
and financial crisis detection [11]. CHMMs effectively handle
non-stationarity and non-linearity that commonly exist in real-
world time-series, especially multi-channel brain signals. Mul-
tiple brain regions exhibit temporal dependencies, according to
brain functional connectivity researches. Therefore a CHMM
is a good candidate for analyzing multi-channel brain signals.
Study [12] demonstrates a CHMM-based methodology for
modeling the trajectory of EEG topography over time. This
methodology classifies single trials from visual detection tasks
as target and non-target. In a recent study, simulations and real
EEG data from epileptic patients were used to test the classifi-
cation performance [13]. In addition to providing classification
results, the model also mapped brain activity back onto the
scalp, allowing the EEG signals to be interpreted. Study [14]
presents a novel and customized method to detect and localize
epileptic seizures in multi-channel scalp EEG recordings. This
CHMM framework captures the spatiotemporal propagation
for robust seizure detection.

Standard HMMs can model multi-channel interacting time-
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series, but CHMMs are the better alternatives [15]. They
complement the capabilities of standard HMMs by capturing
interactions both in space and time for multi-channel time-
series [15]. Each channel has its hidden Markov chain and ob-
servations (univariate or multivariate) in a C-channel CHMM
with N hidden states per channel. Transition probabilities of
a channel's hidden states depend on the all previous hidden
states, so each channel has a large transition matrix (NC×N ).
In general, the number of state-space parameters grows ex-
ponentially with the number of channels, and additionally,
more sample observations are also needed to estimate them.
For example, a 20-channel CHMM with 10 hidden states per
channel has 2×1022 parameters, and it requires a vast number
of observations to learn these parameters that are impossible in
practical problems. Therefore the learning problem of CHMMs
is much more challenging than HMMs.

There are two common approaches to overcome the expo-
nential growth of state-space parameters in the literature. A
simplified factorization of the transition matrix was proposed
by Brand in which it was assumed that the probability of
a hidden state conditioned on previous states was equal to
the product of the marginal conditional probability [15], [16].
While Brand's assumption reduces the number of parameters
to (NC)2, it needs NC normalizing values, as emphasized
by [17]. The next approach is the influence model that prevents
the exponential growth of state-space parameters [18], [19] ,
and transition matrices are factorized as follows

P (qξt |q1
t−1, ..., q

C
t−1) =

C∑
c=1

θc,ξP (qξt |qct−1), θc,ξ ≥ 0,

C∑
c=1

θc,ξ = 1,

(1)
where, coupling weight θc,ξ indicates influence from channel c
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to channel ξ. Coupling weights can be viewed as an adjacency
matrix of a graph or network named influence model [19]. The
influence model reduces the exponential growth to a quadratic
growth ((N2+1)C2). Several studies used the influence model
in higher-order Markov chains modeling, stochastic language
modeling, and mixed memory Markov models [18], [20], [21].
Latent Structure Influence Models (LSIMs) are CHMMs with
the influence model as the interaction model of Markov chains
employed in social computing in several studies [22]–[25].

In contrast to CHMMs, LSIMs can easily be applied to
datasets with many channels. Two important problems must
be solved for LSIMs to be useful in real-world applica-
tions known as inference and learning problems. Exact in-
ference is achieved by transforming an LSIM to an equivalent
HMMs with a large cardinality using the Cartesian product
of hidden states of all channels. Unfortunately, the exact
solution's computational complexity is O(TN2C) [15], [17]
that grows exponentially concerning the number of channels.
Thus, it can be very demanding and time-consuming, and
several approximated inference algorithms were proposed in
the literature to overcome this computational demand. Various
approximate inference algorithms were proposed to cope with
this exponential complexity. The first algorithm uses nonlinear
mapping based on Structured Variational Inference (SVI),
and marginal forward and backward parameters are obtained
by polynomial complexity O(T (NC)

2
) [26]. The next al-

gorithm was developed based on mean-field approximation
and variational inference [27], which calculates the one-slice
parameter considering the Completely Factorized Variational
Inference (CFVI) by computational complexity O(T (NC)

3
).

We also proposed a new approximated algorithm to compute
marginal forward, backward and one-slice parameters with
computational complexity O(T (NC)

2
) [28]. Simulated and

real datasets' results confirmed that the proposed inference has
less error and superior performance than the previous existing
SVI and CFVI.

Learning or estimating LSIM parameters is a more crit-
ical and challenging problem than inference. Learning and
inference problems are efficiently solved for HMMs to be
practical in real-world applications. The well-known forward-
backward algorithm solves the inference problem in HMMs.
The learning problem involves choosing an optimal set of pa-
rameters for some observed multi-channel time series to max-
imize an appropriate criterion. A well-known training method
in HMMs is the Baum-Welch or Expectation-Maximization
(EM) algorithm, and it is used to estimate parameters using
the maximum-likelihood framework [29]. The EM algorithm
finds local maximum likelihood parameters of HMMs based
on an auxiliary function, defined upon the Kullback-Leibler
divergence [30]. According to Baum's optimization procedure,
the optimal parameters are defined as the critical points of
the auxiliary functions [31]. Juang extended the EM algo-
rithm of HMMs to accommodate a broad class of mixture
of strictly log-concave or elliptically symmetric multivariate
distributions [32], [33]. The proof of convergence and closed-
form relations of learning in HMMs were presented based
on the auxiliary function [32]. A recent study developed a
novel Markov chain Monte Carlo (MCMC) algorithm that

simultaneously performs inference and parameter estimation
in nonhomogeneous Markov chains and puts CHMMs in the
context of modeling the spread of infectious diseases [34].

There is no existing learning framework for LSIMs that
guarantees the likelihood of model monotonically increases
through a re-estimation algorithm and provides proof of
convergence. Previous studies developed learning algorithms
based on partial derivatives of the likelihood function [17],
[22]. The first learning algorithm maximizes a simplified like-
lihood function with standard constrained optimization [17].
This algorithm uses the chain rule and also takes partial
derivatives based on the approximate forward parameter. The
re-estimation equations are not explicit as the Baum-Welch
algorithm, and channel observations are also considered inde-
pendent from other channels to simplifying partial derivatives.
Thus, there are two sources of error in this framework, and
the convergence proof was not discussed. The second learning
algorithm is a re-estimation (EM) algorithm developed based
on the partial derivatives of a simplified lower band of the
log-likelihood function [22], [27]. While this algorithm has
a closed-form solution, it does not guarantee a monotonic
likelihood increase due to re-estimation procedures. Another
study proposed a dynamical influence model for LSIMs with
several simplifying assumptions on the structure of transition
probabilities and the pattern of coupling weights [25]. A vari-
ational EM algorithm is used in the study for the exponential
computation of inference, but the theoretical convergence and
biases of approximate variational inference are not examined
[25].

Thus, the theoretical convergence of the re-estimation al-
gorithm has not been proven exhaustively for LSIMs. Our
previous study developed fast and accurate recursive equations
to solve approximate inference in LSIMs for a given λ
with computational complexity O(T (NC)

2
) [28]. The current

study extends the standard EM framework from HMMs to
LSIMs and proves monotonic convergence. The current study
takes advantage of our previous approximate inference to avoid
exponentially high computational demands in maximization
re-estimation transforms and proposes a fast and tractable
closed-form algorithm for learning LSIM parameters. This
work focuses on LSIM learning, and the contributions can
be summarized as follows.
• The re-estimation algorithm of HMMs is extended to

LSIMs, and convergence is proven theoretically with the
influence model and a mixture of strictly log-concave
distributions. Convergence is also confirmed practically
by applying the proposed algorithm to simulated and real
time-series.

• We develop an auxiliary function to prove the conver-
gence for LSIMs theoretically. The technical challenge in-
volves adequately simplifying the observation likelihood
based on the influence model. We show that this auxiliary
function has a unique global maximum, expressed in a
closed-form expression called the re-estimation transfor-
mation.

• The re-estimation algorithm is presented as a closed-
form expression based on marginal forward-backward
parameters similar to the Baum-Welch algorithm. Ap-
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proximate inference keeps the complexity at O(T (NC)
2
)

instead of O(TN2C), and the proposed re-estimation
algorithm works well even for datasets with more than
100 channels.

The rest of this manuscript is structured as follows. In
Section II, we describe the notations and constructing an
auxiliary function. Then, the re-estimation algorithm's conver-
gence is proved, and the re-estimation algorithm is achieved by
maximizing the auxiliary function. In Section III, procedures
of data simulation are explained. Several real multi-channel
time-series are also introduced, and the validation criteria are
described. The proposed re-estimation algorithm is applied
to simulated and real multi-channel time-series, and Section
IV presents the results of LSIMs comparing to other models.
Finally, conclusions are described in Section V, following with
expressing some proofs in Appendix B and Appendix C.

II. PROPOSED LEARNING FRAMEWORK

In this section, we define symbols and variables with
the same notations as [6], [28]. Some new definitions are
also considered for future probabilistic manipulation. Then,
a well-established auxiliary function is constructed based on
HMMs concepts inspired by the study [32], which is an
acceptable source of EM algorithm in HMMs. This function
is defined accurately by simplifying f(o1:T |λ) based on LSIM
parameters. We prove that regarding the influence model,
the constructed auxiliary function preserves the structure of
the auxiliary function in HMMs. Finally, the uniqueness of
the global maximum is showed for the constructed auxiliary
function, and then a closed-form solution is also presented to
find it. Furthermore, the proposed framework is equivalent to
HMM learning framework for an LSIM with one channel.

A. Notations

We assume a LSIM with C channels, and its observa-
tions are available for t = 1, ..., T . Let us denote Sc =
{Sc1, Sc2, ..., ScM(c)} to be state space of channel c in the
LSIM. Let qct ∈ Sc and oct ∈ RL(c) be state and ob-
servation of channel c at time t, respectively and L(c) is
observation dimension of channel c. Initial state probabilities
of each channel are denoted by πcm = P (qc1 = Scm) and
π = {πcm|m = 1, ...,M(c), c = 1, ..., C}. Influence model
parameters, including the transition matrices and coupling
weights, are denoted by ac,ξm,n = P (qξt = Sξn|qct−1 = Scm)
and θc,ξ. The sets of all transition matrices and coupling
weights are denoted by A and Θ respectively. Similar to state
space, we define channel space as ΩΘ = {1, 2, ..., C}. The
emission probabilities of the observation given its hidden state
is written as bcm(oct) = f(oct |qct = Scm) where oct may be either
discrete or continuous. In this study, observations are assumed
to be continuous amplitude, and emission probabilities bcm(oct)
belong to Gaussian Mixture Model (GMM) families as follows

bcm(oct) =

D(c)∑
k=1

ωcm,kN (µcm,k,Σ
c
m,k)

=

D(c)∑
k=1

ωcm,kb
c
m,k(oct),

(2)

where D(c) is the number of Gaussian in channel c and
ωcm = {ωcm,1, ..., ωcm,D(c)}, µ

c
m = {µcm,1, ..., µcm,D(c)} and

Σcm = {Σcm,1, ...,Σcm,D(c)} are weights, means and covari-
ance matrices of GMM in channel c at state m, respec-
tively. Similar to state space, we define mixture space as
ΩcK = {1, 2, ..., D(c)}. Sets of all mixing weights, means and
covariance matrices are also denoted by ω , µ and Σ. Thus,
the LSIM is characterized by λ = {π,A,Θ, ω, µ,Σ}, and Λ
is also defined as the total parameters space (λ ∈ Λ).

Set of observations at time t is denoted by ot =
{o1
t , o

2
t , ..., o

C
t } and set of observations in interval ts : tp

is denoted by ots:tp = {ots , ots+1, ..., otp}. A simplifying
definition is also considered as vct (m) ≡ {qct = Scm}.

We consider a new variable φξt in the influence model such
that the joint distribution P (qξt , φ

ξ
t |q1

t−1, ..., q
C
t−1) is expressed

through

P (qξt , φ
ξ
t |q1

t−1, ..., q
C
t−1) = θφ

ξ
t ,ξP (qξt |q

φξt
t−1). (3)

The variable φξt was also defined previously in [21], and
this variable indicates the independent partial influence of all
channels on channel ξ. The influence model is the marginal
distribution of (3) as follows

P (qξt |q
1
t−1, ..., q

C
t−1) =

C∑
φ
ξ
t=1

θφ
ξ
t ,ξP (qξt |q

φ
ξ
t
t−1)

θφ
ξ
t ,ξ ≥ 0,

C∑
φ
ξ
t=1

θφ
ξ
t ,ξ = 1.

(4)

We further define some sequence spaces in following. Let
Ψc
Q be the T th Cartesian product of the hidden states as

Ψc
Q = {(qc1, qc2, ..., qcT )|qct ∈ Sc, t = 1, ..., T}, and the state

sequence space of LSIMs is defined as the Cth Cartesian
product of Ψc

Q (ΨQ = {Ψ1
Q,Ψ

2
Q, ...,Ψ

C
Q}). Similarly, Ψc

K

is the T th Cartesian product of the mixture branches as
Ψc
K = {(κc1, κc2, ..., κcT )|κct ∈ ΩcK , t = 1, ..., T}, and the

mixture branch sequence space of LSIMs is defined as the Cth
Cartesian product of Ψc

K (ΨK = {Ψ1
K ,Ψ

2
K , ...,Ψ

C
K}). Finally,

Ψc
Φ is the T th Cartesian product of the channel branches

Ψc
Φ = {(φc1, φc2, ..., φcT )|φct ∈ ΩΘ, t = 2, ..., T}, and the

channel branch sequence space of LSIMs is defined as the
Cth Cartesian product of Ψc

Φ (ΨΦ = {Ψ1
Φ,Ψ

2
Φ, ...,Ψ

C
Φ}). A

list of acronyms and notations is included in Appendix A to
assist the reader in tracking notations in the following sections.

B. Joint Density and Auxiliary Function

The first step of constructing an auxiliary function is to
simplify f(o1:T |λ) based on LSIM parameters as much as
possible. We decompose and simplify the global density
function f(o1:T |λ) as follows
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f(o1:T |λ) =
∑
Q∈ΨQ

∑
K∈ΨK

∑
Φ∈ΨΦ

f(o1:T ,Q,K,Φ|λ)

=
∑
Q∈ΨQ

∑
K∈ΨK

∑
Φ∈ΨΦ

C∏
c=1

(
πcqc1ω

c
qc1,κ

c
t
bcqc1,κc1(oc1)

)

×
T∏
t=2

C∏
c=1

θφ
c
t ,cωcqct ,κct b

c
qct ,κ

c
t
(oct)a

φct ,c

q
φct
t−1,q

c
t

.

(5)

The joint density function f(o1:T ,Q,K,Φ|λ) is differen-
tiable in λ since the parameters of influence model place in a
product form similar to f(o1:T ,Q,K|λ) in HMMs. Following
the concept of the Kullback-Leibler divergence in HMMs, we
define an auxiliary function Q(λ, λ̄) as a function of two sets
of parameters λ and λ̄ in Λ by the following equation

Q(λ, λ̄) =
∑
Q∈ΨQ

∑
K∈ΨK

∑
Φ∈ΨΦ

f(o1:T ,Q,K,Φ|λ) log f(o1:T ,Q,K,Φ|λ̄).

(6)
The next theorem of Q(λ, λ̄) is generalized to LSIMs quickly.

Theorem II.1. If Q(λ, λ̄) ≥ Q(λ, λ) then
f(o1:T |λ̄) ≥ f(o1:T |λ). The strict inequality is valid
unless f(o1:T ,Q,K,Φ|λ) = f(o1:T ,Q,K,Φ|λ̄) everywhere.

Proof. The proof follows by Juang and Baum [31], [32].

Since (5) and (6) express both the joint density and the
auxiliary function, Theorem II.1 is valid. This theorem is
essential in the generalized EM algorithm [30]. For a given
observed multi-channel time-series o1:T , the re-estimation
algorithm starts with an initial model λ. Then, a transformation
of λ̄ that increases Q(λ, λ̄) determines the next model in
the re-estimation algorithm. However, a better transformation
is the maximizer of Q(λ, λ̄) as a function of λ̄. So, the
proposed algorithm re-estimates λ̃ from the current model λ
as λ̃ = T (λ) ∈ {λ̂ ∈ Λ|Q(λ, λ̂) = maxλ̄∈ΛQ(λ, λ̄)}. The
transformation T (λ) : Λ → Λ is called the re-estimation
transformation. Consequently, λ̃ plays the same role as λ so
that the new re-estimate determines the next model. According
to the following theorem, this sequence of models consis-
tently increases f(o1:T |λ) unless it reaches a critical point
of f(o1:T |λ).

Theorem II.2. Let f(o1:T ,Q,K,Φ|λ) be continuously differ-
entiable in λ. If the re-estimation transformation T is defined
as a continuous map of Λ → Λ such that λ̃ = T (λ)
is a critical point of Q(λ, λ̄) as a function of λ̄ , then
fixed points of T are critical points of f(o1:T |λ). Besides,
if f(o1:T |λ̃) > f(o1:T |λ), unless λ̃ = λ, all limit points of
T n(λ0) , T (T (...T (λ0)...)) are fixed points of T for any
λ0 ∈ Λ.

Proof. The proof follows by Juang and Baum [31], [32].

Theorem II.1 and Theorem II.2 guarantee that the model
of re-estimation λ̃ always increases the likelihood, i.e.,
f(o1:T |λ̃) > f(o1:T |λ), unless λ̃ is a fixed point of the
transformation. Thus, this transformation will converge to a
fixed point, or, in other words, a critical point of the likelihood.

An adequate development of Q(λ, λ̄) may not seems sig-
nificant until, for example, constructing Q(λ, λ̄) based on
f(o1:T ,Q|λ) instead of f(o1:T ,Q,K,Φ|λ) also kept Theorem

II.1 and Theorem II.2 going. Two essential consideration of
constructing a new Q(λ, λ̄) should be noticed: the uniqueness
of its global maximum and a fast closed-form solution of this
global maximum. Next, we indicate that these points exist in
the proposed Q(λ, λ̄).

C. Maximization and Re-estimation Algorithm

The logarithm of global joint density has a separability
property as follows

log f(o1:T ,Q,K,Φ|λ̄) =

C∑
c=1

log π̄cqc1 +

C∑
c=1

T∑
t=2

log θ̄φ
c
t ,c

+

C∑
c=1

T∑
t=2

log ā
φct ,c

q
φct
t−1,q

c
t

+

C∑
c=1

T∑
t=1

log ω̄cqct ,κct +

C∑
c=1

T∑
t=1

log b̄cqct ,κct (o
c
t).

(7)

Assuming there are I separable parameter sets such that
log f(o1:T ,Q,K,Φ|λ) =

∑I
i=1 log f (i)(o1:T ,Q,K,Φ|λi).

Note that λ = {λ1, ..., λI} and I is the number of parameter
sets after separation. Define Q(λ, λ̄i) like this

Q(λ, λ̄i) =∑
Q∈ΨQ

∑
K∈ΨK

∑
Φ∈ΨΦ

f(o1:T ,Q,K,Φ|λ) log f (i)(o1:T ,Q,K,Φ|λ̄i).

(8)

Assuming λ is fixed and Q(λ, λ̄i) as a function of λ̄i has a
unique global maximum λ̃i, that is a critical point of Q(λ, λ̄i).
The partial transformation is defined as T (i) : λ → λ̆i =
{λ1, ..., λ̃i, ..., λI}, and the re-estimation transformation T is
thus defined as T : λ → λ̃ = {λ̃1, ..., λ̃i, ..., λ̃I}. Based on
the following theorem, maximizing the likelihood through re-
estimation can be performed on individual parameter sets.

Theorem II.3. According to the assumptions outlined above,
f(o1:T |T (i)(λ)) ≥ f(o1:T |λ) for all λ ∈ Λ, and every param-
eter set i. The inequality becomes equality if and only if λi is
a critical point of f(o1:T |λ) with regard to λi, or equivalently,
λ̆i is a fixed point of T (i). Besides, f(o1:T |T (λ)) ≥ f(o1:T |λ)
with equality if and only if λ is a critical point of f(o1:T |λ)
or equivalently, a fixed point of T .

Proof. The proof follows by Juang and Baum [31], [32].

Now, we decompose Q(λ, λ̄) as the sum of separated parts
by substituting (7) in (6). It is then proved that each separated
part has a unique global maximum (including influence model
parameters).

Let Υc
n,κ is the parameter set that defines the density

bcn,κ(oct). This study assumes multivariate Gaussian densities
and Υc

n,κ = (µcn,κ,Σ
c
n,κ). Inserting (7) into the auxiliary

function in (6) gives
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Q(λ, λ̄) =

C∑
c=1

Qπ̄c(λ, π̄
c) +

C∑
c=1

Qθ̄c(λ, θ̄
c
)

+

C∑
c=1

M(c)∑
nc=1

Qω̄cnc (λ, ω̄cnc) +

C∑
c=1

M(c)∑
nc=1

D(c)∑
κc=1

QῩcnc,kc
(λ, Ῡ

c
nc,kc)

+

C∑
c=1

C∑
c′=1

M(c′)∑
nc′=1

Q
ā
c′,c
n
c′

(λ, āc
′,c
nc′

),

(9)
where Q(λ, λ̄i) is described in detailed as follows

Qπ̄c(λ, π̄
c) =

M(c)∑
nc=1

f(o1:T , v
c
1(nc)|λ) log π̄cnc

Qθ̄c(λ, θ̄
c
) =

C∑
c′=1

log θ̄c
′,c

T∑
t=2

f(o1:T , φ
c
t = c′|λ)

Qω̄cnc (λ, ω̄cnc) =

D(c)∑
kc=1

log ω̄cnc,kc

T∑
t=1

f(o1:T , v
c
t (nc), κ

c
t = kc|λ)

QῩcnc,kc
(λ, Ῡ

c
nc,kc) =

T∑
t=1

f(o1:T , v
c
t (nc), κ

c
t = kc|λ) log b̄cqct ,kc(o

c
t)

Q
ā
c′,c
n
c′

(λ, āc
′,c
nc′

) =

M(c)∑
nc=1

log āc
′,c
nc′ ,nc

×
T∑
t=2

f(o1:T , φ
c
t = c′, v

φct
t−1(nc′), v

c
t (nc)|λ).

(10)
Under the Theorem II.3, if each individual auxiliary function

has a unique maximum global, then the parameter sets can
be re-estimated independently by maximizing the individual
auxiliary functions independently. Fortunately, maximization
of Qπ̄c(λ, π̄c), Qθ̄c(λ, θ̄

c
), Q

āc
′,c
n
c′

(λ, āc
′,c
nc′

) and Qω̄cnc (λ, ω̄cnc)

subject to the following constraints is well-known (for all
appropriate c, c′, and nc)

M(c)∑
nc=1

π̄cnc = 1, π̄cnc ≥ 0

C∑
c′=1

θ̄c
′,c = 1, θ̄c

′,c ≥ 0

M(c)∑
nc=1

āc
′,c
nc′ ,nc

= 1, āc
′,c
nc′ ,nc

≥ 0

D(c)∑
kc=1

ω̄cnc,kc = 1, ω̄cnc,kc ≥ 0.

(11)

Each auxiliary function has a well-known form∑N
j=1 wj log yj coupled with the constraints

∑N
j=1 yj = 1,

yj ≥ 0 and wj ≥ 0, which leads to a unique global maximum
as follows [32]

yj =
wj∑N
n=1 wn

(12)

Hence, Qπ̄c(λ, π̄
c), Qθ̄c(λ, θ̄

c
), Q

āc
′,c
n
c′

(λ, āc
′,c
nc′

), and

Qω̄cnc (λ, ω̄cnc) have a unique global maximum. In this
study, b̄cqct ,κct (o

c
t) is considered as a Gaussian distribution,

which belongs to elliptically symmetric distributions. Thus,

QῩc
nc,kc

(λ, Ῡ
c
nc,kc) also has a unique global maximum since

b̄cqct ,κct (o
c
t) is elliptically symmetric [33]. Therefore, all individ-

ual auxiliary functions have a unique global maximum, and pa-
rameters of LSIMs can be estimated by iterative maximization
of individual auxiliary functions according to the mentioned
theorems.

The re-estimation transformation is derived by apply-
ing (12) to individual auxiliary functions Qπ̄c(λ, π̄

c),
Qθ̄c(λ, θ̄

c
), Q

āc
′,c
n
c′

(λ, āc
′,c
nc′

), and Qω̄cnc (λ, ω̄cnc). Maximiza-

tion of QῩc
nc,kc

(λ, Ῡ
c
nc,kc) is also well-known and straight-

forward [33].
We have a brief review of inference in LSIMs that including

forward, backward, one-slice parameters. Then, we use these
parameters to accomplish the re-estimation transformation by
maximization of individual auxiliary functions.

1) Inference in LSIMs and Auxiliary Parameters
Inference in an LSIM is to compute the conditional prob-

abilities of hidden states at a time t given some duration of
observations. The forward, backward, and one-slice parameters
are the most critical parameters in the inference that have an
essential role in re-estimation transformation. The marginal
forward, one-slice, and backward parameters are respectively
defined as follows [28]

αct|t−1(m) = P (vct (m)|o1:t−1)

αct|T (m) = P (vct (m)|o1:T )

βct (m) =
αct|T (m)

αct|t−1(m)
=

bcm(oct)

f(oct |o1:t−1)
× f(ot+1:T |vct (m), o1:t)

f(ot+1:T |o1:t)
.

(13)
To complete the maximization process, two new auxiliary

parameters Γc
′,c
t (n′c, nc) and γct (nc, kc), must also be defined

that expressed according to the previous forward, backward
and one-slice parameters. Two-slice parameter Γc

′,c
t (n′c, nc) is

the joint distribution of two consecutive states (from different
or same channels) plus φct given all observation. This param-
eter is defined and simplified as follows (see Appendix B)

Γc
′,c
t (nc′ , nc) = P (φct = c′, v

φct
t−1(nc′), v

c
t (nc)|o1:T , λ)

= αc
′

t−1|t−1(nc′)θ
c′,cac

′,c
nc′ ,nc

βct (nc).
(14)

The next parameter is γct (nc, kc), which is defined as the
joint distribution of the hidden state and its mixture branch
conditioned on all observation. This parameter is expressed as
follows (see Appendix B)

γct (nc, kc) = P (vct (nc), κ
c
t = kc|o1:T , λ)

=
ωcnc,kcb

c
nc,kc

(oct)∑D(c)
κ=1 ω

c
n,κb

c
n,κ(oct)

αct|T (nc).
(15)

2) Maximization of Individual Auxiliary Functions
Here, introduced parameters are used to extract partial re-

estimation transformations achieved by maximizing individual
auxiliary functions. Maximization procedures of individual
auxiliary functions are described in detail in Appendix C.
Initial probabilities are re-estimated by the maximization of
Qπ̄c(λ, π̄

c) as follows
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π̃cnc = αc1|T (nc). (16)

Coupling weights and transition matrices of the influence
model are also re-estimated by maximizing Qθ̄c(λ, θ̄

c
) and

Q
āc
′,c
n
c′

(λ, āc
′,c
nc′

) through the following equations

θ̃c
′,c =

∑M(c)
nc=1

∑M(c′)
nc′=1

∑T
t=2 Γc

′,c
t (nc′ , nc)∑C

s=1

∑M(c)
nc=1

∑M(s)
ns=1

∑T
t=2 Γs,ct (ns, nc)

(17)

ãc
′,c
nc′ ,nc

=

∑T
t=2 Γc

′,c
t (nc′ , nc)∑M(c)

n=1

∑T
t=2 Γc

′,c
t (nc′ , n)

. (18)

Maximization of Qω̄cnc (λ, ω̄cnc) also gives mixing weights
of GMMs according to

ω̃cnc,kc =

∑T
t=1 γ

c
t (nc, kc)∑D(c)

κ=1

∑T
t=1 γ

c
t (nc, κ)

(19)

Lastly, the mean vector and covariance matrix of GMMs
are re-estimated by the maximization of QῩc

nc,kc
(λ, Ῡ

c
nc,kc)

as follows

µ̃cnc,kc =

∑T
t=1 γ

c
t (nc, kc)o

c
t∑T

t=1 γ
c
t (nc, kc)

Σ̃cnc,kc =

∑T
t=1 γ

c
t (nc, kc)(o

c
t − µcnc,kc)(o

c
t − µcnc,kc)

>∑T
t=1 γ

c
t (nc, kc)

.

(20)
Above closed-form solutions (partial re-estimation trans-

formations) are impractical for a dataset with many chan-
nels due to the exponentially computational complexity of
exact marginal parameters. Our previous study proposed a
fast approximate inference that computes marginal parame-
ters fast and recursively with the computational complexity
O(T (NC)

2
) instead of O(TN2C) for an LSIM with C

channels of N states apiece observing T data points [28].
This approximate algorithm is fast and acceptable for many
practical applications, while exact inference can be demanding
and time-consuming. Hellinger distances are small enough,
indicating that the proposed approximate inference is suffi-
ciently close to the exact inference when considering various
channels, hidden states, and other parameters [28]. Further,
the proposed inference algorithm has superior performance
than existing approximate inference algorithms. Therefore, our
proposed forward, backward, and one-slice parameters are
used in partial re-estimation transformation in the remainder
of this manuscript.

III. SIMULATED AND REAL DATASETS

This section describes various simulated and EEG/ECoG
datasets to evaluate the proposed learning algorithm. Then,
we consider the application of multi-channel time-series mod-
eling using LSIMs and HMMs. Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) are used to
compare HMMs and LSIMs in the context of modeling on both
simulated and real datasets. Since one of the most important
applications of LSIMs as a generative model is in time-series

classification [35], [36], we also evaluate the performance of
LSIMs against CHMMs, HMMs and Support Vector Machines
(SVMs).

A. Simulated Datasets

1) Generic CHMMs
The first simulation includes a generic CHMM that gen-

erates simulated multi-channel time-series. Parameters of a
generic CHMM denote by λ = {π,Ag, ω, µ,Σ}. Notice that
Ag = {A1

g, ..., A
C
g }, where Acg ∈ RNC×N in CHMMs refers

to transition probabilities different from those of the influence
model in LSIMs. Consider a CHMM with C channels; each
channel takes a random state number between 2 to 6. Initial
state probabilities πc = {πc1, ..., πcM(c)} is initialized by uni-
form distribution U(0, 1), and then normalized dividing them
to the sum of them. In the same way, each row of Acg is also
initialized and normalized. The observation dimension of each
channel also initialized randomly between 1 to 5. Emission
probabilities belong to GMM generally, but it is simpler to
assume just one Gaussian component.N (m, 1) initializes each
element of the mean vector µcm,k. For simplicity, covariance
matrices of emission probabilities are assumed to be diagonal,
and U(1, 3) initializes their diagonal elements.

2) Embedded Lorenz Systems
Lorenz system is an interesting nonlinear dynamical equa-

tion with a set of ordinary differential equations known as
Lorenz equations 

dx
dt = σ(y − x)
dy
dt = x(ρ− z)− y
dz
dt = xy − βz.

(21)

Hundreds of research articles and at least one book-length
studied the Lorenz equations [37]. Two different sets ({σ =
10, ρ = 8

3 , β = 28} and {σ = 10, ρ = 8
3 , β = 56}) were

selected to generate time-series of the Lorenz system. The
system exhibits chaotic behavior for these sets. Each set of
parameters generated a three-channel time-series, and these 3-
channel time-series are embedded to create a new six-channel
time-series. The proposed algorithm is applied to a six-channel
time-series that has more complexity than a three-channel case.

B. Brain Signal Datasets

Besides simulated datasets, we consider EEG and ECoG
datasets to assess performances better, as described in the
following.

1) EPFL EEG dataset
This dataset comprises EEG recordings of five disabled

and four healthy subjects [38]. EEG was recorded from 32
electrodes placed at the standard positions of the 10-20 inter-
national system. The initial sampling rate was 2048 Hz that
was resampled to 128 Hz. Subjects were facing a laptop screen
on which six images were displayed. The images showed a
television, a telephone, a lamp, a door, a window, and a radio.
The dataset and preprocessing used in the present work are
made available for download on the EPFL BCI group. The
recording of subject five was excluded from the dataset due to
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the presence of artifacts. Study [38] had described the detail
of protocols and subjects.

2) Macaques ECoG dataset
This dataset contains ECoG recordings of monkeys in a

tracking food task [39]. ECoG (64-channel) and hand motion
data were recorded simultaneously during the tracking food
task with sampling rates 1 kHz and 120 Hz, respectively.
This study focused on monkey B recording to have more
summarized results due to space limitation.

3) Biometric EEG Dataset (BED)
The purpose of this dataset is to study the performance of

methods for the task of biometric person verification and iden-
tification [40]. BED is a dataset designed for EEG-based bio-
metrics, using a low-cost consumer-grade EPOC+ measuring
14-channels of EEG using contact sensors located at locations
that closely align with the AF3, F7, F3, FC5, T7, P7, O1, O2,
P8, T8, FC6, F4, F8 and AF4 locations of the international 10-
20 system. BED contains EEG recordings acquired from 21
healthy individuals with 12 different types of stimuli. EEG
signals are collected throughout three sessions spaced one
week apart to study template aging. The experimental protocol
consists of affective stimuli (AS), mathematical computations
(MC), resting eyes closed (RC), resting eyes open (RO) and
visual evoked potentials (VEP) at 3, 5, 7, and 10 Hz with a
standard checkerboard pattern with reversed pattern (VCx, x
= 3; 5; 7; 10), and flashing VEP with flashing black color at
3, 5, 7, and 10 Hz (VFx, x = 3; 5; 7; 10).

IV. RESULTS AND DISCUSSION

This section presents the results of applying LSIMs to
simulated and real datasets in well-categorized parts. We first
check convergence, then examine modeling and classification
applications, and next analyze approximate inference biases.
We select a subset of datasets for each part to create more
summarized and comprehensive results.

A. Convergence Testing

The proposed learning algorithm is applied to various multi-
channel time-series to examine its convergence and monoton-
ically increasing.

1) Simulated data
Convergence is tested first using simulated multi-channel

time series. Fig. 1 displays log-likelihood curves for 3 and 5
channels simulated observations of CHMMs. All channels are
in similar states, and the number of states increases from 2 to 7
in the re-estimation algorithm. In all cases, the log-likelihood
curves increase monotonically, as shown in the figure. Results
show that the final log-likelihood increases as the number of
states in LSIMs increases. Furthermore, simple models tend
to have faster convergence at the same number of iterations.

2) EPFL EEG dataset
We further apply the proposed algorithm to the EPFL EEG

dataset. Two different configurations are analyzed, including
16 and 32 channels with the same channel selection as [38]. In
all subjects, the state number is four with two Gaussian com-
ponents. Fig. 2 shows log-likelihood curves that are consistent
with previous simulation results.
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Fig. 1. Convergence of proposed algorithm in the estimation of LSIMs
parameters from simulated multi-channel time-series for 3 and 5 channels
CHMMs
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Fig. 2. Convergence of proposed EM-algorithm in the estimation of LSIM
parameters considering the various number of real EEG channels and subjects

3) Macaque ECoG dataset

In the end, the Macaque ECoG dataset with 64 chan-
nels confirms the convergence of the proposed algorithm
in a high channel number scenario. Fig. 3 shows the log-
likelihood curves for different state numbers in this dataset.
Log-likelihood curves increase monotonically in all cases,
indicating that the proposed algorithm has a stable monotonic
convergence.
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Fig. 3. Convergence of proposed algorithm in the estimation of LSIM
parameters considering a 64-channel ECoG
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Fig. 4. Analysis of AIC and BIC for HMM, CHMM and LSIM considering
embedded Lorenz systems

B. Statistical Modeling of Multi-channel Signals

In addition to checking convergence, simulated embedded
Lorenz systems and the Macaque ECoG dataset are used to
compare the modeling capability of LSIMs with HMMs.

1) Embedded Lorenz Systems
The first scenario involves applying HMMs, CHMMs and

LSIMs to a six-channel time series from embedded Lorenz
systems. A simple grid-search also finds optimal state numbers
(2-35 for LSIMs, 2-80 for HMMs and 2-4 for CHMMs with
one Gaussian component) based on AIC and BIC. LSIMs
and CHMMs can have different states per channel, and the
exact grid-search grows exponentially with the number of
channels. To avoid this exponential grid-search, we assume
that all channels have the same number of states. The AIC
and BIC curves for HMMs, CHMMs and LSIMs are shown in
Fig. 4. Based on AIC and BIC, LSIMs are better than HMMs
and CHMMs. In addition, Fig. 5 shows the coupling weights
of the selected LSIM based on the BIC, and as expected, the
coupling weights are zero between two independent Lorenz
systems.

2) Macaque ECoG dataset
Macaque ECoG dataset contains 64 recording electrodes,

which can be modeled by a 64-channel LSIM (one electrode
per channel), a very complex model with lots of parameters.
This complexity can be reduced by considering a four-channel
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Fig. 5. Coupling weights of the selected model based on BIC for embedded
Lorenz system
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Fig. 6. Analysis of AIC and BIC for HMM, CHMM and LSIM considering
multichannel ECoG

LSIM consisting of 16 electrodes per channel such that each
channel contains 16 neighbor electrodes on the multi-electrode
array (see [39] for more details). The cross-correlation matrix
also supports this reconfiguration (see Fig. 7.a). The covari-
ance matrices in GMMs are assumed to be diagonal matrices
to avoid singularities [41].

Similar to the previous dataset, a simple grid-search is used
to obtain the optimal state number (2-100 for LSIMs, 2-250 for
HMMs and 2-7 for CHMMs with one Gaussian component).
Fig. 6 indicates that LSIMs perform better in terms of AIC
and BIC than HMMs and CHMMs. Moreover, Fig. 7.b shows
the coupling weights of the selected model according to the
BIC, consistent with the cross-correlation matrix.

3) Computational Efficiency
One of the advantages of the proposed LSIM framework

is its computational efficiency in large channel systems where
CHMMs cannot be used due to their exponential computation
requirements. Model learning computation times are reported
in TABLE I for LSIMs compared to CHMMs when using
the ECoG and embedded Lorenz datasets. This table presents
results for a four-channel ECoG dataset with hidden states (M)
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Fig. 7. Coupling weights of the selected model based on BIC for Macaque
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TABLE I
LSIM AND CHMM LEARNING COMPUTATION TIMES (SECONDS) FOR

HIDDEN STATES (M) PER CHANNEL VARYING FROM 2 TO 4

ECoG (C = 4) Lorenz (C = 6)
M=2 M=3 M=4 M=2 M=3 M=4

LSIM 51 60 84 19 20 22
CHMM 37 146 553 15 746 25394

varying from 2 to 4. When M is increased from 2 to 4, the
LSIMs computational times increase from 51 to 84 seconds,
while the CHMMs computational times increase quickly from
37 to 553 seconds. A six-channel embedded Lorenz learning
computation takes 19 to 22 seconds, while the CHMMs
learning computation takes 15 to 25394 seconds. According to
the table, CHMMs computational times increase exponentially
with the number of channels and states, making it impractical
for real-world datasets. In contrast, the computational time of
LSIMs remains appropriate for real-world datasets with many
channels.

C. Classification & Biometric Verification

LSIMs can also classify multi-channel time-series data,
as HMMs and CHMMs can do. If there are different gen-
erative models behind different time series classes, HMMs,
CHMMs and LSIMs may be more appropriate than other
classifiers [35]. During the training phase of a two-class
classification problem, two Markov models are learned using
train observations from each class. Hence, there are two
models with λ1 and λ2 parameters, and a given test time series
must be assigned to one of these models. For this assignment,
the conditional observation likelihood of the test time series is

TABLE II
CLASSIFICATION ACCURACY FOR SVM, HMM, CHMM AND LSIM IN

3-CHANNEL SIMULATED CHMMS

I = 10 I = 15 I = 20
T=5 T=10 T=5 T=10 T=5 T=10

SVM 71.1 74.7 73.9 78.8 75.6 80.8
HMM 76.1 85.8 79.8 89.7 82.3 91.5
LSIM 82.6 93.9 87.7 96.3 90 97.2

CHMM 83.7 93.7 87.1 95.7 88.8 96.5

computed for model parameters λ1 and λ2, and llλ1
and llλ2

indicate their log-likelihoods. If llλ1
− llλ2

> 0, then the test
time series is assigned to model λ1 and vice versa. This part
compares the accuracy of LSIMs against HMMs, CHMMs,
and SVMs using simulated CHMMs and real EEG datasets.

1) Simulated CHMMs
Under the classification scenario, two CHMMs parameters

are initialized randomly with the same structure (same channel
numbers, channel dimensions, and state number per channel)
to generate train and test observations for a two-class problem.

HMMs, CHMMs, and LSIMs have two hyper-parameters,
including hidden state numbers and the number of Gaussian
components. A proper model selection criterion (AIC, BIC, ...)
must be used to determine the optimal hyper-parameters based
on the training observations without needing a validation set.
The optimal hyper-parameters are determined by minimizing
AIC using a grid search on hidden state and Gaussian com-
ponents. The optimal hyper-parameters are then applied to the
test time series to classify them.

We analyze the effect of channel number (C), the number
of training set samples (I), and sequence duration (T ) on the
classification accuracy. There are 10 test time-series with the
same T as the training set for each CHMM, and CHMM
parameters are reinitialized 1000 times for each particular
condition (including C, I , and T ). Thus, the classification
accuracy per condition is expressed in terms of 20000 test
time-series.

TABLE II and TABLE III present classification accuracy for
various C, I , and T . The results show that increasing C, I ,
or T positively affects classification accuracy independent of
the LSIMs, CHMMs, HMMs, or SVMs, which are equivalent
to increasing the given information.

The tables show that LSIMs are superior to HMMs,
CHMMs and SVMs, and CHMMs perform better than HMMs
and SVMs. TABLE II indicates LSIMs are better than
CHMMs by about 0.4% on average for the 3-channel sim-
ulation scenario, and TABLE III shows LSIMs beat CHMMs
by about 3% for the 5-channel simulation scenario. This
improvement shows that LSIMs become more appropriate and
stronger than CHMMs by increasing the number of channels
in interesting datasets, even for simulated data from generic
CHMMs.

2) BED biometric verification
This part aims to improve the verification performance of

the BED dataset by using LSIMs instead of HMMs for EEG-
based person verification. The verification task is to determine
whether a user is who they claim to be. Verification compares
the query with the template of the requested identity, and
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TABLE III
CLASSIFICATION ACCURACY FOR SVM, HMM, CHMM AND LSIM IN

5-CHANNEL SIMULATED CHMMS

I = 10 I = 15 I = 20
T=5 T=10 T=5 T=10 T=5 T=10

SVM 76.7 82.2 79.1 84.8 81.7 86.7
HMM 83.3 92.9 85.7 94.8 88.7 95.9
LSIM 88.3 98.3 92.7 99 95.2 99.3

CHMM 84.3 95.8 88.5 97.3 91.5 97.7

users are accepted or rejected based on whether the result of
the comparison exceeds or falls below a certain threshold. In
contrast, identification refers to deciding who the user is from
a pool of possible profiles. This context compares all available
profiles and assigns the query to the profile that provides the
best match.

In [40], an HMM-based verification method is developed,
and verification performance is evaluated on the BED dataset
for different types of features and stimuli. A similar EEG-
based verification is also conducted using LSIMs as in [40]
to avoid ambiguity or questions on the processing procedures.
The current study follows the same data preprocessing and
epoching, feature extraction, and the decision rule for accept-
ing or rejecting an epoch proposed in [40].

In summary, the recordings of channel c data (c = 1, 2, .., C)
are segmented into P consecutive 5-second epochs with 50%
overlap (e(c,p), p = 1, 2, .., P ). Next, epoch p is split into
H overlapping frames of 1 second and 50% overlapping,
and represented as a sequence of observations o(c,p), so that
o(c,p) = [f

(c,p)
1 , f

(c,p)
2 , ..., f

(c,p)
H ], where f (c,p)

h denotes the h-th
frame of epoch e(c,p). Every frame is then used to extract the
feature vector f̂ (c,p)

h that contains F features. Mel frequency
cepstral coefficients (MFCC), autoregression reflection coef-
ficients (ARRC), and spectral features (SPEC) are extracted
for each frame with FMFCC=12, FARRC=12 and FSPEC=14.
The observation sequence in the feature space is denoted as
ô(c,p) = [f̂

(c,p)
1 , f̂

(c,p)
2 , ..., f̂

(c,p)
H ]. The dataset of features is

also part of the BED dataset, and we directly downloaded the
preprocessed features for verification evaluation.

Existing works build an HMM λcHMM with 4 hidden
states using ô(c,p), then compute a posteriori log likelihood
l(c,p) = P (ô(c,p)|λcHMM ) for EEG channel c with respect
to the maximum probability path through the Viterbi algo-
rithm [40], [42]. The decision rule for accepting or rejecting
epoch p based on C models of any given subject is according
to [40], [42]

zp =

{
1, if

∑C
c=1 d

(c,p) ≥ τC
0, otherwise

d(c,p) =

{
1, l(c,p) ≥ τs
0, otherwise

,

(22)

where τC is the minimum number of channels to accept test
epochs, and τs is a threshold for deciding whether to accept
or reject the epochs for individual channels.

Our contribution involves training an F -channel LSIM
(λcLSIM ) for ô(c,p) instead of a standard HMM (λcHMM ) re-
garding EEG channel c. We treat every single feature in ô(c,p)

as a channel of LSIMs, and LSIMs capture the dynamic and
interaction between individual features. For example, we train
12-channel LSIMs for MFCC features and 14-channel LSIMs
for SPEC features. Then, we calculate the log-likelihood
l(c,p) = P (ô(c,p)|λcLSIM ) for each epoch, and the verification
is performed using the same decision rule as in (22).

In order to simulate a realistic usage scenario, data acquired
during one session is used for training, while data acquired
at later sessions are used to test the verification perfor-
mances [40]. Hence, we also train the subject models using
the data from the first session and test them independently
using data from the second and third sessions. The verification
performance is measured by the area under the curve (AUC).
Two τC and τs thresholds are also determined by the same
way used in [40]. In addition, we use four states and three
Gaussian components per channel, like [40], [42].

For existing HMM-based and proposed LSIM-based meth-
ods, TABLE IV and TABLE V show AUC values for each
stimulus (columns) and EEG feature (rows). The AUC values
of HMMs have been taken directly from [40]. Additionally, the
average performance across all types of stimuli per feature of
the EEG is computed and reported in the last column. LSIMs
have superior AUC results than HMMs in two test sessions
for almost all stimuli and EEG feature types (bold values in
columns). In the second and third sessions, the AUC values
show that the proposed LSIM-based method has a significant
improvements of 4.5% and 9.1% over the HMM-based method
(paired t-test with α=0.01). The AUC improvement is also
about 6.8% statistically significant under all conditions (stim-
ulus, feature type, and session). The proposed LSIM-based
method also reduces the standard deviation of AUC values
across stimuli, EEG features, and sessions. For all conditions,
the standard deviation of AUC values for HMM-based method
is 5.4%, while it decreases significantly to 3.3% for LSIM-
based method. Thus, LSIMs not only improve the verification
performance but also decrease the standard deviation across
all conditions.

D. Analysis of Approximate Inference Bias

Finally, we empirically examine how the bias of the ap-
proximate inference is transmitted to estimated parameters. So,
the proposed EM algorithm is re-implemented based on exact
inference. Exponential computation of the exact inference only
allows us to consider LSIMs with few channels. We evalu-
ate the effect of replacing exact inference with approximate
inference by using simulated data from a 4-channel CHMM
and a 4-channel configuration of the EPFL EEG dataset [38].
EM algorithms with exact and approximate parameters are
compared for convergence speed and log-likelihood. Fig.8
shows the exact log-likelihood curves for EM algorithms via
approximate and exact inferences for simulated data and a
subject of the EPFL EEG dataset. These results are selected
to represent the overall patterns that emerge from the results
of EM algorithms via approximate and exact inferences for
various situations. As can be seen, the exact inference gives
faster convergence than approximate inference. Both plots
confirm that approximate inferences reach parameters with
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TABLE IV
VERIFICATION AUC RESULTS FOR SESSION 2 WHEN THE SYSTEM IS TRAINED WITH DATA FROM SESSION 1

Model Feature AS MC RC RO VC3 VC5 VC7 VC10 VF3 VF5 VF7 VF10 Avg. (Std)

HMMs
MFCC 77.0 69.2 75.7 66.2 61.0 68.5 64.8 62.5 66.1 66.3 70.2 74.3 68.5 ± 4.9
ARRC 73.2 70.3 72.8 67.7 54.2 66.1 67.2 57.2 64.3 68.1 74.8 74.8 68.5 ± 6.2
SPEC 74.7 70.4 71.9 65.3 59.3 75.7 67.7 64.3 66.9 66.1 73.8 75.7 69.3 ± 5.0

LSIMs
MFCC 74.2 69.5 75.8 72.6 68.5 72.5 71.5 69.3 73.9 72.6 73.7 75.4 72.4 ± 2.4
ARRC 70.9 69.0 73.1 76.2 71.7 73.3 73.8 68.6 75.1 75.6 74.7 77.1 73.2 ± 2.7
SPEC 70.8 68.3 73.9 73.3 70.2 75.0 73.1 73.7 75.5 72.9 75.1 75.4 73.1 ± 2.3

Notes: Results in bold denote the best AUC per stimulus

TABLE V
VERIFICATION AUC RESULTS FOR SESSION 3 WHEN THE SYSTEM IS TRAINED WITH DATA FROM SESSION 1

Model Feature AS MC RC RO VC3 VC5 VC7 VC10 VF3 VF5 VF7 VF10 Avg. (Std)

HMMs
MFCC 71.1 67.1 70.3 73.2 65.1 70.7 65.2 55.4 60.5 75.8 68.7 64.9 67.3 ± 5.4
ARRC 64.9 66.7 76.4 70.0 59.3 72.5 60.7 60.7 59.1 70.6 65.2 66.4 65.9 ± 5.2
SPEC 63.8 62.1 69.2 71.2 63.2 69.6 65.7 55.7 63.6 67.6 68.1 62.6 65.2 ± 4.1

LSIMs
MFCC 72.5 69.4 78.5 77.3 75.6 78.7 74.1 69.7 73.3 78.9 76.7 73.4 74.8 ± 3.3
ARRC 68.9 68.9 76.6 75.3 78.2 82.5 73.7 76.8 73.7 78.8 77.1 77.7 76.0 ± 3.9
SPEC 68.4 68.7 79.7 77.6 76.6 80.7 73.8 71.8 73.9 79.4 75.2 74.4 75.1 ± 4.1

Notes: Results in bold denote the best AUC per stimulus

(a) Simulated data from a 4-channel CHMM
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(b) Real data from the 4 EEG channels of subject 2 in
EPFL dataset
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Fig. 8. Log-likelihood convergence paths of exact and approximate EM
algorithms (4-channel LSIM with five states and one Gaussian component)

nearly the same likelihood as exact inferences in the last
iteration. The exact inference would give a better likelihood
in some cases, but because of its computational complexity, it
is not feasible to apply it to higher channel numbers.

V. CONCLUSION

We extend the scope of the re-estimation algorithm of
HMMs for LSIMs in this study. Using the influence model and
the multivariate mixture of strictly log-concave, we demon-
strate that the LSIMs re-estimation converges to a local
maximum of the likelihood function. The proposed auxiliary
function has a unique global maximum, and closed-form re-

estimation formulas are derived from marginal forward and
backward parameters.

We test the theoretical convergence of the algorithm by
examining simulated datasets and EEG/ECoG datasets (up to
64 channels). The log-likelihoods increase monotonically with
iterations in all cases. As the model complexity increases, its
log-likelihood increases as well, and it requires more iterations
to reach convergence. Modeling and classification tasks com-
pare the performance of LSIMs with standard HMMs. Mod-
eling embedded Lorenz systems and ECoG recordings shows
that LSIMs outperform HMMs according to AIC and BIC. A
primary application of LSIMs as generative models is multi-
channel time-series classification. CHMM data classification
and EEG-based biometric verification are used to compare
LSIMs and HMMs. The proposed LSIM-based method signifi-
cantly improve the verification results over the existing HMM-
based method, and it reduces the standard deviation of AUC
values in all conditions. Therefore, LSIMs are suitable for
modeling and classifying multi-channel time-series that exhibit
spatial and temporal structure in many multi-channel signal
processing applications. While exact inference gives a faster
convergence rate than approximate inference, both inferences
reach parameters with nearly the same likelihood in the last
iteration.

This study and our previous study [28] solve both the
inference and learning problems of LSIMs accurately and
efficiently. However, there is an intrinsic difficulty in learning
LSIMs and CHMMs due to having different channels with
different states. In order to select the optimal state number
per channel, the grid-search size increases exponentially as
the channels increase. Future research can focus on optimizing
search algorithms to deal with this exponential growth.
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