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Abstract—Apnea-bradycardia (AB) is a common complica-
tion in prematurely born infants, which is associated with
reduced survival and neurodevelopmental outcomes. Thus,
early detection or predication of AB episodes is critical for
initiating preventive interventions. To develop automatic
real-time operating systems for early detection of AB, recent
advances in signal processing can be employed. Hidden
Markov Models (HMM) are probabilistic models with the
ability of learning different dynamics of the real time-series
such as clinical recordings. In this study, a hierarchy of
HMMs named as layered HMM was presented to detect AB
episodes from pre-processed single-channel Electrocardiog-
raphy (ECG). For training the hierarchical structure, RR
interval, and width of QRS complex were extracted from
ECG as observations. The recordings of 32 premature infants
with median 31.2 (29.7, 31.9) weeks of gestation were used
for this study. The performance of the proposed layered
HMM was evaluated in detecting AB. The best average
accuracy of 97.14 ± 0.31% with detection delay of
2 5.05 ± 0.41 s was achieved. The results show that layered
structure can improve the performance of the detection
system in early detecting of AB episodes. Such system can be
incorporated for more robust long-term monitoring of
preterm infants.

Keywords—Hidden Markov Model, Apnea-Bradycardia,

Electrocardiography, Machine learning, Early detection.

ABBREVIATIONS

AB Apnea-bradycardia
NO Normal
NICU Neonatal intensive care unit
ECG Electrocardiography
HMM Hidden Markov Model
LHMM Layered Hidden Markov Model
CHMM Coupled Hidden Markov Model
HsMM Hidden semi-Markov Model
CHSMM Coupled Hidden semi-Markov Model
ACC Accuracy
SEN Sensitivity
SPC Specificity
ROC Receiver operating characteristic
AUC Area under the ROC curve
PD Perfect detection
DPD Distance to PD

INTRODUCTION

Apnea of prematurity is a common disorder in
preterm infants (born before 37 weeks of gestation)
and is defined as a respiratory pause (apnea) for more
than 15–20 s. In severe cases, apnea of prematurity is
followed by a significant reduction in heart rate. These
episodes are commonly denoted apnea-bradycardia
(AB). In preterm infants, the occurrence of AB causes

Address correspondence to Mohammad Bagher Shamsollahi,

Biomedical Signal and Image Processing Laboratory (BiSIPL),

School of Electrical Engineering, Sharif University of Technology,

Tehran, Iran. Electronic mail: mbshams@sharif.edu

Annals of Biomedical Engineering (� 2021)

https://doi.org/10.1007/s10439-021-02732-z

BIOMEDICAL
ENGINEERING 
SOCIETY

� 2021 Biomedical Engineering Society

http://crossmark.crossref.org/dialog/?doi=10.1007/s10439-021-02732-z&amp;domain=pdf


hypoxia (low oxygenation of blood), which can be
detrimental in the long run, leading to developmental
problems.21,25 Thus, early detection of AB helps with
early clinical intervention and lowering the adverse
consequences.

In preterm infants, AB is commonly detected
through monitoring of respiration and oxygen satu-
ration in blood.3,13 However, the related sensors for
recording these signals can be irritating and may affect
the natural breathing in neonates. In contrast, the
electrical activity of the heart, Electrocardiography
(ECG) signal, can be recorded comfortably using
weight less chest leads. Thus, a number of studies have
analyzed ECG for detection of AB. In studies, by Poets
and Portet, AB episodes were detected by extracting
RR interval, representing cardiac period, from ECG
signals and comparing their instantaneous values with
a fixed or relative threshold.21,22 Although threshold
based algorithms provide high specificities (few false
alarms), they suffer from low sensitivities, 34.57%,
(few true alarms) and high delays, 6.35 s.8

In addition to RR interval, previous studies have
reported significant changes in the amplitude and
width of QRS complex, representing the depolariza-
tion of the ventricles, at the onset of AB.16 By incor-
porating these features, McNames et al. were able to
improve the accuracy of AB detection to 92.6%. In this
regard, to analyze the dynamic and pattern of the
signals rather than just their amplitude, more complex
approaches have been developed such as: Point process
analysis,9 Machine learning techniques,26,29 Hidden
Markov Model (HMM) and its generaliza-
tions.4,5,7,10,15,17

HMM is a statistical model with finite number of
unobservable or hidden states that produces a se-
quence of observations as Markov process (a change in
the next state depends on the current state).23

For early detection of AB, Altuve et al.4,5,7 pro-
posed two different methods based on HMM and
Hidden semi-Markov Model (HsMM) using RR
interval series of normal (NO) and AB episodes.
Coupled Hidden Markov Model (CHMM) and Cou-
pled Hidden semi-Markov Model (CHSMM) have
been also used to detect AB using RR intervals, QRS
duration and amplitude series.10,15,17 These studies
successfully improved the average sensitivity and
specificity of detection to 95.99 and 93.84%, respec-
tively with time delay of 2 1.11 s. These results are
proof of concept that AB episodes can be early de-
tected.

In this study, to detect AB episodes, we proposed a
hierarchical model based on HMM, called Layered
Hidden Markov Model (LHMM). LHMM was pro-
posed by Oliver et al.18 to decompose the parameter
space in a way to enhance the model robustness, while

reducing training expenses. LHMM has been used in
different applications such as human activity recogni-
tion,11,14,20 intension recognition,1,2,12,24 event detec-
tion and prediction.27,28 Instead of using a huge
HMM, LHMM creates a hierarchy of HMMs in dif-
ferent layers. At each layer of this hierarchy, there is a
set of HMMs each of which is related to a dynamic.
The input of each layer is the output of the previous
one. At different layers, the observations are analyzed
in different time scales defined as ‘‘time granularity’’.
The time granularity indicates the length of a sliding
window that segments the sequence of observations.
One of the advantages of LHMM is that each layer can
be trained and evaluated separately, which decreases
the risk of overfitting.18 The inputs of the first layer are
the observations, while the inputs of the following
layers are the inferential outputs of the previous layer.

In this study, a model based on LHMM was con-
structed, trained and evaluated to detect AB episodes.
This paper is organized as follows: in ‘‘Materials and
Methods’’ section, an overview of the data used in this
study and the details of the proposed method as well as
the optimization and evaluation methodology are
presented. The results obtained are exposed in
‘‘Results’’ section. Finally, the discussion and conclu-
sion are outlined in ‘‘Discussion’’ section.

MATERIALS AND METHODS

Database

Thirty-two premature infants hospitalized in the
neonatal intensive care unit (NICU) who presented
more than one bradycardia per hour or the need for
bag-and-mask resuscitation were included for this
study. The exclusion criteria were the usage of drugs
known to influence the autonomic nervous system
(ANS) except for caffeine, being on intra-tracheal
respiratory aid, and diagnosed intra-cerebral lesion or
malformation. At the time of recording, the median
birth weight was 1235 (1065-1360) gr, the median age
was 31.2 (29.7-31.9) weeks, and the postnatal age was
12.1 (6.7-19.5) days. The infants were placed in incu-
bators, positioned on their side, wrapped in a single
blanket. The parents who accepted to participate their
infant in this study signed a consent form. The same
database was used in previous works.4–7,10,15,17

The same preprocessing and feature extraction were
performed as in previous studies.4,5,7,10,15,17 The data
contained 236 one-lead ECG recordings, for each of
which, QRS complexes were identified using Pan and
Tompkins’s algorithm.19 Then, the distance between
two consecutiveR peaks (RR) and the width of theQRS
complex (QRSd) were extracted. Every instant was
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marked as bradycardia or non-bradycardia by a clinical
expert in the field. After clinical annotation, for more
precise annotation of the AB onset, a sigmoid function
with the best reproducibility was fitted to the rising
segment of the RR time series around the annotated
time instants of the AB episode. The AB onset corre-
sponded to the first point at which the derivation of the
sigmoid function is more than 1. Using the linear
interpolation technique, the obtained time series for RR
and QRSd were uniformly upsampled to 10 Hz to ob-
tain sufficient time resolution for further analysis. Out
of 236 recordings, 148 of them, with length of
26.25 ± 11.37 min, were selected due to their sufficient
length, less noise, and less interruptions in data acqui-
sition. The selected data includes 233 AB episodes with
duration of 21.48 ± 16.07 s. Among the selected time
series, 53 of them were void of any AB episode, while 41
and 54 time series had one and more than one episode,
respectively. For more information about the database
see.6 Authors have agreed to make data and materials
supporting the results or analyses presented in this paper
available upon reasonable request.

Methodology

All the analyses were performed in Matlab (2018b,
The MathWorks Inc., Natick, MA, USA) software.

LHMM Structure

In order to detect AB episodes using LHMM, a
two-layered hierarchy of HMMs was proposed as
shown in Fig. 1. The first layer was designed to include
two HMM banks to separately analyze RR (BRR) and
QRSd ðBQRSdÞ. Each HMM bank itself consisted of

two continuous density HMMs,23 one to be trained by
AB segments and another one by NO segments. Each
segment of data had T1 ¼ 7 s duration extracted by a
window that moves sample by sample. The 7-second
was selected for the training of the models in the first
layer based on the analysis in previous studies,5,7 in
which the length of the analysis segment was defined as
the average of the elapsing time between the onset of
AB episodes and the corresponding peak in RR signal
over the 233 AB episodes.

For each segment of observation, Ot�T1þ1:t, the
HMM of class k, k 2 AB;NOf g, in bank B,
B ¼ BRR;BQRSd, characterized by model parameters

set kBk , generates a likelihood value as its output:

llBk tð Þ ¼ logP Ot�T1þ1:tjkBk
� �

: ð1Þ

The likelihood of a dynamic (class) represents the
probability of the segment being generated by that

dynamic, for which model kBk is trained. For compar-

ing the likelihoods generated by the two models inside
a bank B, the difference log-likelihood was calculated
as:

llBdiff tð Þ ¼ llBAB tð Þ � llBNO tð Þ: ð2Þ

To detect the AB episodes, a threshold can be

applied to each sample of llBdiff tð Þ, as:

llBdiff tð Þ � dB: ð3Þ

Two different thresholds were used for the banks
related to RR and QRSd: dBRR

; dBQRSd
;respectively. For

the samples lower than the threshold, it was concluded
that they were not as part of AB episodes. Through
applying the thresholds to the output of each bank of

the first layer (llBdiff tð Þ), two binary sequences were

generated and used as the inputs to the second layer.
The purpose of the second layer is to make the final

decision of detecting the AB episodes by integrating
and analyzing the two outputs of the first layer with
higher time granularity. For this purpose, the outputs
of each bank in the first layer were synchronously
segmented with sliding windows with T2 ¼ 14 s length
and stride of 1 sample. The length of the sliding win-
dow in the second layer was chosen by greedy search.
To construct the second layer, one bank (BII) including
two discrete HMMs (one for class AB and another for
class NO) was used.

Similar to the first layer, the log-likelihood of each
sliding window ðOt�T2þ1:tÞ for each HMM at time t was
calculated, and the difference of the two log-likeli-
hoods generated was compared to a thresholdðdBII

Þ. A
window was labeled as AB episode if the following
condition was met:

llBII

diff tð Þ � dBII
; ð4Þ

otherwise, it was labeled as NO recording.

The Optimization and Evaluation

The parameters (kBRR

k ; kBQRSd

k ; kBII

k ; k 2 AB;NOf g)
required for development of the proposed LHMM
structure and the detection thresholds
(dBRR

; dBQRSd
; dBII

) were optimally determined. To opti-

mize the parameters and to evaluate the performance
of the proposed method in AB detection, the extracted
time series (N = 148) were randomly grouped into
two sets: 48 and 100 time series for optimization and
evaluation datasets, respectively. The flow diagram of
the data division in this study is shown in Fig. 2.

Out of 48 time series in the optimization set, 24 time
series were randomly selected and divided into two
subsets 15 and 9 time series for training and validation
in the first layer, respectively. A training phase was
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applied to estimate parameters of each HMM using
training observation dataset.

In the first layer, two datasets were constructed for
the training phase; depending on the number of AB
episodes in the 15 time series, segments were syn-
chronously selected from the RR and QRSd time series
starting from the onset of AB episodes with a duration
of T1 ¼ 7 s for each AB model in the two banks

(BRR;BQRSd). To construct training data for NO

models at both banks (BRR;BQRSd), 300 segments of

NO parts void of AB with a duration of T1 ¼ 7 s were
randomly chosen from the 15 time series.

To determine the optimal states of each HMM, a set
of number of states, {3, 4, …, 9}, were investigated.
Then, the selected segments were used to train AB and
NO models in relevant banks with different combina-

FIGURE 1. The proposed LHMM structure for AB detection.
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tion of states. To optimize the log-likelihood thresh-
olds (dBRR

; dBQRSd
), a range of 110 values from -100 to

1000 with interval 10 was investigated. In each bank,
the difference of two log-likelihoods generated by the
models was compared to each threshold (Eq. (3)), and
metrics such as accuracy (ACC, Eq. (5)), sensitivity
(SEN, Eq. (6)) and specificity (SPC, Eq. (7)) were
calculated for each value of the thresholds:

ACC ¼ TPþ TNð Þ= TPþ TNþ FNþ FPð Þ; ð5Þ

SEN ¼ TP= TPþ FNð Þ; ð6Þ

SPC ¼ TN= TNþ FPð Þ; ð7Þ

where TP, FP, TN and FN denote the number of true
positives, false positives, true negatives and false neg-
atives, respectively. Using SEN and error (1-SPC) for
different thresholds, Receiver Operating Characteristic
(ROC) curves were used to find optimal threshold
value and states at each bank. The ROC curves were
created for models with different combinations of
states. Using a criterion called Perfect Detection (PD)
defined as:

PD ¼ argmax SEN� SPCf g; ð8Þ

the point with optimum detection performance and its
related threshold were chosen for each model.10,17 Fi-
nally, states and threshold of the model with the
maximum perfect detection among the models were
chosen as the optimum parameters. For more com-
parison, the area under the ROC curve (AUC) and the
distance to PD (DPD) were reported. DPD was de-
fined as:

DPD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SENð Þ2þ 1� SPCð Þ2

q
: ð9Þ

The remaining 24 time series of the optimization set
were used to determine the parameters of HMMs in
the second layer and were divided into two subsets 15
and 9 time series for training and validation, respec-
tively. At the training phase, two approaches were
considered to train HMMs (shown in Fig. 3):

1. Prior-segment approach, where the models were
trained using segments selected before the onset of
the desired event while their last sample fell inside
the event of interest.

2. Onset-segment approach, which is to train models
with segments that were selected within the onset
and termination of the event.

According to each approach, two datasets were
constructed from optimization observation dataset.
Depending on the number of AB episodes in the 15
time series, the 14-second segments for AB model of
the second layer were synchronously selected from the
outputs of the first layer banks and training data were
constructed. For the NO model of the second layer, 14-
second segments of the first layer outputs were ran-
domly selected. The number of selected segments for
NO model was chosen equal to the number of data in
AB related model. To determine the sliding window
length in the second layer by greedy search, values
from 9 to 21 s (maximum length of AB episode) with
variable steps were investigated.

The algorithm to obtain the optimal parameters in
the second layer was similar to the first one except
sliding windows were T2 ¼ 14 s. In the second layer, in

FIGURE 2. Flow diagram of data division.
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addition to the aforementioned metrics, time detection
delay was calculated and reported. The detection delay
is defined as the time elapsed between the onset of AB
and detection. With this definition, for those onsets
detected before the annotated AB onsets, a negative
time detection delay was calculated. The detection
delay was only calculated for AB episode and not for
normal segments.

A cross-validation was performed on the evaluation
set by repeating 5 folds, each of which involved the
calculation of metrics. In each fold, 20% of the data
was used for training and the rest were remained for
test data.

Statistical Analysis

R statistical software (version 3.6.2) was used to
compare the performance of the two detection
approaches, prior-segment approach and onset-seg-
ment approach. Based on the normality of the data
examined by Shapiro-Wilk test, t-test or Mann-Whit-
ney test was applied. The p-value < 0.05 was consid-
ered as significant.

RESULTS

Figure 4 shows an example trace of AB detection in
the proposed method according to the prior-segment
approach. An episode of AB can be recognized by

increases in RR (Fig. 4a) and fluctuations for QRSd
(Fig. 4b). The log-likelihood curves of the banks re-
lated to RR and QRSd change over time (Figs. 4c and
4d). At the time instant of AB, the log-likelihood of
AB model increases (NO model decreases) in bank
related to RR but the increase in the log-likelihood of
AB model (decrease in the log-likelihood of NO
model) in bank related to QRSd occurs before the
onset of AB. After performing detection in the first
layer, the outputs of the HMM banks form two-di-
mensional observation inputs of the second layer
(Figs. 4e and 4f). The log-likelihoods in the second
layer change at the onset of AB and the log-likelihood
of AB model increases (NO model decreases) (Fig. 4g).
The result of detection is shown in (Fig. 4h).

Figures 5 and 6 show the ROC curves analyzed to
determine the optimal parameters for the two
approaches, prior-segment and onset-segment. In each
figure, the model with the maximum PD is shown as
the best model. The optimal values of the parameters
in the first and the second layer, as well as calculated
metrics in these values, are summarized in Tables 1
and 2, respectively.

Table 3 shows the metrics measured in the second
layer by varying the sliding window length on the
training set of the prior-segment approach. The max-
imum result of the PD metric was achieved by a 14-
second sliding window, for which we obtained SEN
and SPC 98.5 and 94.39%, respectively with time delay
of 2 5.7 s.

FIGURE 3. Training approaches of the second layer HMMs. (a) The prior-segment approach: training HMMs with segments in
which the last sample of them were included in the desired events, (b) The onset-segment approach: training HMMs with segments
were considered during the desired events.
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The performance metrics of each bank for the two
approaches on test data were calculated through cross-
validation and reported in Tables 4 and 5. According
to these tables, the best results for AB detection were
achieved by the second layer in both approaches with
the average SEN and SPC of 98.15 ± 0.67 and
97.11 ± 0.31% for the prior-segment approach and
93.76 ± 4.02 and 98.41 ± 0.43%, respectively for the
second one. In addition, the average time delays of
2 5.05 ± 0.41 s and 2 3.73 ± 0.62 s were achieved by
the prior-segment and onset-segment approaches,
respectively. It should be noted that, the reported value
of time delay for each approach is the average of all

obtained values consisting of the prediction with neg-
ative time delays and the detection cases with positive
time delays.

Table 6 presents the statistical comparison results of
the metrics between the two detection approaches. No
significant difference was found between the accuracy
of the two approaches (p = 0.12). In contrast, the
time delay was significantly higher in the prior-segment
approach compares to the onset-segment approach
(2 5.05 ± 0.41 s vs.2 3.73 ± 0.62 s, p = 4.6760E204).

FIGURE 4. Example of the AB detection from time series (RR and QRSd) by the proposed method. The annotated onset of the AB
episode is shown by vertical dash lines. (a), (b), (c) and (d): the input observations and log-likelihood curves of banks related to RR
and QRSd, respectively. (e), (f): the outputs of the first layer after thresholding that constitute input observations of the second
layer. (g) log-likelihood curves of bank related to the second layer. (h) the output of the second layer after thresholding (final
detection).
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DISCUSSION

In this study, an early detection algorithm based on
LHMM was presented to detect the occurrence of AB
in preterm infants. We were able to successfully: 1-
implement the structure of LHMM for analyzing RR
distance and QRS duration, 2- validating the perfor-
mance of each layer separately, and 3- detect AB epi-
sodes with average ACC of 97.14 ± 0.31% and time
delay of -5.05 ± 0.41 s for the prior-segment approach

and average ACC of 98.27 ± 0.42% and time delay -
3.73 ± 0.62 s for the onset-segment approach.

LHMM is a hierarchical model based on HMM that
enables: 1- independently training and evaluating each
layer, 2- analyzing of the observations by different time
granularity and temporal resolution, 3- interpreting the
effect of each layer separately. Additionally, as in
LHMM, the inputs of the second layer are processed
by the previous layer, it is less sensitive to noise and
baseline fluctuations of the observations. Finally, using
LHMM, the detection can be implemented by using
smaller HMMs in the hierarchy instead of defining a
single huge HMM.

Our proposed model based on LHMM has been
trained appropriately without any overfitting as indi-
cated by high training and test accuracy of 97.38 and
97.14 ± 0.31% for the prior-segment approach and
97.77 and 98.27 ± 0.42% for the onset-segment
approach, respectively. Such results indicate the
robustness of the proposed model to be used as a
monitoring system for preterm infants. An optimal
monitoring system not only detects the AB episodes

FIGURE 5. ROC curves to determine optimal parameters in the first layer. (a): HMM bank related to RR (BRR), (b): HMM bank
related to QRSd ðBQRSdÞ.

FIGURE 6. ROC curves to determine optimal parameters in the second layer. (a) the prior-segment approach, (b) the onset-
segment approach.

TABLE 1. The optimal values of the parameters in the first
layer and related metrics.

Performance metrics BRR BQRSd

Training ACC (%) 95.82 57.83

Optimal states [AB,NO] [3,5] [6,8]

SEN (%) 73.43 60.73

SPC (%) 96.45 57.68

AUC (%) 63.79 62.27

PD (%) 70.82 35.03

DPD 0.26 0.57
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TABLE 2. The optimal values of the parameters in the second layer for both approaches and related metrics.

Performance metrics The prior-segment approach The onset-segment approach

Training ACC (%) 97.38 97.77

Optimal states [AB,NO] [4,4] [3,5]

SEN (%) 100 100

SPC (%) 97.34 97.73

AUC (%) 94.95 99.49

PD (%) 97.34 97.73

DPD 0.02 0.02

Time delay (s) 2 5.24 2 3.86

STD delay (s) 1.05 0.69

TABLE 3. The results of calculated metrics by varying the sliding window in the second layer (the prior-segment approach), the
row of the maximum value of PD is marked as bold.

Sliding window (s) ACC (%) SEN (%) SPC (%) Time delay (s) STD delay (s) PD (%)

21 91.33 99.94 90.85 2 11.97 2.11 90.79

19 91.17 99.6 90.73 2 10.1 2 90.36

16 90.7 98.99 90.32 2 7.55 1.81 89.40

14 94.56 98.50 94.39 2 5.7 1.68 92.97

11 97.48 87.25 97.84 2 3.3 0.8 85.36

9 97.22 0 1 NaN NaN 0

TABLE 4. The cross-validation results of proposed LHMM at optimal parameters (the prior-segment approach).

Bank ACC (%) SEN (%) SPC (%) Time delay (s) STD delay (s)

BRR 95.29 ± 1.25 77.91 ± 0.99 95.65 ± 1.28 – –

BQRSd 55.21 ± 3.72 50.58 ± 3.39 55.31 ± 3.87 – –

BII 97.14 ± 0.31 98.15 ± 0.67 97.11 ± 0.31 2 5.05 ± 0.41 2.21 ± 0.21

Values are reported as mean ± standard deviation.

TABLE 5. The cross-validation results of proposed LHMM at optimal parameters (the onset-segment approach).

Bank ACC (%) SEN (%) SPC (%) Time delay (s) STD delay (s)

BRR 95.82 ± 1.51 77.36 ± 1.12 96.20 ± 1.55 – –

BQRSd 55.02 ± 4.64 48.48 ± 3.36 55.16 ± 4.81 – –

BII 98.27 ± 0.42 93.76 ± 4.02 98.41 ± 0.43 2 3.73 ± 0.62 3.76 ± 2.05

Values are reported as mean ± standard deviation.

TABLE 6. Comparison statistical analyses of two approaches.

Performance metrics of BII The prior-segment approach The onset-segment approach p-value (Cut off value = 0.05)

ACC (%) 97.14 ± 0.31 98.27 ± 0.42 0.1222

SEN (%) 98.15 ± 0.67 93.76 ± 4.02 8.44E205

SPC (%) 97.11 ± 0.31 98.41 ± 0.43 0.02679

Time delay (s) 2 5.05 ± 0.41 2 3.73 ± 0.62 4.6760E204

Values are reported as mean ± standard deviation.
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accurately (high sensitivity) but demonstrates mini-
mum false alarms (high specificity). To find high sen-
sitivity and specificity, we optimize the detection
threshold (dBRR

; dBQRSd
; dBII

) using ROC curves based on

PD. This metric was previously used in Ref. 17 with
DPD 0.06, however our results have improved DPD to
0.02 in both approaches.

For the proposed LHMM, higher accuracies were
obtained in the second layer (97.14 ± 0.31% for the
prior-segment approach and 98.27 ± 0.42% for the
onset-segment approach) compared to RR
(95.29 ± 1.25% for the prior-segment approach and
95.82 ± 1.51% for the onset-segment approach) and
QRSd (55.21 ± 3.72% for the prior-segment approach
and 55.02 ± 4.64% for the onset-segment approach)
banks in the first layer. This result indicates that
combining the outputs of the first layer and analyzing
them through a longer course of time in the second
layer can improve the detection accuracy.

The database analyzed in this study was used in
previous studies with the same preprocessing and fea-
ture extraction. In these studies, different detection
models/algorithms were suggested for AB detec-
tion.4,5,7,10,15,17 The main contribution of this work
was to propose a detection model based on LHMM.
This model enabled to analyze the signals with differ-
ent temporal resolution in different layers, and com-
bining the analysis of each feature with lower
computation costs and less complexity compared to
coupling approaches.10,17 The complexity of the stan-
dard HMM algorithm with N state and observation

length T is O TN2
� �

. For a LHMM with two layers, the

computational cost can be calculated as
O TML1 þDTML2ð Þ, in which D and T are the
dimension and length of the observations, and
ML1;ML2 are the sum of squares of the number of
states in the first and the second layer, respectively.
The computational complexity of LHMM is the con-
siderably lower compared to the more complex HMM

generalizations, such as CHMM O TNC
s

� �
(Ns ¼ state

space, C = number of channels)10 that were previ-
ously used for AB episode detection. Furthermore, in
comparison to the previous studies (Table 7), LHMM
showed more accurate and earlier detection of AB
episodes, especially using the prior-segment approach.

No significant differences were observed in the
accuracy of the two detection approaches. However,
the prior-segment approach provided more negative
time delay than the other approach presumably due to
incorporating the dynamics of the observations prior
to the onset of AB episodes.

The AB detection algorithm based on LHMM had
the ability to early detect AB episodes, which was re-
flected by the negative values of the detection time
delay. The negative average value for time delay indi-
cated the ability of detecting the changes in the dy-
namic of the observations eventually ending up to AB
occurrence. Therefore, the proposed algorithm can be
used for early detection and risk prediction of AB
upon further validation on the ECG signals recorded
in real world.

One of the limitations of our work was that the
study was performed in a single institution and the
algorithm was validated on low sample size. These
limitations can be addressed by recording more data
from in different institutions and incorporating the
proposed model for experimental monitoring preterm
infants in future. Another limitation of our study was
related to the usage of rather clean data without any
major disturbance caused by movements or clinical
interventions performed on the infants. Although, the
algorithm is required to detect AB, while the infant is
sleep with minimal level of interventions and distur-
bances, further improvement of the pre-processing
aspects of the proposed method are warranted in fu-
ture developments to evaluate the robustness of the
method to very low signal to noise ratios.

In this study, we proposed more accurate algorithm
for detecting AB with less time delay and less com-
putation costs from single channel ECG. For future

TABLE 7. Comparison the results with other studies for AB detection.

Method SEN (%) SPC (%) Time delay (s) STD delay (s)

Masoudi et al.15 CHMM 84.92 ± 0.26 94.17 ± 0.51 2.32 ± 0.01 4.82 ± 0.03

Altuve et al.7 HsMM 88.56 ± 1.72 92.87 ± 0.86 1.59 ± 0.24 3.61 ± 0.30

HMM 86.52 ± 3.96 92.27 ± 1.77 1.61 ± 0.43 3.74 ± 0.32

Montazeri Ghahjavarestan et al.10,17 CHMM 95.74 ± 0.82 91.88 ± 0.31 2 0.59 ± 0.21 2.79 ± 0.06

CHSMM 95.99 ± 0.31 93.84 ± 0.24 2 1.11 ± 0.04 2.56 ± 0.03

This study LHMMa 98.15 ± 0.67 97.11 ± 0.31 2 5.05 ± 0.41 2.21 ± 0.21

LHMMb 93.76 ± 4.02 98.41 ± 0.43 2 3.73 ± 0.62 3.76 ± 2.05

Values are reported as mean ± standard deviation.
aThe prior-segment approach, bthe onset-segment approach.
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work, the LHMM model can include the integration of
other clinical signals such as respirations and oxygen
saturation in the blood into for even earlier detection
of apnea of prematurity.3,13
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