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ABSTRACT

Blind source separation is an important field of study in signal processing, in which the goal is to esti-
mate source signals by having mixed observations. There are some conventional methods in this field that
aim to estimate source signals by considering certain assumptions on sources. One of the most popular
assumptions is the non-Gaussianity of sources which is the basis of many popular blind source separa-
tion methods. These methods may fail to estimate sources when the distribution of two or more sources
is Gaussian. Hence, this study aims to introduce a new approach in blind source separation for nonlinear
and chaotic signals by using a dynamical similarity measure and relaxing non-Gaussianity assumption.
The proposed approach assumes there are dynamical stability in source signals and dynamical indepen-
dence between them. The efficiency of the proposed approach is evaluated by synthetic simulation. Also,
to evaluate the ability of the method in real-world applications and featuring its flexibility, the proposed
approach is employed in epileptic seizure prediction by using EEG signals. The results show the potential

and ability of the proposed method in nonlinear and chaotic signal processing.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Blind source separation (BSS) is an important problem in sig-
nal processing with applications across science and engineering.
The ‘cocktail party problem’ is a classic example of the BSS prob-
lem where the goal is to recover the voices of individuals speak-
ing simultaneously using recordings from ambient microphones
placed throughout the room [1]. In the BSS problems, very lit-
tle information about the underlying source signals is known and
different methods attempt to solve the problem by considering
some assumptions. One of the most common methods in the BSS
is Independent Component Analysis (ICA) which uses statistical
independence of the sources as a criterion for solving the un-
mixing problem. The ICA is used in many application domains
[2,3], particularly in neuroimaging, in which the goal is to decom-
pose electroencephalographic (EEG) data in temporally indepen-
dent sources [4] and functional magnetic resonance imaging (fMRI)
data into spatially independent brain networks [5]. Maximum-
likelihood [6], minimization of the between-component mutual in-
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formation [7] and neural network method (infomax [8,9]) are three
of the most commonly used algorithms for ICA.

ICA meets the problem once Gaussian sources exist in the mix-
ing procedure. The unmixing matrix loses uniqueness because of
the rotational invariance of the Gaussian subspace; with only non-
Gaussian sources uniqueness is preserved [10]. Therefore, once two
or more Gaussian sources are present in the source signal mix-
ture, ICA will result in spurious sparse sources because it can no
longer separate those sources and ignores them. The main assump-
tion of the ICA method is non-Gaussianity and mutually statisti-
cal independence of the sources. As a result, ICA is not able to
unmix the Gaussian sources. On the other hand, in many cases,
there is not any information about non-Gaussianity or mutually
statistically independency of mixed sources. In this situation, the
unmixing problem must be solved by considering other assump-
tions for sources. There are studies where methods were devel-
oped for blind or semi-blind source separation based on the dif-
ferent assumptions on the sources or the mixing process. Based
on the assumptions and the approaches of the solutions, differ-
ent techniques can be used to find the unmixing matrix includ-
ing the derivative-based iterative methods [11-13] and searching
algorithms [14-16]. In this study nonlinear and chaotic signals are
considered as sources where there is not any assumption about
Gaussianity. Certain assumptions are defined based on nonlinear
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dynamics of signals and an approach is introduced to define a cost
function suitable for blind or semi-blind situations. Since the pro-
posed cost function is not differentiable. Therefore, a metaheuristic
search algorithm is used to find the best unmixing matrix which
minimizes the cost function.

One of the most important challenges in nonlinear and chaotic
signal analysis is how to consider the dynamics of signals. In this
context, dynamics are related to the global behavior of the signal
and its wholeness. The global behavior of signals may be taken into
consideration with different concepts. For example, some dynamics
quantifiers aim to quantify a specific dynamical behavior of signals
or trajectory of signals in phase space like Lyapunov exponents,
fractal dimensions (box counting dimension [17], correlation di-
mension [18], Higuchi dimension [19], etc) and entropies (approxi-
mate entropy (ApEn) [20] and Sample entropy (SampEn) [21]) that
characterizes the rate of separation of infinitesimally close trajec-
tories [22], space-filling capacity and the amount of regularity and
the unpredictability, respectively. On the other hand, some meth-
ods aim to quantify dynamics without considering a specific be-
havior and they globally measure the similarity of dynamics of sig-
nals like fuzzified statistical behavior of local extrema (FSBLE) [23].
The FSBLE method is used as a dynamic similarity measure that
quantifies dynamical similarity by using the information of ampli-
tude and time of local extrema of signals. This study introduces a
BSS method by considering the importance of dynamics in nonlin-
ear and chaotic signals and employes some assumptions related to
dynamics and dynamical similarity of signals.

It is important to evaluate a new proposed computational
method in real-world and practical situations. In a practical sit-
uation, different aspects of the environment and system includ-
ing external disturbances, modeling errors, and uncertainties can
impact the performance and efficiency of the method. Different
studies tried to cope with these problems and also handle the
outliers to be efficiently applicable in real-world applications [24-
28]. This study considered an electroencephalogram (EEG) based
application, epileptic seizure prediction, to evaluate the proposed
method in a real-world application. The EEG signal stems from a
highly nonlinear and multidimensional system [29]. Thus, analysis
of changing EEG dynamics are considered in many studies for de-
tection or prediction of different states of the brain [30-36]. For
epileptic patients, there are four main dynamical states: normal
(far from seizure), pre-ictal (before seizure), ictal (seizure interval),
and post-ictal (after seizure). There are many studies which aim
to classify these states or predict seizure onset [37-39,41-43,40].
This study assumes that there is a dynamical source which causes
or produces epileptic seizures. Based on this assumption, using the
estimated source signal of epileptic seizures may help other avail-
able methods to increase the efficacy of the prediction systems.

The rest of this paper is organized as follows: Section 2 intro-
duces the proposed method for the BBS problem and its assump-
tions. Section 3 presents the results for evaluating the method
on synthetic data and its application on epileptic seizure pre-
diction. Section 4 discusses the method limitations and finally
Section 5 concludes the paper.

2. The method

The simplest model used in the BSS problem is a linear mixture
of the sources S in the determined case (the number of sources N
is equal to the number of observations N,) (Eq. (1)).

X = AS (1)

where S is mixed by the mixing matrix A (which is full rank) and
observation matrix X is produced. X is N, x N matrix, A is Ny x Ns
matrix, S is Ny x N matrix and N is the number of samples.
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The goal is to estimate S as § by having only the observation
matrix. Thus, the unmixing matrix B must be found to obtain S

using Eq. (2).
S=BX (2)

where unmixing matrix B is Ny x N, and S is an N; x N matrix.
Some assumptions must be considered to obtain B matrix from
observations. If the source signals are considered as chaotic or non-
linear with stable dynamics, the dynamics of the signals can be
injected into the problem, to find the proper B matrix. here, two
assumptions made to estimate B matrix are as follows:

(A) Each source signal has the highest dynamical similarity to
itself.

(B) Each source signal has the lowest dynamical similarity to
other source signals.

Assumption (A) refers to the dynamical stationarity of the
source signals, which means the dynamical properties of the
source signals are static over time. Assumption (B) refers to the dy-
namical independency of the source signals which is used to meet
the most separability of the source signals.

The proposed approach for the BSS problem looks for the un-
mixing matrix B which produces the source signals that satisfy
these two assumptions. First of all, the dynamical similarity must
be quantified. This study uses the Fuzzified statistical behavior of
local extrema (FSBLE) as a dynamical similarity measure which is
described in Appendix A. FSBLE quantify dynamical similarity of
two signals sq(t) and s, (t) as Simpspe(s1(t), s2(t)).

The solution in the proposed method in this study can be con-
verted to an optimization problem which has two main factors as
follows:

o Dynamical stationarity factor: Satisfaction of assumption (A)
which is interpreted as maximizing StaFac function.

o Dynamical independency factor: Satisfaction of assumption (B)
which is interpreted as maximizing IndFac function.

The dynamical stationarity factor aims to maximize the dy-
namical stationarity of each estimated source signal separately. To
quantify dynamical stationarity, each estimated source signal is di-
vided into D segments where D > 2 and StaFac is calculated as

Eq. (3).

D D
StaFac = o Z{D*(D D Yo Simespe (St SD) (3)

k=1 1=1,Ik

where §f is the kth segment of the ith estimated source signal.
The StaFac function calculates the average similarity of all pair seg-
ments of each signal across all estimated signal sources.

The dynamical independency factor aims to maximize indepen-
dency of the estimated source signals. Maximization of the inde-
pendency can be interpreted as minimizing dynamical similarity
between each pair of source signals. Therefore, IndFac is defined
to quantify the dynamical similarity between D segments of all es-
timated source signals as Eq. (4).

IndFac:—Ns*(NS )Z Z

i=1 j=1,j#i
1 &l
D*(Dfl)z Z Simpsg. (SF, S') (4)
k=1 =11k

Eq. (4) proposes minus of the dynamical similarity of each subset
of D segments for two different estimated source signals.

Eq. (5) is used to combine the two factors as a cost function
that must be minimized.

—StaFac % e—lndFac (5)

CostFcn =e
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Table 1
Pseudo code for the proposed BSS method.

- Input: N, observation signals

- Input: Parameters of FSBLE (n and m)

- Input: D

- Output: Estimated B matrix

- Output: Ny source signals

start

1. Generate a population of B matrix randomly.

2. For each B in generated population:

Obtain estimated source signals from observation signals by using B.
Divide each source signal into D segments.

Calculate StaFac and IndFac values.

Calculate CostFcn.

3. Find the best B matrix by considering CostFcn values.

4. If stop conditions are not achieved:

Generate a new population of B matrix according to the search algorithm.
Go to 2

else:

Return the best B matrix and related set of source signals as output.
end

By minimizing CostFcn both the stationarity and independency fac-
tors can be satisfied and the best source signals according to the
assumptions can be estimated.

CostFcn is not differentiable because of the FSBLE basis. Hence,
the present problem (minimizing the CostFcn) cannot be solved by
a derivative-based iterative method which is the regular solution
for many other BSS methods such as FastICA [44]. Therefore, meta-
heuristic search algorithms like genetic algorithm [45] or imperial-
ist competition algorithm [46] can be used to minimize the CostFcn
function by searching over the elements of matrix B.

The proposed solution of the BSS problem is described in
Table 1 as a pseudo code.

3. Method evaluation and results

Two approaches are considered to evaluate the proposed
method. First, synthetic data are used as the source signals, and
the ability of the method in estimating the sources is evaluated.
In the second approach, EEG data as a real-world application are
used to predict epileptic seizures and the proposed method tries
to estimate the epileptic seizure source as a dynamical source in
the fashion of a semi-blind source separation method.

3.1. Evaluation on synthetic data

The signals of three common nonlinear models as Lorenz,
Mackey Glass, and Rossler are used in this section as the syn-
thetic data. The X signals of these systems in the parameter sets
that cause chaos are considered as basic source signals. The basic
source signals do not have Gaussian distribution. Therefore, com-
mon BSS methods like Fast-ICA can estimate basic source signals
from a linear mixture of those. However, if the distribution of the
basic source signals is transformed into Gaussian using histogram
matching techniques, ICA-based BSS methods will not be able to
estimate these Gaussian sources using their linear mixture.

Egs. (6) to (8) are Lorenz [47], Rossler [48] and Mackey Glass
[49] in a parameter set that causes chaos. Fig. 1a shows sample of
basic source signals and histogram of their amplitudes which are
approximation of their distributions.

dx
dy
daz
=X -4z (6)
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dX

T =2

dy

a =X+0.2Y

dz

o = 04+Z(X=5.7) (7)
. v 0.2X(i—r) .

X(1+1)_X(1)+m—0,1X(1) (8)

The new sources are generated by matching the basic sources
to a histogram of normal distribution using the histogram match-
ing technique. Fig. 1b shows the transformed source signals. These
transformed signals are considered as the sources and by using a
randomly selected matrix A (Eq. (9)), observation signals are ob-
tained (Fig. 2).

09106 0.8735 0.2118
A=]0.0350 0.5249 0.3484 (9)
0.1741 0.3440 0.6669

It is obvious that the non-Gaussianity based methods such as
fastICA will fail to estimate normalized sources. Nevertheless, Fig. 3
shows one example of estimated sources using these methods
(JADE and fast-ICA).

In Fig. 3 results of estimating both basic and transformed
sources from observations that are obtained using matrix A are
shown. As it was expected, both methods are successful in esti-
mating basic sources (non-Gaussian sources).

By using the proposed method, Fig. 4 presents the results of
two runs of the method to estimate the transformed sources. Run-
ning the proposed method needs some initial parameters such as
D and the value of m, n, and S in the FSBLE method. The value
of these parameters can affect the result, which will be discussed
in the next section. However, these parameters are practically set
in this experiment as: D=2, m=3, n=3 S=3, and imperial-
ist competition algorithm is used as the search algorithm. In the
imperialist competition algorithm the practical number of popula-
tions, imperialist and maximum number of decades are set to 150,
30, and 150, respectively. Moreover, other parameters of the im-
perialist competition algorithm are initialized as the main paper
suggested [46], including 8 =2, y =7 /4 and ¢ =0.1.

It can be seen in Fig. 4 that the proposed method is able to es-
timate these sources where common ICA-based methods are not.
This is because of the independency of the method from the dis-
tribution of the source signals. To make a comparison between the
performance of the proposed method and that of these ICA-based
methods, the process of estimating the normalized sources is re-
peated 200 times and the root mean squared error (RMSE) of the
estimated sources is considered as the comparison criterion. Fig. 5
shows the histogram of the estimated source RMSEs for each of
the sources separately. In the proposed method, there is no order
for the estimated sources. Therefore, the label of the source with
the lowest RMSE is considered as the estimated source. In addition,
RMSE is computed between z-score normalized signals.

Analysis of variance (ANOVA) is used to investigate if the results
of the proposed method have a significantly lower error. For each
of the source signals, the RMSE of the proposed method is com-
pared to each of the fast ICA and JADE methods separately using
ANOVA test. The test results show the proposed method estimated
the sources with a significantly lower RMSE (p-value<0.05).

3.2. Application on epileptic seizure prediction

Prediction of epileptic seizures is considered as a real-world ap-
plication of the proposed method for source estimation. This study
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Fig. 1. The source signals and histogram of their amplitude values. a) Basic source signals obtain from Lorenz, Rossler, and Mackey Glass. b) The transformed source signals

from a) to Gaussian distribution signals.
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Fig. 2. A sample of observation signals obtained by multiplying the mixing matrix to transformed source signals.

assumes there is a dynamical source which causes seizure for each
patient. Therefore, by having enough observation signals, this dy-
namical source can be found.

In this section, the proposed approach is used as a semi-blind
source estimation method which uses some information about the
observation signals to estimate a specific dynamical source. It is
assumed that the dynamical source which causes seizures behaves
differently in seizure onset from other times. With this considera-
tion and having the number of C observation signals which are a
mixture of C sources, the method assumptions will be turned as
follows:

(A) Each of the C —1 source signals has the highest dynamical
similarity to itself in normal and seizure onset.

(B) Each of the source signals has the lowest dynamical similar-
ity to other source signals, far from seizure onset.

(C) The Cth source signal has the highest dynamical similarity
to itself, far from seizure onset.

(D) The Cth source signal, far from seizure onset, has the lowest
dynamical similarity to seizure onset.

These assumptions are made to separate a dynamical source
which is inactive in far from seizure onset and is activated dur-
ing seizure onset, in other words, the dynamic of this source is
stationary until the seizure onset.

With these assumptions, a new cost function must be consid-
ered that covers these assumptions. Thus, new IndFac and StaFac
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Estimate normalized sources using fast—ICA method
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D-1

1 . A A
D1 ZSlmFSBLE(s’C(a S2) (11)
k=1

The first part of Eq. (10) is related to the first assumption
and the second part is related to the third assumption. Maximiz-
ing StaFac makes the first C — 1 source signals to have the least
changes in dynamic related to seizure over of all times. The second
and fourth assumptions correspond to the first and second part
of the IndFac equation respectively. Maximizing Eq. (11) makes all
sources to be dynamically independent and also Cth source has the
highest dynamical changes depending on seizure onset.

In order to use this method according to the mentioned as-
sumptions, first, we need D segments of C channel of EEG signals
which D —1 segments come from the inter-ictal period and one
segment comes from seizure onset. By minimizing the CostFcn, the
B matrix for each patient will be achieved. The B matrix will be
used to estimate the seizure-related source signal and this signal
is used to predict epileptic seizures.

After finding the unmixing matrix for each of the patients, the
epileptic seizure-related source can be estimated and the same ap-
proach as [50] is applied on the estimated epileptic-related source
to predict epileptic seizures using the FSBLE method. Shortly, the
FSBLE similarity between each 30 s window of the estimated
epilepsy-related source signal and the same length of signal be-
longing to ten minutes before is calculated. Then, by using a
threshold-based detection system, seizures are predicted.

Winterhalder et al. [51] proposed a framework for evaluating
epileptic seizure prediction methods, which is used in this study.
Based on this framework, two time margins need to be defined
as seizure prediction horizons (SPH) and seizure occurrence period
(SOP). SPH is defined as a time interval which starts when the pre-
diction system forecasts an upcoming epileptic seizure by raising
an alarm and it is expected there will not be any seizure during
this time margin. SOP is defined as the period during which the
seizure is supposed to occur. Therefore, a prediction alarm is a true
positive (TP) if there will be no seizure after the alarm and dur-
ing the SPH, and the seizure will occur inside the SOP. Any alarms
in different situations would be false positive (FP) and the rate of
FP in an hour is defined as the false positive rate (FPR). Based on
these definitions and for an applicable prediction system in a real-
world situation, SPH and SOP are two parameters that need to be
set. Ideally, a small value of SOP and a large value of SPH is desir-
able which means the system can predict seizures very early, and
also it can specify a narrow period for seizure occurrence. Also,
when there is a tuning parameter such as the threshold in the
proposed method, it is important to compare different systems by
considering both rate of TP (sensitivity) and FPR. FPR-Sensitivity di-
agrams can be used to show the performance of a method. Also,
for comparing sensitivities of different methods, it important to
make the comparison in the same value of FPR.

3.2.1. Dataset

The Freiburg EEG database 2007 [52] is used in this study to
evaluate the performance of the proposed method. This dataset
contains invasive EEG recordings of 21 patients suffering from
medically intractable focal epilepsy. The data were recorded at the
Epilepsy Center of the University Hospital of Freiburg. The EEG
data are available on 6 channels at a 256 Hz sampling rate.

For each of the patients, there are datasets named “ictal” and
“interictal”, the former containing files with epileptic seizures and
at least 54 min of pre-ictal data and the latter containing approx-
imately 24 h of EEG-recordings without seizure activity. Therefore,
in this study SOP+SPH is considered smaller than 54 min.

Signal Processing 183 (2021) 108045

3.2.2. Results

The sensitivity of the prediction method is considered as the
main measure of the performance. Therefore, the results should
consider SPH, SOP, and FPR as parameters or variables. First, SPH
and SOP are set to 600 and 1800 s respectively and Fig. 6 shows
the diagram of FPR-Sensitivity based on different thresholds on the
FSBLE similarity values.

The result which is presented in Fig. 6 is achieved by setting the
D value of 5 and in the FSBLE method m, n, and S are practically
considered as 3. Also, as the dataset contains 6 channels of EEG
signals. In order to have the most number of achievable sources, C
is considered as 6. In this figure, the result is compared to periodic
and random methods which aim to predict seizure periodically or
randomly respectively [50].

To investigate the effect of SPH and SOP on the performance of
the method, the sensitivity of the system is calculated at an ap-
proximately fixed FPR (FPR~0.33) with different values of SPH and
SOP. Fig. 7 shows the sensitivity of the proposed method in a fixed
false positive rate and different SPH and SOP values.

As it is expected, increasing the SOP at a fixed SPH can only
increase the sensitivity. However, there is not the same relation-
ship between SPH and sensitivity in a fixed SPH. Table 2 reports
the result of a number of studies which used the same approach
to evaluate their results as a basis for a comparison with the pro-
posed method. All of the Table 2 studies used the threshold tech-
nique to predict epileptic seizures and did not use any part of the
dataset, especially the ictal recordings, to train a system or esti-
mate any parameters. This paper only considered the studies for
comparison which have used the same dataset and the same ap-
proach of evaluation and prediction. As we described in [50], there
are at least two different approaches to design an epileptic seizure
prediction system. In the first approach, interictal and ictal data
of patients are used in system design to train a classifier. On the
other hand, in the second approach, the decision is usually made
by a threshold-based technique on a measure. Therefore, there is
no need for ictal data and this approach is more suitable for real-
world applications. This study considered some studies with the
second approach for comparison.

The results in Table 2 show that the proposed method can
achieve a competitive sensitivity at the same FPR, SPH, and SOP
values. The higher sensitivity in the same FPR values means the
method predicts more seizures than others with the same rate
of false prediction. Also, the results are presented in SPH time of
600-1450 s, which means the patients have more than 20 min
to be ready for the seizure and avoid dangerous situations. The
proposed method has higher sensitivity in comparison to most of
these studies in the same parameters and even in higher SPH and
lower SOP.

4. Discussion

This paper aims to present a new approach for blind or semi-
blind signal source separation based on the dynamics of signals
using the FSBLE similarity index. Using FSBLE as the core of the
proposed method needs initialization of some parameters such as
m, n, and S. These parameters must be set by considering com-
putation time and impact of those as it is described in [23]. Also,
because of using FSBLE for dynamical similarity measurement, the
proposed cost function is not differentiable. Therefore, it is neces-
sary to find the minimum of the cost function by using a search
algorithm. Using metaheuristic search algorithms can reduce com-
putation time. In this study, the imperialist competition algorithm
is chosen practically because of faster convergence. Although the
method tries to reach the global minimum, it is possible that the
search algorithm cannot find the minimum because of the limita-
tion of such methods. Fig. 8 shows the cost function value based on
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Table 2
Comparison of the results of studies with same evaluation approach.
Method SopP SPH FPR Sensitivity ~ Number of
(Sec) (Sec) () (%) patient
SBLE [50] 3060 180 0.33 63.75 21
Lag Synchronization index [53] 1800 600 0.3 ~ 75 21
Dynamical Similarity Index [54] 1800 5 0.33 ~ 57 21
Effective Correlation Dimension [54] 1800 5 0.33 ~ 39 21
Phase synchronization [55] 1800 600 0.33 ~ 80 10
This study 1450-1800 600-1450 0.33 76.60 21

two elements of unmixing matrix for observation signals in Fig. 2.
plxrunonpara

The proposed cost function is designed practically to meet two
main assumptions. Different cost functions can be defined based
on assumptions, which should be defined based on the prob-
lem and the application. For example, in Section 3.2 the main
assumptions and the cost function were adapted to the epilep-
tic seizure prediction application to estimate a specific dynamical

source. Also, the proposed method can be used as a semi-blind
source separation by using existing information and changing the
main assumptions.

The proposed method needs longer signals in comparison to
some other methods such as ICA. In such methods, lengths of sig-
nals must be selected by considering stationarity of signal and
large enough for reliable estimation [56]. However, the proposed
method needs the consideration of dynamical stationarity between
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Fig. 8. The CostFcn values based on two elements of unmixing matrix.

each of the D segments. Because of the undifferentiability limi-
tation and using search algorithms, the proposed method works
slower than the derivative-based iterative methods. For example,
the computation time of 200 repeated estimates of the sources
in Section 3.1 was 364 +42 s for the proposed method which
is significantly higher than fast-ICA and JADE (< 0.01 s) on the
same machine. The computation time and convergence of the
method are directly related to the parameters of the selected
search method, and the search method and its parameters should
be chosen based on the application. On the other hand, the pro-
posed method has the ability to estimate Gaussian source signals
and also is flexible to be adapted with specific applications. In
Section 3.2, the proposed method was used to find the seizure-
related dynamical source by adapting the assumptions to the prob-
lem. This approach may also be useful to find other dynamical
sources in other applications. For example, in the field of EEG sig-
nal processing, it can be used to estimate dynamical sources of a
specific state of the brain such as sleep stages or emotions states.

5. Conclusion

This study proposes a new approach for blind source separation
base on dynamical similarity. The proposed method can be used
for nonlinear and chaotic source signals estimation. The method
uses the FSBLE similarity measure to quantify dynamical stabil-
ity and independency of estimated sources. Because of using FS-
BLE, it was necessary to search for the unmixing matrix and this
study used the imperialist competition algorithm as a metaheuris-
tic search algorithm. Unlike many other methods such as ICA-based
methods, the proposed method, in its function field (nonlinear and
chaotic signals), does not force any constraint to sources and their
distribution. Also, if we consider the proposed approach without
fixed assumptions, as it is used in Section 3.2, the approach has the
flexibility to be adapted for more complex situations to estimate a
specific source signal. The results show the ability and potential of
the approach. In the real-world application of the epileptic seizure
prediction, it was shown that by using the proposed approach we
can be closer to an efficient system.
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Appendix A. Fuzzified statistical behavior of local extrema

The fuzzified statistical behavior of local extrema is a dynamical
similarity measure which was developed for nonlinear signal anal-
ysis. The FSBLE method in [23] is described in detail. This method
estimate dynamical similarity in five main steps as it is presented
in Fig. A.9 as follows:

Step 1. In the first step, local extrema (LEs) of two signals are
found. The amplitude and time difference of consecutive
local extrema is used in the next steps.

Step 2. The possible value of the amplitude and time difference
of consecutive LEs are divided into m and n intervals by
using the histograms of their values. After calculating the
histograms, the boundaries of the intervals are selected
with the condition of making the same area of m and n
segmented separately.

Step 3. The selected values of boundaries are used to define m +
1 and n + 1 membership functions on amplitude and time
difference of consecutive local extrema values respec-
tively. Hence, for each LE the mfm matrix is constructed
by using the value of membership into each membership
function for amplitude and time difference using Eq. (A.1).

LEiz1 11 LEip1 7(ns1)
mfm; = :

LEis(mi1),11 LEig(ms1), T (n41)
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Fig. A.9. The five steps in FSBLE method to measure dynamical similarity between two signals [23].

. LEiporp = mfao(Amp(LEi)) + m frp (TD(LED)) (A1)

where LEis, 1), is the value of the membership of ith LE
to mfa, and mfr, membership functions. mfs, and mfr,
are oth and pth membership function of amplitude (Amp)
and time difference (TD) respectively. Thus, each signal is
transferred into a sequence of mfm matrices.

For a sequence with length of s the number of #(s)
(Eq. (A.2)) features (V) are extracted from the sequence
of mfm matrices using Eq. (A.3).

g(s) = ((m+1).(n+1))°

Step 4.

(A2)

Via1,b1),,....(as,bs)s
1 N-—s .
= N_S[mem,-(al,bl)*...*mfm,-ﬂ(as, bs)]s (A.3)
i=1

where N is the length of the signal.
For each signal Vss'g“"l is constructed by changing s from
one to S (Eq. (A.4)).

signal
v = Vi ay, o

Vs, Van.a.ns Va.az)s -
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Vim+1,n41), (ma1,n4+1) } (A4)
This vector has dynamics information of sequential local
extrema and will be used in similarity measurement.
As the final step, Vss‘g"a' of two signals are used to
calculate dynamical similarity using cosine distance as
Eq. (A.5).

Step 5.

(Vg v¢)
VLIV

where ||V|lis norm of V and (V{!,VZ2) is inner product of
vl and V2.

Similarity (V) V) = (A5)
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