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Abstract—Latent Structure Influence Models (LSIMs) are a
particular kind of Coupled Hidden Markov Models (CHMMs).
Against CHMMs, LSIMs overcome the exponential growth of
state-space parameters by considering the influence model for
coupled Markov chains. Nevertheless, the exact inference in LSIMs
requires exponential complexity. We propose a new recursive for-
mulation to compute marginal forward and backward parameters
byO(T (NC)2) instead ofO(TN 2 C) forC channels ofN states
apiece observingT data points. This formulation is derived system-
atically and carefully to increase the inference accuracy. Further-
more, a solution is presented for the evaluation problem of LSIMs
based on the proposed marginal forward parameter. This solution
is essential in statistical multi-channel time-series classification.
The results show that the proposed algorithm is generally more
accurate and reliable than other existing algorithms. Novelties in
deriving the marginal backward parameter plays an important
role in this superiority. The Hellinger distance is computed between
the proposed and exact forward and one-slice parameters for var-
ious simulation scenarios. Distances are small enough, indicating
that the proposed inference algorithm is sufficiently close to exact
inference for various channels, hidden state numbers, and other
parameters. Statistical multi-channel time-series classification is
also considered for both proposed and exact algorithms. Classi-
fication results are almost similar, indicating that the proposed
approximate inference is proper and acceptable in the classification
task. Finally, the iEEG dataset’s parameter learning indicates that
the proposed inference algorithm leads to a higher log-likelihood
than the existing algorithms.

Index Terms—Approximate inference, Boyen-Koller algorithm,
convex combination, coupled hidden Markov model, forward and
backward parameters, influence model, latent structure influence
model, squared euclidean distance.

I. INTRODUCTION

MODELING complex dynamic systems consisting of mul-
tiple interacting processes is essential in various fields

of science and engineering. Standard Hidden Markov models
(HMMs) can be used to model multi-channel time-series of
complex dynamic systems. Nevertheless, if several interacting
channels (or processes) generate a multi-channel time-series, an
HMM with a single hidden variable is ill-suited to it. Coupled
hidden Markov models (CHMMs) are the extension of HMMs
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that contain multiple interacting channels [1], [2]. CHMMs have
been studied in many applications such as audio-visual speech
recognition (AVSR) [3], [4], dynamic functional connectivity
(dFC) in fMRI [5], EEG and ECG classification [6]–[8], dis-
ease interactions [9], freeway traffic modelling [10], [11] and
financial crisis detection [12].

CHMMs were proposed and investigated in [1] and [13] for
continuous and discrete amplitude observations. In a CHMM,
each channel has its Markov chain, associated with its observa-
tions (channel observation can be univariate or multivariate).
Transition probabilities of the current state of each channel
depend on all previous hidden states. In general, this structure
implies that the state space parameters grow exponentially con-
cerning the number of channels. A C-channel CHMM with N
hidden states per channel can be transformed into an equivalent
HMM (withO(NC) hidden states) using the Cartesian product
of all hidden states. So, the exact inference has a computation
complexityO(TN 2C), which makes it impractical for applica-
tions with a large number of channels.

Several approaches have been proposed in the literature to
overcome the problem of state-space parameters. Brand assumed
a simplification considering a factorization of transition matrix
as follows

P (qξt |q1t−1, . . ., qCt−1) ≡
C∏

c=1

P (qξt |qct−1), (1)

where qξt denotes state of channel ξ at time t [1], [14]. So, state
conditional probability in the left side of (1) is substituted by
the product of marginal conditional probabilities. Even though,
the Brand’s assumption reduces transition probability parameter
space but a normalizing value is necessary to hold equality on
both sides of (1), which is also reported in [15].

The convex combination model [13] or the influence
model [16] is the next approach well-defined as opposed to
Brand’s assumption. The influence model also prevents the
exponential growth of transition probabilities parameters, and
transition matrices are factorized as follows

P (qξt |q1t−1, . . ., qCt−1) =
C∑

c=1

θc,ξP (qξt |qct−1),

θc,ξ ≥ 0,
C∑

c=1

θc,ξ = 1, (2)
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where, θc,ξ is coupling weight from channel c to channel ξ,
showing how much qct−1 influences distribution of qξt . Set of
coupling weights can be viewed as a weighted-directed graph
or network that firstly introduced in [16] as influence model.
So, there are a variety of network measures that can describe
this network [17]. In [18], convex combination was introduced
for the modeling of higher-order Markov chain. This model
was also used to stochastic language modeling [19]. After that,
convex combination was used in mixed memory Markov models
with discrete observation [13], and then it was extended in
the context of continuous observation modeling of complex
stochastic systems [15]. In [16], the influence model (an alter-
native name of convex combination) was employed to represent
dynamical interaction over networks. This model was then used
as the interaction model of Markov chains in CHMMs (known
as LSIMs), which was widely applied in social computing in
several studies [20]–[23].

Like CHMMs, joint forward and backward parameters can
be computed in O(TN 2C) for a C-channel LSIM with N
hidden states [1], [15], [24]. This computational complexity
grows exponentially concerning the number of channels, which
is demanding and time-consuming. For example, if an LSIM
model (with 10 hidden states per channel), is applied to 100
milliseconds (sampled at 1000 Hz) of a 32-channel EEG time-
series, it needs 1066 computations for the exact algorithm, which
can be reduced to 107 using the proposed algorithm. Even
though the influence model reduced transition parameters, but
the computational complexity of exact inference still grows
exponentially with the number of channels.

There are several approaches to cope with the computational
complexity in CHMMs. In [25], it was shown that weak inter-
actions could be omitted, and a complex system consisting of
multiple channels can be decomposed into several independent
smaller subsystems [26]. N-heads dynamic programming was
also proposed to perform approximate inference in CHMMs
with Brand’s assumption [1]. A recent study suggested another
approximate inference algorithm based on the Brand’s assump-
tion withO(T (NC)2) computational complexity [8]. The algo-
rithm computes the marginal forward and backward parameters
recursively using two different simplifying assumptions, and it
also improved the performance of Apnea Bradycardia detection.

There are also two approximate inference algorithms for
LSIMs considering the influence model [27], [28]. The first algo-
rithm uses a nonlinear mapping based on Structured Variational
Inference (SVI), and the marginal forward and backward param-
eters are calculated recursively with computational complexity
O(T (NC)2) [27]. The latter algorithm was developed using
mean-field approximation and variational inference [28]. This
algorithm calculates the marginal one-slice parameter consid-
ering the Completely Factorized Variational Inference (CFVI)
with computational complexity O(T (NC)3). As shown in the
results section, despite of more computation cost of the CFVI
algorithm, its inference error is higher than the SVI algorithm.

CHMMs and LSIMs enrich the capability of HMMs in
analyzing multi-channel datasets. These models can improve
accuracy and performance in various applications, including

modeling, segmentation, and classification tasks. Thus an effi-
cient and tractable inference algorithm is necessary for CHMMs
and LSIMs. The exponential growth of state-space parameters
is a crucial weakness of CHMMs in datasets with numerous
channels. We focused on developing an inference algorithm for
LSIMs since existing approximate inference algorithms have
multiple limitations. Brand’s assumption needs normalizing val-
ues at the order ofO(NC) according to q1t−1, . . ., q

C
t−1, and these

values may interrupt simplification procedures of the mentioned
frameworks. In contrast, the influence model does not need any
normalization value, but there are also some points associated
with SVI and CFVI algorithms. Marginal forward and backward
parameters were not compared to exact ones to analyze the error
of approximate inference. The marginal backward parameter er-
ror is sensitive to weighted out-degree and increases for channels
with small weighted out-degree (precise and accurate analysis
was omitted here due to space constraints). This sensitivity can
interrupt the monotone convergence of log-likelihood values in
the Expectation-Maximization (EM) algorithm. So, contribu-
tions of this work are summarized as follows.
� A new formulation is derived to compute recursively

marginal forward and backward parameters (inference)
in LSIMs. This formulation outperforms the accuracy of
existing approximate inference algorithms due to a sys-
tematic and constructive derivation. The main advantage
and improvement of the proposed formulation mostly come
from the novelty in the derivation of marginal backward
parameter.

� A fast and closed-form solution is presented to find op-
timum mixing weights of a mixture model for discrete
conditional probabilities by minimizing squared Euclidean
distance. This solution allows us to complete the recursion
of the marginal backward parameter.

� Marginal forward, backward and one-slice parameters are
formulated in recursive closed-form expressions. The com-
plexity order of proposed formulations is O(T (NC)2),
and real datasets’ applications also reveal the more reliable
performance of these formulations over existing ones with
the same complexity order.

� The evaluation problem of LSIMs is solved using the
proposed marginal forward parameter, and this provides
a fast multi-channel time-series classification.

Rest of this article is organized as follows. In the next section,
the model and mathematical formulation are described. Then,
procedures for the construction of simulated data are explained,
and validation criteria are described. Following these method-
ological aspects, the results of the proposed inference algorithm
are reported on simulated and real datasets.

II. PROPOSED LSIM FRAMEWORK

In this section, symbols and variables are adequately defined
with the same notations as [8]. We then define the marginal
forward parameter and propose a recursive formulation to com-
pute it efficiently, and marginal backward and one-slice param-
eters are appropriately defined. Achieving a recursion for the
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marginal backward parameter is more challenging compared to
the marginal forward parameter. At the end of this section, we
present a formulation to solve the evaluation problem of LSIMs
using the marginal forward parameter.

A. Notations

Assume there is an LSIM with C channels, and its ob-
servations are available for t = 1, . . ., T . Let us denote Sc =
{Sc

1, S
c
2, . . ., S

c
M(c)} to be state space of channel c in the LSIM.

Let qct ∈ Sc and oct ∈ RL(c) be state and observation of channel
c at time t, respectively and L(c) is observation dimension of
channel c. Initial state probabilities of each channel are denoted
by πc

m = P (qc1 = Sc
m) and π = {πc

m|m = 1, . . .,M(c), c =

1, . . ., C}. Also let ac,ξm,n = P (qξt = Sξ
n|qct−1 = Sc

m) and θc,ξ is
coupling weight from channel c to channel ξ. The sets of all
transition matrices and coupling weights are denoted byA andΘ
respectively. The emission probabilities of the observation given
its hidden state is written as bcm(oct) = f(oct |qct = Sc

m) where oct
may be either discrete or continuous. In this study, observations
are assumed to be continuous amplitude, and emission probabil-
ities bcm(oct) belong to Gaussian Mixture Model (GMM) families
as follows

bcm(oct) =

D(c)∑
k=1

ωc
m,kN (μc

m,k,Σ
c
m,k)

=

D(c)∑
k=1

ωc
m,kb

c
m,k(o

c
t), (3)

where D(c) is the number of Gaussian in channel c and ωc
m =

{ωc
m,1, . . ., ω

c
m,D(c)}, μc

m = {μc
m,1, . . ., μ

c
m,D(c)} and Σc

m =

{Σc
m,1, . . .,Σ

c
m,D(c)} are weights, means and covariance ma-

trices of GMM in channel c at state m, respectively. Sets of
all mixing weights, means and covariance matrices are also
denoted by ω, μ and Σ. Thus, the LSIM is characterized by
λ = {π,A,Θ, ω, μ,Σ}.

Set of observations at time t is denoted by ot =
{o1t , o2t , . . ., oCt } and set of observations in interval ts : tp is de-
noted by ots:tp = {ots , ots+1, . . ., otp}. Besides, let S = S1 ×
. . .× SC be joint state space of all channels, and let qt =
{q1t , . . ., qCt } ∈ S be the random variable describing the state
in S at time t. There are also three simplifying definitions as
vct (m) = {qct = Sc

m}, vt(n1, . . ., nC) = {q1t = S1
n1
, . . ., qCt =

SC
nC
} and vt(n) = vt(n1, . . ., nC).

B. Forward Parameter

Forward and backward parameters play a central role in
evaluation, inference, and learning in HMMs, CHMMs, and
LSIMs. Following previous studies [2], [8], [29], marginal
forward parameter is defined as

αξ
t|x(m) = P (vξt (m)|o1:x), (4)

where, for x = t− 1, t and x = T , the above quantity
is termed as predicted, filtered and smoothed probability,
respectively.

The standard prediction equation (also known as Chapman-
Kolmogorov equation) is used to compute forward parameter
recursively as

αξ
t|t−1(m)

=

M(1)∑
n1=1

. . .

M(C)∑
nC=1

P (vξt (m)|vt−1(n), o1:t−1)P (vt−1(n)|o1:t−1).

(5)

In the first term of the right side of equation, o1:t−1 can be
omitted since given previous joint states, current state becomes
independent from past observations. Using the influence model,
it follows that

αξ
t|t−1(m) =

M(1)∑
n1=1

. . .

M(C)∑
nC=1

C∑
c=1

θc,ξac,ξm,nc
P (vt−1(n)|o1:t−1).

(6)

Now by changing summations, the following recursion is
obtained

αξ
t|t−1(m) =

C∑
c=1

θc,ξ
M(c)∑
nc=1

ac,ξm,nc
αc
t−1|t−1(nc). (7)

Finally, forward parameter is recursively computed according
to

αξ
t|t−1(m) =

C∑
c=1

θc,ξ
M(c)∑
nc=1

ac,ξm,nc
αc
t−1|t−2(nc)b̃

c

nc
(oct−1), (8)

where b̃
c

nc
(oct) is defined as

αc
t|t(nc)

αc
t|t−1(nc)

. From Bayes’ rule and

independence of the observation of one channel from the other
channels given its hidden state, it can be deduced that

P (vt(n)|o1:t) ∝ P (vt(n)|o1:t−1)
C∏

c=1

bcnc
(oct). (9)

Boyen-Koller (BK) algorithm is used to simplify
P (vt(n)|o1:t−1) and decomposing joint probability in
independent clusters [25], [30], [31]. We assume that qct
is independent from qc

′
t given o1:t−1 for any c′ ∈ {1, . . ., C},

and after marginalization, it holds that:

P (vct (nc)|o1:t) ∝ P (vct (nc)|o1:t−1)bcnc
(oct)

×
M(1)∑
n1=1

. . .

M(C)∑
nC=1︸ ︷︷ ︸

except c

C∏
c′=1

bc
′

nc′ (o
c′
t )P (vc

′
t (nc)|o1:t−1). (10)

Since normalizing constant is simply the sum over nc of the
right side of previous equation, the expectation is simplified, and
it follows that

αc
t|t(nc) =

αc
t|t−1(nc)b

c
nc
(oct)∑M(c)

nc=1 α
c
t|t−1(nc)bcnc

(oct)
=

αc
t|t−1(nc)b

c
nc
(oct)

f(oct |o1:t−1)
.

(11)
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So, b̃
c

nc
(oct) formula is obtained

b̃
c

nc
(oct) =

bcnc
(oct)∑M(c)

nc=1 α
c
t|t−1(nc))bcnc

(oct)
. (12)

Decomposition of observation is also immediately resulted
from BK algorithm and similar inspections as

f(ot|o1:t−1) =
C∏

c=1

f(oct |o1:t−1). (13)

C. Backward Parameter

A favorite definition of the marginal one-slice parameter
(smoothed probability) is the product of marginal forward and
backward parameters. We define the marginal backward parame-
ter based on the ratio of the one-slice parameter over the forward
parameter as follows

βξ
t (m) =

αξ
t|T (m)

αξ
t|t−1(m)

= b̃
ξ

m(oξt )
f(ot+1:T |vξt (m), o1:t)

f(ot+1:T |o1:t) . (14)

Backward recursion is derived by summing on the next hidden
states of all channels, using Bayes’ rule and properties of Markov
chains to omit conditioning on ot+1:T given vt+1(n1, . . ., nC)
(see Appendix A) as follows

βξ
t (m) =

1

αξ
t|t−1(m)

M(1)∑
n1=1

. . .

M(C)∑
nC=1

P (vξt (m)|vt+1(n), o1:t)P (vt+1(n)|o1:T ).

(15)

A mixture model approximation will be used to simplify
P (vξt (m)|vt+1(n), o1:t) as follows

P (vξt (m)|vt+1(n), o1:t) ≈
C∑

w=1

d̂
ξ,w

t P (vξt (m)|vwt+1(nw), o1:t).

(16)

Assuming the set {d̂ξ,w

t }Cw=1 is available, and minimizing
an appropriate statistical distance (such as Kullback-Leibler
divergence) between both sides of (16) leads to this set of mixing
weights. Substituting (16) in (15) and changing summations
simplifies backward recursion by the following formulas

βξ
t (m)=

C∑
w=1

d̂
ξ,w

t

M(w)∑
nw=1

P (vξt (m), vwt+1(nw)|o1:t)
αξ
t|t−1(m)αw

t+1|t(nw)
αw
t+1|T (nw)

=
αξ
t|t(m)

αξ
t|t−1(m)

C∑
w=1

d̂
ξ,w

t

×
M(w)∑
nw=1

P (vwt+1(nw)|vξt (m), o1:t)β
w
t+1(nw). (17)

Afterward, the backward parameter is recursively computed
according to the following relation

βξ
t (m) = b̃

ξ

m(oξt )

C∑
w=1

d̂
ξ,w

t

M(w)∑
nw=1

ρξ,wt+1(m,nw)β
w
t+1(nw),

(18)

where, ρξ,wt+1(m,nw) is defined as P (vwt+1(nw)|vξt (m), o1:t).
The influence model, BK algorithm and Markov chains prop-
erties also simplifies computation of ρξ,wt+1(m,nw), and the fol-
lowing formula is achieved

ρξ,wt+1(m,nw)

= θξ,waξ,wm,nw
+

C∑
c=1
c �=ξ

θc,w
M(c)∑
mc=1

ac,wmc,nw
αc
t|t(mc)

= αw
t+1|t(nw) + θξ,w

⎛
⎝aξ,wm,nw

−
M(ξ)∑
mξ=1

aξ,wmξ,nw
αξ
t|t(mξ)

⎞
⎠ .

(19)

An attractive and intuitive interpretation of the above equation
is that if θξ,w is zero, ρξ,wt+1(m,nw) is equal toαw

t+1|t(nw) in (19)
as expected.

To complete the backward recursion in (18), we must compute

the set {d̂ξ,w

t }Cw=1 efficiently while minimizing a suitable dis-
tribution distance criterion. Various studies have used Kullback-
Leibler divergence (KL-divergence) as an appropriate distance
criterion [32]–[34]. So in this study, KL-divergence is chosen as
a preliminary distance measure between probabilities on both
sides of (16), and minimizing KL-divergence leads to the set

{d̂ξ,w

t }Cw=1. Both sides of (16) include conditional probabilities,
so the expected KL-divergence is considered instead of the
KL-divergence [35]–[37]. Expected KL-divergence is a function
of mixing weights, according to [36]

KL(dξ,1t , . . ., dξ,Ct ) =

M(1)∑
n1=1

. . .

M(C)∑
nC=1

P (vt+1(n)|o1:t)

×
(

M(ξ)∑
m=1

P (vξt (m)|vt+1(n), o1:t)

× log
P (vξt (m)|vt+1(n), o1:t)∑C

w=1 d
ξ,w
t P (vξt (m)|vwt+1(nw), o1:t)

)
. (20)

Unfortunately, KL(dξ,1t , . . ., dξ,Ct ) and ∂KL(dξ,1
t ,...,dξ,C

t )

∂dξ,c
t

need O(NC+1) computations, which is time-consuming and
demanding, and the minimization of KL(dξ,1t , . . ., dξ,Ct ) also
needs more computations, and these computations stop the
proposed fast recursive formulation. Consequently, we changed
the KL-divergence with alternative statistical distances to have

a fast solution for {d̂ξ,w

t }Cw=1. Since KL-divergence belongs to
Bregman divergences, we focused on these divergences. Breg-
man divergences include a large number of useful distances such
as Squared Euclidean distance (SED), KL-divergence, squared
Mahalanobis distance, Itakura Saito, and I-divergence [38].
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We achieved a fast and closed-form solution by considering
SED instead of KL-divergence. The procedures of finding this
solution are described in detail on the following. Substituting
KL-divergence by SED in (20), the new distance function is
obtained

SED(dξ,1t , . . ., dξ,Ct ) =

M(1)∑
n1=1

. . .

M(C)∑
nC=1

P (vt+1(n)|o1:t)

×
M(ξ)∑
m=1

(
C∑

w=1

dξ,wt P (vξt (m)|vwt+1(nw), o1:t)

− P (vξt (m)|vt+1(n), o1:t)

)2

. (21)

The computational complexity of SED(dξ,1t , . . ., dξ,Ct )
is O(N2C) due to the marginalization of joint prob-
abilities. Fortunately, the computational complexity of
∂SED(dξ,1

t ,...,dξ,C
t )

∂dξ,c
t

is O(N2) which is more straightforward

than SED(dξ,1t , . . ., dξ,Ct ). So optimum mixing weights are
obtained from the below minimization problem

d̂
ξ,1

t , . . ., d̂
ξ,C

t = argmin
dξ,1
t ,...,dξ,C

t

SED(dξ,1t , . . ., dξ,Ct ). (22)

Partial derivative of the above minimization problem is taken
with respect to dξ,ct as follows

∂SED(dξ,1t , . . ., dξ,Ct )

∂dξ,ct

= 2
C∑

w=1
w �=c

hξ
td

ξ,w
t + 2fξ,c

t dξ,ct − 2fξ,c
t ,

(23)

where, hξ
t and fξ,c

t are defined as

hξ
t =

M(ξ)∑
m=1

(b̃
ξ

m(oξt )α
ξ
t|t−1(m))2

fξ,c
t =

M(c)∑
nc=1

M(ξ)∑
m=1

(ρξ,ct+1(m,nc)b̃
ξ

m(oξt )α
ξ
t|t−1(m))2

αc
t+1|t(nc)

. (24)

So, considering all partial derivatives below linear equation
system is achieved for minimization of (22) in O(N2 C)

Hξ
td

ξ
t = f ξt

Hξ
t (c, w) =

{
fξ,c
t , if c = w

hξ
t , otherwise

f ξt (c) = fξ,c
t . (25)

Optimum mixing weights of the above linear equation system

are achieved easily by d̂
ξ

t = (Hξ
t )
−1f ξt in O(C3 +N2 C), and

overall computation for all channels isO(C4 + (NC)2). Luck-
ily, Hξ

t has a particular structure (be constant at non-diagonal
elements), and the Sherman-Morrison formula can be applied in

the computation of (Hξ
t )
−1. Consequently d̂

ξ

t can be achieved

for all channels in O((NC)2) as follows

d̂
ξ,c

t =
fξ,c
t − gξt

fξ,c
t − hξ

t

gξt =
hξ
t

∑C
c=1

fξ,c
t

fξ,c
t −hξ

t

1 + hξ
t

∑C
c=1

1

fξ,c
t −hξ

t

. (26)

Here, the recursions of proposed forward, backward and one-
slice parameters are completed, and pseudocode of the algorithm
is summarized in Appendix B.

D. Evaluation Problem

Evaluation problem is defined as given an observed sequence
o1:T and the model parameters λ, how do we compute the prob-
ability that the model λ produced the observed sequence [39].
This problem is almost solved using forward and backward
parameters. Because of primary definitions of proposed forward
and backward parameters are similar to [8], the evaluation
problem’s solution will also be achieved in the same way as
[8].

Firstly, joint distribution f(o1:T |λ) is described according to
conditional probabilities using the chain rule as follows

f(o1:T |λ) = f(o1|λ)
T∏

t=2

f(ot|o1:t−1, λ). (27)

Substituting (13) in (27), the following relation is obtained

f(o1:T |λ) =
C∏

c=1

f(oc1|λ)×
T∏

t=2

C∏
c=1

f(oct |o1:t−1, λ). (28)

Consequently, f(oct |o1:t−1, λ) can be calculated using pro-
posed forward parameter according to

f(oct |o1:t−1, λ) =
M(c)∑
nc=1

f(oct , v
c
t (nc)|o1:t−1, λ)

=

M(c)∑
nc=1

bcnc
(oct)α

c
t|t−1(nc). (29)

So, the evaluation problem can be approximately solved in
computational complexity O(T (NC)2) by the proposed algo-
rithm. In the next, this approximate solution will be compared to
the exact solution achieved from the equivalent Cartesian prod-
uct of the LSIM, with a computational complexity ofO(TN 2C).

III. NUMERICAL EXPERIMENTS

In this section, we describe data simulation procedures and
performance criteria to evaluate the proposed framework. We
can compute exact forward, backward, and one-slice parameters
using the equivalent Cartesian product of the LSIM with a
computational complexity of O(TN 2C) [15], [39]. Also, the
evaluation problem can be solved exactly by the same compu-
tational complexity.
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A. Data Simulation

To generate simulated time-series, firstly, model parameters
λ = {π,A,Θ, ω, μ,Σ}must be appropriately initialized. In this
study, random parameter initialization is applied to cover various
scenarios as below.

We consider an LSIM with C channels where each channel
has a random state number between 2 to 6. Initial state probabil-
ities πc = {πc

1, . . ., π
c
M(c)} are drawn from uniform distribution

U(0, 1), and then normalized by dividing to the sum of them.
In the same way, each row of transition matrices ac,ξm,n is also
initialized and normalized. The observation dimension of each
channel also initialized randomly between 1 to 5. Emission
probabilities belong to Gaussian distribution. Distribution on
N (m, 1) initializes elements of mean vector μc

m,k. For simplic-
ity, covariance matrices of emission probabilities are assumed
to be diagonal, and U(1, 5) initializes their elements.

Coupling weights θc,ξ are also initialized similarly to tran-
sition matrices ac,ξm,n. Regarding real datasets, structures of the
coupling matrix are often similar to sparse matrices [21], [27].
So, we consider an additional step for coupling weights to cover
structures more complexity. The coupling weights of randomly
selected channels were multiplied by 0.01, and the coupling
matrix was renormalized again to have a new coupling structure
with channels having a negligible influence on the system.

B. Performance Criteria

Despite approximate or exact inference, marginal forward and
one-slice parameters are discrete distributions. So, statistical dis-
tances are an appropriate criterion to measure deviance between
approximate and exact inferences and determine the quality of
the proposed algorithm. We select Hellinger distance because
it is a normalized distance whose maximum value is one. It
belongs to the f -divergence type of statistical distance [40] and
is defined as (P is the exact distribution)

DH(P‖Q) =
1√
2

√√√√ N∑
n=1

(
√

P (n)−
√

Q(n))2. (30)

C. Multi-Channel Time-Series Classification

Applications of the evaluation problem are often in multi-
channel time-series classification. So, a classification task is
considered to compare results of both exact and proposed ap-
proximate solutions. Assuming there are two sets of parameters
λ1 and λ2 initialized independently. Both models generate their
multi-channel time-series with duration T , and oλ1

1:T and oλ2

1:T

indicate them. Each multi-channel time-series is classified ac-
cording to its log-likelihoods (llλ) condition on both models.
The log-likelihood of observation is the logarithm of its prob-
ability, obtained by evaluation problem. Proposed approximate
and exact solutions are used to compute the log-likelihood of
observation, and if the proposed approximate solution in (28) is
acceptable, then it is expected to have almost equal classification
accuracy for both algorithms.

TABLE I
SPECIFICATION OF DERIVED IEEG FOR SELECTED SUBJECTS

Fig. 1. A multi-channel time-series generated by an LSIM with three channels.

D. Intracranial EEG Modelling

Finally, LSIMs are applied to intracranial EEG (iEEG) using
an existing learning algorithm [21], [27]. Learning algorithm
formulas are based on the marginal forward, backward and
one-slice parameters and reestimate LSIM parameters. iEEG
parameters are learned by both proposed forward and backward
parameters and the SVI algorithm. Then, the log-likelihood
convergence path of both learning algorithms is considered as
the final criterion to indicate the superiority of the proposed
backward definition.

The selected dataset includes iEEG recordings of medial
temporal, lateral frontal, and orbitofrontal regions in 10 human
adults completing 120 trials of a visuospatial working memory
task [41]. Participants were epileptic patients with channels
in frontal and medial temporal lobes. Primary (filtered) and
derived (fully preprocessed) iEEG data and analysis scripts
are described in detail at [42] and are available online (http:
//dx.doi.org/10.6080/K0VX0DQD)

Herein, derived iEEG of all subjects are used, having a dif-
ferent number of channels and recording trials (see Table I). An
FIR bandpass filter extracts the theta band (3-7 Hz) of derived
iEEG (same as [42]), and resulted signals are downsampled to
20 Hz. LSIM parameters of resulted iEEG are learned using an
existing learning algorithm for each subject [27].

IV. RESULTS AND DISCUSSION

In this section, we report Hellinger distances, classification,
and modeling on simulated time-series and real iEEG using
exact, proposed, and other existing algorithms.

In the first simulation scenario, the channels varied from 2 to
6, LSIM parameters were reinitialized 10 000 times to generate a
duration of 20 samples. Fig. 1 shows a simulated multi-channel
time-series from an LSIM.

The Hellinger distances were calculated between exact and
proposed marginal forward (one-slice) parameters for all time
points and channels. So, there are a sufficient number of
Hellinger distances (more than 400 000), and the histogram of
them seems valid to determine their distributions. As can be seen
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Fig. 2. Histogram of Hellinger distances between exact and proposed forward
parameter.

Fig. 3. Histogram of Hellinger distances between exact and approximate one-
slice parameters for the six-channel simulated dataset.

TABLE II
AVERAGE OF THE ONE-SLICE PARAMETER HELLINGER DISTANCES FOR

DIFFERENT ALGORITHMS

in Fig. 2, Hellinger distances have small values, and the proposed
marginal forward parameter seems acceptable. These results also
indicate that the proposed marginal forward parameter error
is not sensitive to the number of channels and hidden state
cardinality.

Hellinger distances were also calculated between exact and
proposed marginal one-slice parameters (SED algorithm) to
evaluate the proposed marginal backward parameter. The pro-
posed marginal one-slice is the same as the definitions of two
existing SVI and CFVI algorithms. So, the Hellinger distances
of these algorithms were also compared with the results of the
SED algorithm. The marginal one-slice parameter has higher
Hellinger distances than the marginal forward parameter due
to the multiplication error of marginal forward and backward
parameters. As shown in Fig. 3 (SED curve), Hellinger dis-
tance criteria increased about 10-times due to multiplication
error. This figure also provides a comparison of SED with SVI
and CFVI. The histogram of SED has higher values around
zero, showing the better performance of SED against SVI and
CFVI. Table II presents average values of Hellinger distances,

TABLE III
PERCENTAGE OF CLASSIFICATION ACCURACY FOR BOTH EXACT (EX) AND

APPROXIMATE (AP) ALGORITHMS

TABLE IV
PERCENTAGE OF CLASSIFICATION ACCURACY OF CO-LABELING BETWEEN THE

EXACT AND APPROXIMATE ALGORITHMS

Fig. 4. Scatter plot of exact and approximate log-likelihoods (C = 3).

confirming that SED has less average Hellinger distance for all
number of channels.

Additionally, exact and approximate log-likelihoods were cal-
culated for each simulated multi-channel time-series to investi-
gate the proposed solution’s accuracy for the evaluation problem.
So, there are 10 000 exact and approximate log-likelihoods for
a specific C considering different structures. The scatter plot
of exact and approximate log-likelihoods (Fig. 4) substantially
matches the identity function (black line), which is also valid for
other C, and correlation coefficients of exact and approximate
log-likelihoods are very close to one in all cases. Thus, the
proposed solution to the evaluation problem looks adequate.

A classification problem considers more details about the
proposed solution, and classifying a multi-channel time-series is
one of the most common areas of application for the evaluation
problem. In a classification problem there are two LSIMs with
λ1 and λ2 parameters, and a multi-channel time-series must be
assigned to one of them. So, two log-likelihoods are computed
conditioned on both LSIMs parameters λ1 and λ2, as noted
by llλ1

and llλ2
. If dλ1,λ2

= llλ1
− llλ2

> 0, then multi-channel
time-series is assigned to modelλ1 and vice versa. We computed
dλ1,λ2

by exact and proposed solution for different values of C
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TABLE V
LOG-LIKELIHOOD VALUES AT ITERATION OF 1000 (d = llSED − llSV I )

Fig. 5. Scatter plot between exact and approximate dλ1,λ2
.

(2 ≤ C ≤ 6) and T (2 ≤ T ≤ 5), where the LSIM parameters
were reinitialized 10 000 times for each C and T .

Table III presents classification accuracies for different values
of C and T . As can be seen, both solutions have almost similar
accuracies in different situations. So, the proposed solution is an
acceptable approximation of the exact solution. Moreover, ac-
curacy was improved by increasing C or T , which is equivalent
to an increase in the given information.

Besides, the co-labeling of both solutions was considered
to verify the proposed solution in more detail. Here, predicted
labels of the exact solution were considered as new true-labels,
and a new accuracy is calculated between these new true-labels
and output labels of the proposed solution. This new accuracy
shows the percentage of communal labels of both solutions. So,
high accuracy values indicate that the proposed solution works
the same as the exact solution. Table IV shows accuracies of
co-labeling in different situations. As seen, increasing sequence
duration (T ) leads to better accuracy, whereas increasing chan-
nels, (C) decrease co-labeling accuracy. However, in general,
the increasing effect of T wins decreasing effect of C, and the
co-labeling accuracy is above 99.7 for T ≥ 5. Fig. 5 depicts
the scatter plots of exact and approximate dλ1,λ2

for C = 6
with duration T = 2 and T = 5. These scatter plots indicate

Fig. 6. Log-likelihood convergence path of SVI and SED-based learning
algorithms for subject 4.

that both exact and approximate dλ1,λ2
get closer to the identity

function by increasing T , then correlation coefficients increase
from 0.997 to 0.999.

Finally, we applied the LSIMs learning algorithm to real
iEEG data with different channels from 14 to 118 based on
both SED and SVI algorithms. The learning algorithm performs
the estimation of LSIM parameters until 1000 iterations for
all subjects. Table V provides a comprehensive performance
comparison of log-likelihood values at the last iteration. As
can be seen, the SED-based algorithm had better log-likelihood
for all subjects. Besides, the log-likelihood convergence path is
plotted in Fig. 6 for subject 4, and subject 3 and subject 8 also
have similar results. These plots show that the SED algorithm
has monotonically increased of log-likelihood while the SVI
algorithm has some decreasing intervals in its convergence path.
Therefore, the SED algorithm not only converges to a model with
higher likelihood but also conserves monotonically increasing
compared to the SVI algorithm.

Authorized licensed use limited to: Carleton University. Downloaded on October 25,2020 at 07:12:26 UTC from IEEE Xplore.  Restrictions apply. 



5744 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

V. CONCLUSION

This study assumes the state space interaction of CHMMs
as the influence model called as LSIMs. A new recursive for-
mulation is proposed to compute marginal forward and back-
ward parameters and the evaluation problem by O(T (NC)2)
instead ofO(TN 2C). This formulation is derived systematically
and constructively step by step using the divide-and-conquer
paradigm. The main improvement of the proposed approximate
inference over existing algorithms comes from the contributions
in the marginal backward parameter’s derivation.

Hellinger distances indicate that the proposed parameters
have smaller distances than existing algorithms of previous
studies. Besides, the histogram of Hellinger distances expressed
that the proposed parameters are very close to exact values.
Results are valid concerning the number of channels and various
model structures.

Furthermore, multi-channel time-series classification is per-
formed by both proposed and exact solutions of the evalua-
tion problem and achieved accuracies are almost equal under
different conditions. Co-labeling is also investigated between
proposed and exact solutions, and co-labeling accuracies in-
dicate that increasing T causes the creation of more similar
output labels between proposed and exact solutions. Modeling
real iEEG data shows that the proposed approximate inference
has monotonically increasing convergence, and it converges to
a higher likelihood model compared to SVI.

LSIMs are new and original models that have an interpretable
and linear wise structure in state-space. For example, coupling
weights indicate relationships and connectivity between chan-
nels. However, this linear structure may degrade the power of
LSIM compared to CHMMs, but it makes LSIMs practical in
multi-channel datasets. We believe that LSIMs could emerge in
various fields if its inference and learning problem are solved
precisely.

The proposed inference algorithm is essential in solving the
evaluation and learning problems. So, it is suggested to conduct
future studies to focus on developing a novel framework to solve
the LSIM learning problem based on proposed tractable forward
and backward parameters. If the learning problem is solved
accurately, and proof of convergence is presented like the HMM
learning problem, this framework can be applied to various real
datasets in different areas.

APPENDIX A
CONDITIONAL INDEPENDENCE OF FUTURE OBSERVATIONS

GIVEN NEXT HIDDEN STATES

An underlying property of Markov chains is that given present
hidden state, present and future observations are independent of
past. Considering this property, we prove that the probability
of current hidden state of channel ξ is independent of future
observations given next hidden states of all channels. Using
Bayes’ rule, this probability is rewritten as follows

P (vξt (m)|vt+1(n), o1:t, ot+1:T )

=
f(ot+1:T |vt+1(n), o1:t, v

ξ
t (m))

f(ot+1:T |vt+1(n), o1:t)

× P (vξt (m)|vt+1(n), o1:t). (31)

Using Markov property, the numerator of (31) is simplified
as follows

f(ot+1:T |vt+1(n), o1:t, v
ξ
t (m)) = f(ot+1:T |vt+1(n)). (32)

In the same way, the denominator of (31) is also reduced to

f(ot+1:T |vt+1(n), o1:t) = f(ot+1:T |vt+1(n)). (33)

Substituting (32) and (33) in (31), the proof is completed as
follows

P (vξt (m)|vt+1(n), o1:t, ot+1:T ) = P (vξt (m)|vt+1(n), o1:t).
(34)

APPENDIX B
PROPOSED FORWARD-BACKWARD ALGORITHM

The approximate forward and backward parameters are
computed based on the following recursive procedures in
Algorithm 1.

Algorithm 1: Forward-Backward Algorithm.
Require: λ = {π,A,Θ, ω, μ,Σ}, o1:T
�The forward recursion
t← 1
for ξ = 1 : C do

for m = 1 : M(ξ) do
αξ
t|t−1(m) = πξ

m

end for
for m = 1 : M(ξ) do

b̃
ξ

m(oξt ) =
b
ξ
m(o

ξ
t
)∑M(ξ)

nξ=1
bcnξ

(o
ξ
t
)α

ξ

t|t−1(nξ)

end for
end for
for t = 2 : T do

for ξ = 1 : C do
for m = 1 : M(ξ) do
αξ
t|t−1(m) =

∑C
c=1 θ

c,ξ
∑M(c)

nc=1 a
c,ξ
m,nc

αc
t−1|t−2(nc)b̃

c

nc
(oct−1)

end for
for m = 1 : M(ξ) do

b̃
ξ

m(oξt ) =
b
ξ
m(o

ξ
t
)∑M(ξ)

nξ=1
b
ξ
nξ

(o
ξ
t
)α

ξ

t|t−1(nξ)

end for
end for
for ξ, w = {1 : C} × {1 : C} do

for m,nw = {1 : M(ξ)} × {1 : M(w)} do
ρξ,wt (m,nw) = αw

t|t−1(nw) + θξ,w(aξ,w
m,nw

−
∑M(ξ)

mξ=1 a
ξ,w
mξ,nw

αξ
t−1|t−2(mξ)b̃

ξ

m(oξt−1))
end for

fξ,w
t =

∑M(w)
nw=1

∑M(ξ)
m=1

(ρ
ξ,w
t+1

(m,nc)b̃
ξ
m(o

ξ
t
)α

ξ

t|t−1(m))2

αw
t+1|t(nw)

hξ
t =

∑M(ξ)
m=1 (b̃

ξ

m(oξt )α
ξ
t|t−1(m))2

end for
end for
�The backward recursion
t← T
for ξ = 1 : C do

for m = 1 : Nξ do

βξ
t (m) = b̃

ξ

m(oξt )

αξ
t|T (m) = αξ

t|t−1(m)βξ
t (m)

end for
end for
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for t = T − 1 : −1 : 1 do
for ξ = 1 : C do

d̂
ξ,c

t =
f
ξ,c
t
−gξ

t

f
ξ,c
t
−hξ

t

, gξt =
h
ξ
t

∑C

c=1

f
ξ,c
t

f
ξ,c
t

−hξ
t

1+h
ξ
t

∑C

c=1
1

f
ξ,c
t

−hξ
t

for m = 1 : M(ξ) do

βξ
t (m) = b̃

ξ

m(oξt )
∑C

w=1 d̂
ξ,w

t

∑M(w)
nw=1 ρ

ξ,w
t+1(m,nw)β

w
t+1(nw)

αξ
t|T (m) = αξ

t|t−1(m)βξ
t (m)

βξ
t (m) =

β
ξ
t
(m)∑M(ξ)

nξ=1
α
ξ

t|T (nξ)
, αξ

t|T (m) =
α
ξ

t|T (m)∑M(ξ)

nξ=1
α
ξ

t|T (nξ)

end for
end for

end for
return αξ

t|t−1(m), βξ
t (m), αξ

t|T (m)
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