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A B S T R A C T

absectionBackground Three types of sources can be considered in the analysis of multi-subject datasets: (i) joint
sources which are common among all subjects, (ii) partially-joint sources which are common only among a
subset of subjects, and (iii) individual sources which belong to each subject and represent the specific conditions
of that subject. Extracting spatial and temporal joint, partially-joint, and individual sources of multi-subject
datasets is of significant importance to analyze common and cross information of multiple subjects.
New method: We present a new framework to extract these three types of spatial and temporal sources in multi-
subject functional magnetic resonance imaging (fMRI) datasets. In this framework, temporal and spatial in-
dependent component analysis are utilized, and a weighted sum of higher-order cumulants is maximized.
Results: We evaluate the presented algorithm by analyzing simulated data and one real multi-subject fMRI da-
taset. Our results on the real dataset are consistent with the existing meta-analysis studies. We show that spatial
and temporal jointness of extracted joint and partially-joint sources in the theory of mind regions of brain
increase with the age of subjects.
Comparison with existing method: In Richardson et al. (2018), predefined regions of interest (ROI) have been used
to analyze the real dataset, whereas our unified algorithm simultaneously extracts activated and uncorrelated
ROIs, and determines their spatial and temporal jointness without additional computations.
Conclusions: Extracting temporal and spatial joint and partially-joint sources in a unified algorithm improves the
accuracy of joint analysis of the multi-subject fMRI dataset.

1. Introduction

Blind source separation techniques extract a set of maximally in-
dependent “components” from their linear mixtures. These techniques
have been successfully used in analyzing brain imaging data, especially
functional magnetic resonance imaging (fMRI) data (Calhoun and
Adali, 2006). For example, blind source separation techniques have
been exploited to investigate functional connectivity (Beckmann et al.,
2005), identify temporally coherent networks (Calhoun et al., 2008),
analyze visual perception (Calhoun et al., 2001a), cinema viewing task
(Pamilo et al., 2012), and remove artifact (Du et al., 2016).

Independent component analysis (ICA) (Comon and Jutten, 2010) is
one of these techniques in which the maximal independence can be
achieved in space (voxels in fMRI data) and time (blood oxygen level
dependent signal), and accordingly two types of ICA applications in
fMRI datasets are obtained: spatial ICA and temporal ICA (Calhoun
et al., 2001c). For the first time in McKeown et al. (1998), spatial ICA
has been used on fMRI data to decompose it into spatially independent

components to distinguish between non-task-related signal compo-
nents, movements, and other artifacts. This spatial decomposition can
be utilized in the localization paradigm of classical neuroscience and
has widely received much attention in the fMRI community. This is
because typical fMRI data has many more voxels than time points and
can better estimate higher-order statistics or non-Gaussianity across the
spatial domain. Especially, the benefits of spatial ICA are further pro-
nounced if individual component maps are largely non-overlapping
(Calhoun et al., 2001c), and it extracts spatial pattern with high accu-
racy for typical cognitive activation paradigms because of the sparse
distributed nature of sources (McKeown et al., 1998).

In the temporal approach, BOLD signals can be considered in some
seeds in the brain. The seed can be a collection of voxels that are
functionally correlated based on prior fMRI studies and its time-course
can be the average of the time-courses from those voxels. This seed
selection method is simple because it pinpoints directly the voxel re-
gions, but it requires prior knowledge of seeds whose representative-
ness is not always reliable (Sohn et al., 2015). Note that there are other
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methods available for seed selection. One approach is to use data-driven
analysis such as spatial ICA (Cole et al., 2010; Wu et al., 2018) to assign
each seed to one spatial source. However, the problem of applying se-
parate spatial ICA decompositions for each subject is that the corre-
spondence between estimated spatial components across subjects must
be identified. In order to avoid this problem, one solution is to use
group analysis to extract spatial sources that are joint across all subjects
(Calhoun et al., 2001b; Hotelling, 1936; Adali et al., 2014).

Recently, in Lock et al. (2013), Zhou et al. (2016), and Pakravan and
Shamsollahi (2018) multi-subject brain datasets have been analyzed by
extracting two types of hidden spatial sources (joint and individual
sources). In Lock et al. (2013), the joint and individual variation ex-
plained method has been proposed to extract both joint and individual
sources. This method is an extension of principal component analysis
and extracts common variations between datasets. In Zhou et al.
(2016), common orthogonal basis extraction and common nonnegative
feature extraction algorithms have been proposed which are matrix
factorization problems. It is worth mentioning that common orthogonal
basis extraction and common nonnegative features extraction algo-
rithms have a direct connection to group principal component analysis
and group ICA and are generally combined with a blind source se-
paration method (Zhou et al., 2016). In Pakravan and Shamsollahi
(2018), joint/individual Thin ICA algorithm has been used, which is
inspired by the thin ICA algorithm (Cruces and Cichocki, 2003). In
Pakravan and Bagher Shamsollahi (2019), higher order cummulants
have been used to extract joint, partially-joint, and individual sources of
fMRI datasets. To the best of our knowledge, so far no study has ana-
lyzed both temporal and spacial joint, partially-joint, and individual
sources of multi-subject datasets.

In this study, we use a joint blind source separation algorithm using
temporal ICA and spatial ICA approaches. We consider three types of
spatial and temporal sources: joint (common across all of the datasets),
partially-joint (common in a subset of datasets), and individual (specific
for each dataset) sources. This source model is referred to as joint/
partially-joint/individual multi-dataset multidimensional (JpJI-MDM).
In the spatial ICA approach, after extracting spatial sources (significant
clusters of voxels) that are joint or partially joint, we select some seeds
in these clusters to analysis blood oxygen level dependent (BOLD)
signals of fMRI data with the temporal ICA approach and extract tem-
poral joint sources. We also introduce two new features for each ex-
tracted source, referred to as temporal and spatial joint/partially-joint/
individual features (JpJI-F), which represent the shape of that source (in
terms of higher-order cumulants) and the amount of its jointness.

The algorithm is used to analyze simulated and real fMRI datasets.
The results of our analysis on both simulated and real fMRI data de-
monstrate the benefits of the algorithm as either a complementary or
alternative method for the inference of fMRI group data. Furthermore,
this algorithm can provide a useful interpretation of multi-subject fMRI
data and help to deal with more complex and realistic source models.

The structure of the paper is as follows. Section 2 is devoted to
present the method including source model, source extraction method,
source type determination, and the spatial and temporal approaches. In
Section 3, simulated and real fMRI data are analyzed and the numerical
results are reported. Finally, in Sections 4 and 5, the results of our paper
are discussed and conclusion remarks are presented, respectively.

2. Method

2.1. Source model

In the JpJI-MDM model, a multi-subject dataset is considered with K
subjects, where kth subject has C k

1
( ), C k

2
( ), and C k

3
( ) joint, partially-joint,

and individual sources, respectively. Without loss of generality we as-
sume that all subjects have the same number of joint, partially-joint,
and individual sources, i.e., =C Ck

1
( )

1, =C Ck
2
( )

2, and =C Ck
3
( )

3. Let C
denote the total number of sources for each subject, then we have

C= C1 + C2 + C3.
We define c k, as a subset of subjects which their cth source is joint

with the cth source of the kth subject (y c
k( )), and n c k, is the number of

subjects in c k, . Therefore, according to the JpJI-MDM model, if y c
k( ) is

joint, then K− 1 sources exist in other datasets that are similar to y c
k( )

( =n K 1c k, ). On the other hand, for partially-joint and individual
sources we have <n K 1c k, and =n 0c k, , respectively.

It is worth mentioning that we can use the JpJI-MDM model in
clustering schemes by using the extracted partially-joint sources. This is
due to the property of the algorithm which can align joint sources
across datasets, as a result, there is no permutation indeterminacy
across datasets (i.e., joint sources have similar source index in all re-
lated datasets).

2.2. Source extraction method

Let ×X k N W( ) represent the observation signal of kth dataset,
then the mixing matrix ( ×A k N C( ) ) and source matrix ( ×S k C W( ) )
are related to observation matrix as follows

= = …X A S k K, 1, , .k k k( ) ( ) ( ) (1)

where W is the length of each source, N is the number of observation's
vectors, and C is the number of source's vectors. Here, we assume that
the vectors of S(k) are mutually independent with unit variance and zero
mean. The mixing matrices A(k) ; k= 1, …, K are also full-column rank.

In the first step, we generate the preprocessed observations matrices
(Z(k)) as follows (Comon and Jutten, 2010)

1. Dimension reduction with applying the principle component ana-
lysis.

2. Employing a pre-whitening system ( =W Rw
k

X
( ) 1/2k( ) ), where R X k( ) is

the covariance matrix of X(k).

In the algorithm, two approaches can be used in analyzing multi-
subject fMRI datasets, referred to as JpJI spatial ICA (JpJI-sICA) and
JpJI temporal ICA (JpJI-tICA). These approaches use a cost function
based on higher-order cumulants and deflation framework (Comon and
Jutten, 2010).

The following metric is applied to extract the cth source of kth da-
taset as follows
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where η = 2, 3, 4. Let = … K k{1, , }/ . In (2), kis for i= 1, …, η − 1
denote η − 1 subjects that are selected randomly from . We also as-
sume K > η − 1. In addition, the operator |. |2 denotes the squared
norm, αη > 0 is the weight of the ηth order cumulant,

=y w Z wu( ) ( )c
k

c
k k( ) ( ) ( ) for = …w W1, , represents the estimated source,

in which uc
k( ) denotes the cth raw of the estimated inverse of mixing

matrix, and ×Z w( )k C( ) 1 represents the wth vector of preprocessed
observation signal.

In this study, only second, third, and fourth-order cumulants are
used. In Eq. (2), the cross cumulant of datasets whose cth source is not
joint or partially-joint is zero (or very low), because the cross-cumulant
of statistically independent random variables is zero. Thus, in Eq. (2),
only subjects that are members of c k, , are important, and we have
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Clearly, if c k, has no member, it means that the cth source is an in-
dividual source in kth dataset, and the cost function is zero. In this case,
we set = k{ }, and use (2) to extract individual sources. In fact, the
cost function for individual sources converts to the thin ICA cost
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function (Cruces and Cichocki, 2003), which is given by

= …y w y w y w y w( ( )) |cum[ ( ), ( ), , ( )]| .c
k

c
k

c
k

c
k( ) ( ) ( ) ( ) 2

(4)

It is worth mentioning that in order to extract desired sources and to
align joint sources across subjects, it is not necessary to determine c k,
for each cth source in kth subject, because the algorithm automatically
converts the cost function from Eq. (2) to Eq. (3).

Hereafter, y w( ( ))c
k( ) for = … K k{1, , }/ is referred to as JpJI-F. It

is straightforward to proof that the JpJI-F of the cth source vector (y c
k( ))

has a linear relation with n c k, and if y c
k( ) is joint, then its JpJI-F is

bigger than when it is partially-joint.
Thanks to the cost function in Eq. (2), the permutation in-

determinacy across datasets is resolved, and dependent sources are
automatically grouped across datasets. Furthermore, in this method,
parameters C1, C2 and C3 are not necessary to be known for each da-
taset, because the algorithm automatically determines the type of each
source.

It is simple to show that one can use the local maximum of Eq. (2) to
extract one of the independent sources (similar to Theorem 1 in
Pakravan and Shamsollahi (2018)). This algorithm maximizes the cost
function with respect to the first source in the cum[.] function (i.e., its
first input argument) by assuming that other sources are fixed (even in
cases that the first source is repeated in the other input arguments of the
cum[.] function). In addition, the optimization is performed with re-
spect to uc

k( ) and accordingly the desired source, y w*( )c
k( ) , is estimated

(i.e., =y w Z wu*( ) * ( )c
k c

k k( ) ( ) ( ) ). Thus, the optimization problem is
= y wu argmax ( ( ))c

k
c

k

u
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c
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. For simplicity, we rewrite the cost function

as follows
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In (6) and (7), we observe that Mw
( ) is independent of uc

k( ), thus, the
maximum of y w( ( ))c

k( ) can be obtained by determining the corre-
sponding eigenvector of the dominant eigenvalue of ×Mw

C C( ) ,
where the optimum value of uc

k( ) is the corresponding eigenvector
which can be determined by using one or more iterations of any stan-
dard methods of finding eigenvalues, e.g., subspace iteration method
(SIM) (Saad, 2011).

It should be noted that for individual sources ( = k{ }), Mw
( ) is

given by C C( )( ( ))w
k

w
k H( ) ( ) where Cw

k( )

= …Z w y w y w( ) cum[ ( ), ( ), , ( )]k
c

k
c

k( ) ( ) ( ) .

2.3. Source type determination

We use JpJI-F to determine the type of extracted latent sources. As
mentioned, the JpJI-F is a metric for the shape of each source and the
amount of its jointness with other sources in other subjects. Since the
JpJI-F of joint or partially-joint sources is high, if this metric is greater
than the threshold σ0, it means that the corresponding source is joint or
partially-joint. On the other hand, the JpJI-F of individual sources is
less than the threshold σ0. The parameter σ0 is a given threshold.

Furthermore, we use the shape of sources to discriminate joint and
partially-joint sources. If the minimum of the cross-correlation of ex-
tracted sources in all datasets is higher than σsimilarity= 0.98 that
sources are joint, otherwise they are partially-joint sources. In ana-
lyzing real dataset, we apply one-sided t-test or two-sided t-test to find
significant clusters in the predefined groups of datasets. If significant
clusters can be found, it means that the sources are partially-joint.

2.4. Spatial and temporal approaches

Let V and Nb denote the number of voxels in an fMRI image and the
number of time samples in an observed BOLD signal, respectively. The
number of independent components (C), for spatial ICA and temporal
ICA approaches are Nsica and Ntica, respectively, and K is the number of
subjects.

Fig. 1. The joint/partially-joint/individual spatial and temporal independent component analysis (JpJI-sICA and JpJI-tICA). (a)multi-subject fMRI data, (b) di-
mensions in JpJI-sICA approach, (c) output of JpJI-sICA approach including spatial joint, partially-joint, and individual sources with their spatial JpJI-F, (d)
important seeds extracted from JpJI-sICA approach with their time-courses, (e) dimensions in JpJI-tICA approach, (c) output of JpJI-tICA approach including
temporal joint, partially-joint, and individual sources with their temporal JpJI-F.
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In JpJI-sICA, datasets are subjects (K=Nsub) and the vectorized
versions of fMRI source images (or volumes) are processed (W= V).
Observations and source matrices have ×N V[ ]b and ×N V[ ]sica di-
mensions, respectively. Hereafter, the JpJI-F of this approach is referred
to as spatial JpJI-F.

In JpJI-tICA, to reduce complexity, BOLD signals are processed
(W=Nb) in predefined seeds in some brain regions of interest (ROIs).
In this study, we use the results of JpJI-sICA algorithm to find important
ROIs (joint or partially-joint) and determine the time-course of each
ROI's seed as the average of the time-course of all voxels within that
ROI. In this approach, datasets are seeds (K=Nseed). The observations
are made by concatenating each seed's time-course of all subjects in a
matrix. Therefore, observation and source matrix have ×N N[ ]bsub and

×N N[ ]btica dimensions, respectively. We assume that the number of
subjects is greater than Ntica. We refer to JpJI-F of this approach as
temporal JpJI-F.

Fig. 1 schematically illustrates the algorithm, where in Fig. 1(a)
multi-subject fMRI data are shown. In JpJI-sICA approach, we set K to
be the number of subjects (Fig. 1(b)), and it extracts joint spatial
sources and computes spatial JpJI-F (Fig. 1(c)). The outputs of this
approach are ROIs that are joint across all or a subset of subjects.

On the other hand, in JpJI-tICA approach (Fig. 1(e)) we set K to be
the number of seeds that are extracted by JpJI-sICA (Fig. 1(d)), and it
extracts joint temporal sources in all or a subset of seeds and computes
temporal JpJI-F (Fig. 1(f)).

3. Numerical results

3.1. Simulated fMRI dataset

The SimTB toolbox1 Erhardt et al. (2012) is applied to synthesize
multi-subject fMRI datasets in order to evaluate the JpJI-sICA algorithm
(the results for JpJI-tICA are similar to JpJI-sICA). In Fig. 2(a) and (b),
an example of multi-subject fMRI datasets with JpJI-MDM source model
in spatial and temporal approaches are shown. In spatial approach,
sources are uncorrelated activated brain regions with C1 = 2, C2 = 2,
C3 = 1, W= 64 × 64 and K= number of subjects = 10 (Fig. 2(a)). In
temporal approach, sources are uncorrelated time-courses with C1 = 1,
C2 = 2, C3 = 0, W= 150, and K= number of seeds = 16 (fig. 2(b)). In
both approaches, there are two clusters of subjects with the same par-
tially-joint sources.

In this study, we set [α2, α3, α4] = [0.5, 0.75, 1]. Note that in
Pakravan and Shamsollahi (2018), different weights settings have been
tested, and it has been shown that different values for α can slightly
affect the performance of the extraction algorithm. Here, we set these
weights based on the results of Pakravan and Shamsollahi (2018). In
order to estimate C, we employ Bayesian information criterion
(Schwarz et al., 1978).

We have designed two experiments to evaluate the performance of
JpJI-sICA algorithm. In the first and second experiment, we assume that

Fig. 2. An example for 2-class JpJI-MDM source model
for simulated fMRI data (a) in spatial approach with
C1 = 2, C2 = 2, C3 = 1, W= 64 × 64, and
K= number of subjects = 10, (b) in temporal ap-
proach with C1 = 1, C2 = 2, C3 = 0, W= 150, and
K= number of seeds = 16. In partially-joint sources in
both spatial and temporal approach, there are two
clusters of datasets that have similar joint sources.

Fig. 3. Performance of JpJI-sICA algorithm versus σsimilarity (K= 16,
C1 = C2 = C3 = 1) in terms of its accuracy to estimate the number of joint and
partially-joint sources.

1 This toolbox is available at http://mialab.mrn.org/software/simtb/ (ac-
cessed: 20.02.18).
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there are only two (referred to as 2-class clustering) and three (referred
to as 3-class clustering) sets of subjects which have similar partially-
joint sources, respectively. We have used two evaluation metrics, (1)
computing correlation between the real and estimated sources (jSIR) in
dB and (2) determining the correct type of each source, accuracy (C1

and C2), in percent.
The accuracy of estimating the number of joint and partially-joint

sources are shown in Fig. 3 versus σsimilarity ( =K 10,
= = = = …C C C k K1, 1, 1, ,k

1 2 3
( ) ). As it can be seen for very low va-

lues of σsimilarity (σsimilarity≤ 0.1), the algorithm determines sources
randomly as joint or partially-joint. On the other hand, the algorithm
determines that all sources are individual for very high values of
σsimilarity (104 ≤ σsimilarity). Therefore the accuracy of estimating C1 and
C2 is zero (Acc(C1, C2) = 0). For 0.5 < σsimilarity < 100, the rules in
determining the type of sources always work correctly and we have Acc
(C1, C2) = 100.

Fig. 4(a) and (b) represent jSIR and accuracy (C1 and C2) for 2-class
and 3-class clustering experiments versus different number of subjects.
The results are obtained from 100 Monte Carlo runs in which C1 and C2

are selected randomly to simulate source data (C3 = 0). As it can be
seen the algorithm can extracts spatial sources with mean jSIR of 27 dB
and 25 dB, and its accuracy to determine the type of each source is 95%
and 100% for 2-class and 3-class clustering scenarios, respectively.

We also investigate the performance of JpJI-sICA for noisy ob-
servations. Note that a white Gaussian noise is added to the observa-
tions for noisy observations. Fig. 4(c) and (d) represent jSIR and ac-
curacy (C1 and C2) for 2-class and 3-class clustering experiments versus
different input signal to noise ratios (SNR) in dB. As it can be seen the
increase of SNR improves the accuracy (C1 and C2) (Fig. 4(c)) and mean
jSIR (Fig. 4(d)).

3.2. Real fMRI dataset

In this section, we analyze the social brain dataset (Richardson
et al., 2018), which investigates the development of brain regions that
are involved in thinking about the bodies of others such as pain (Pain
matrix) and minds of others such as beliefs and emotions (theory of
mind). Two main findings are reported in Richardson et al. (2018): (i)

Theory of Mind and pain matrix are functionally distinct by age 3 years
old, and (ii) functional specialization in these networks increases
throughout childhood. Note that this data was obtained from the
Openneuro data repository (Gorgolewski et al., 2017). Its accession
number is ds000228.2

fMRI stimuli: A large sample of children (n= 122, 3–12 years) and
adults (n= 33) watched a 5.6-min animated movie (Reher, 2009) (a
silent version of “Partly Cloudy” movie) during fMRI scanning.

fMRI data acquisition: Structural and functional MRI data of
whole-brain have been recorded on a 3-Tesla scanner (Siemens Tim
Trio) at the Athinoula A. Martinos Imaging Center at MIT. For func-
tional scans, images were collected with Echo-Planar Imaging factor of
64, Repetition Time of 2000 ms, Echo Time of 30 ms, and flip angle of
90°. Furthermore, T1-weighted structural images have been recorded in
176 interleaved sagittal slices with isotropic voxels of 1 mm, where
Field-of-View of the adult coil and kid coils were 256 mm2 and
192 mm2, respectively.

fMRI data analysis: fMRI data have been preprocessed based on
the following steps: registering functional images to the first image of
the run; registering that image to each participant's anatomical image,
normalizing each participant's anatomical image to the Montreal
Neurological Institute template, smoothing all data using a Gaussian
filter (5 mm kernel) Richardson et al. (2018), and denoising BOLD
signals with identifying artifact time points using the ART toolbox
(Whitfield-Gabrieli et al., 2011). Note that the first five image volumes
were removed to avoid T1 equilibration effects.

In Richardson et al. (2018), the authors have used the regain of
interests (ROIs) of theory of mind and pain matrix group which have
been obtained in Julian et al. (2012). The brain regions of theory of
mind include dorso-, middle-, and ventromedial prefrontal cortex, bi-
lateral temporoparietal junction, and precuneus. Furthermore, the
brain regions of the pain matrix include dorsal anterior middle cingu-
late cortex, insula, and secondary sensory cortex, and bilateral medial
frontal gyrus. Time-courses from all voxels within an ROI were

Fig. 4. Performance of the JpJI-sICA algorithm for 2-class and 3-class clustering versus (a,b) the number of subjects and (c,d) SNR of observations in dB in terms of
(a,c) its mean jSIR in dB and (b,d) accuracy to estimate the number of sources (joint and partially-joint).

2 This dataset is available at: https://openneuro.org/datasets/ds000228/
versions/00001 (accessed: 02.08.18) with https://doi.org/10.5072/
FK2V69GD88.
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averaged to have one time-course per group ROI. The within-network
theory of mind (pain matrix) correlations were the average correlation
of each theory of mind (pain matrix) ROI with all other ToM (Pain)
ROIs, and the across-network correlations were the average correlation
of each theory of mind ROI with each pain matrix ROI.

Results: In Richardson et al. (2018), the authors showed that adults
in comparison of children have greater within-network correlations
between ToM and pain networks. Furthermore, they concluded that
after the age of 3 years the ToM and pain matrix brain regions can be
considered as specialized and distinct networks because of low across-
network correlations. The authors have further investigated the BOLD
time-courses and movie frames to indicate which brain regions are re-
lated to the pain matrix or ToM network.

In this study, we have performed additional fMRI preprocessing
steps for each subject by using the AFNI (Analysis of Functional Neuro-
Images) toolbox (Cox, 1996). The following fMRI preprocessing steps
are applied: (i) slice-timing is corrected by applying heptic interpola-
tion (3dTshift function), (ii) BOLD signals are filtered and spikes are
removed (3dBandpass function with fbot = 0.009), and (iii) fMRI
images are smoothed by using a Gaussian filter with 6 mm kernel
(3dmerge function).

We have applied the JpJI-sICA algorithm on the preprocessed fMRI
data of 155 subjects to extract 5 independent components (K= 155 and
C= 5). In this approach, we set the number of time points in BOLD
signals to the number of observation mixtures (N= 168) and the
number of voxels as the length of latent source (W= 79 × 95 × 68). It

Fig. 5. (a) Spatial distribution of significant joint sources (p < 0.05 FDR corrected) of 155 subjects extracted by using the JpJI-sICA algorithm, (b) spatial JpJI-F for
each extracted spatial source and different groups of subjects, and (c) map of significant clusters in source 1,2,3 and 4 (d) temporal JpJI-F of extracted temporal
sources for each ROI and each group of subjects.
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is worth mentioning that we have checked different numbers for
components, but for numbers bigger than 5, the sources had no extra
and useful information. Furthermore, the fifth extracted sources of all
subjects are individual sources with low JpJI-F (less than 1). Fig. 5(a)
show the mean spatial distribution of the first four significant extracted
spatial independent components (FDR corrected p-value of p < 0.05).

We have arranged subjects in three groups based on their age: less
than 7 years old (Nsub= 88), 8 to 12 years old (Nsub= 34), and adults
(Nsub= 33). As mentioned, one of the main advantages of the algorithm
is automatic grouping of the extracted sources across subjects by uti-
lizing a measure during the optimization process. This measure for each
c and k is based on the shape of extracted sources (represented by cu-
mulants) and n c k, . Fig. 5(b) shows the mean spatial JpJI-F of each
group of subjects for each extracted source. As shown, we have re-
gressed a line on the mean spatial JpJI-F of all sources. For sources 1, 2,
3 and 4, the slope of the best fitted line is 45.8 (y= 45.8x+ 175.4),
26.4 (y= 26.4x+ 70), 27.6 (y= 27.6x+ 96), and 7.3
(y= 7.3x+ 3.6), respectively. Here x is the index of subject groups and
y is the JpJI-F. This means that the spatial JpJI-F of subjects increases
throughout childhood.

Fig. 5(c) represents the map of significant clusters in the extracted
spatial sources with this null hypothesis that for each voxel, the mean of
source values in adults is equal to or less than the mean of source values
in subjects with age less than 12 (p < 0.05 FDR corrected). As can be
seen, in each extracted sources, some clusters are significantly higher in
adults. Therefore, we can conclude that all four extracted sources are
partially-joint sources; C1 = 0, C2 = 4 and C3 = 1. It should be noted
that in all 4 extracted sources and all subjects, the spatial JpJI-F is
bigger than 1. The significant clusters extracted in each map are
numbered in Fig. 5(c), and the number, size, center of mass (CM) as its
seed in RAI order, name in TLRC space, and function are listed in
Table 1. These results are obtained by using “whereami” and “clus-
terize” functions in the AFNI software.

The results show that Precuneus, right Middle Temporal Gyrus,
right Middle Frontal Gyrus, left/right Inferior Parietal Lobule, left
Precentral Gyrus, left/right Middle Occipital Gyrus, left/right Lingual
Gyrus and right Postcentral Gyrus have higher activity in Adults. The
extracted brain regions are consistent with Julian et al. (2012), Saxe
and Kanwisher (2003), where in the original study (Richardson et al.,
2018), predefined ROIs from Julian et al. (2012) have been used.
However, the algorithm can extract activated and uncorrelated ROIs
which their spatial JpJI-F increases with the age of subjects.

We have also applied three separate JpJI-tICA algorithms for each
group of subjects. We assume 16 seeds (Fig. 5(d)) as datasets (K= 16),
and set C= 5. It is worth mentioning that we have checked different
numbers for temporal components (C), and the results for low values
were similar because we wanted to extract only powerful joint temporal
sources to measure the global jointness between ROIs. To compute the
time-course of each seed, we have applied the “3dmaskave” function in
AFNI toolbox. We have concatenated the seed's time-course of all sub-
jects in a matrix as the observation matrix (W= 168).

In Fig. 5(d), the temporal JpJI-F for each ROI and each group of
subjects are presented. Note that all of the slopes of fitted lines are
between 650 and 1300. Temporal JpJI-F represents the amounts of
extracted temporal sources in each group of subjects and Fig. 5(d)
shows that this feature is greater in adults, which is consistent with
Richardson et al. (2018). It is worth mentioning that since the timing
information of stimuli was not available (due to the complexity of sti-
muli), we could not analyze the extracted joint temporal sources to find
their relation with stimuli.

The results extracted from both JpJI-sICA and JpJI-tICA algorithms
show that joint features (spatial JpJI-F and temporal JpJI-F) are greater
in adults and this means that synchronicity in spatial and temporal
components increases with the age of subjects Richardson et al. (2018).

It should be noted that the results in the real fMRI dataset show that
individual sources are probably kind of noise. Thus, the JpJI-sICATa
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algorithm can identify nuisance effects of datasets as individual sources
which can be removed to improve the quality of data.

4. Discussion

In this study, we use JpJI-s/tICA algorithm to analyze multi-subject
fMRI data with JpJI-MDM source model using higher-order cumulants.
The algorithm differs from existing data fusion methodologies in that it
does not assume only joint sources across subjects. Instead, it assumes
JpJI-MDM source model including joint, partially-joint, and individual
sources. Furthermore, we introduced spatial and temporal JpJI-F which
represents (i) the shape of the extracted source in terms of higher-order
cumulants; and (ii) the amount of jointness of that source with other
sources in other datasets.

The algorithm has been evaluated by analyzing the simulated and
real fMRI dataset. In the simulation study, we showed that the spatial
approach of the algorithm can extract spatial sources of simulated fMRI
data with mean jSIR of 27 dB and 25 dB, and determines the type of
each source with accuracy of 95% and 100% for 2-class and 3-class
clustering scenarios, respectively. We also showed that the increase of
SNR improves the accuracy of estimating the correct number of joint
and partially-joint sources and their mean jSIR.

Furthermore, we analyzed the social brain fMRI dataset Richardson
et al. (2018) to extract its spatial and temporal joint, partially-join, and
individual sources. This dataset investigates the development of brain
regions that are involved in reasoning about others’ minds and bodies
(theory of mind and pain matrix), in a large sample of children between
the ages of 3–7 years old (88 subjects), 8–12 years old (34 subjects), and
adults (33 subjects). Subjects watched a movie in which the mental
states and physical sensations of the characters are evoked during some
events. Analysis of Richardson et al. (2018) showed that the theory of
mind and pain matrix are functionally distinct by age 3 years old. It is
worth mentioning that the important human ability in social cognition
is to reason about other people, specifically, in prediction and inter-
pretation of the behavior of people based on an understanding of their
minds which is referred to as “theory of mind” (Saxe and Kanwisher,
2003).

In the original study (Richardson et al., 2018), the predefined region
of interests (ROIs) have been used to analyze the dataset, whereas the
applied unified algorithm in this study simultaneously extracted acti-
vated and uncorrelated ROIs which are the spatial joint and partially-
joint sources. The extracted ROIs were involved in reasoning about the
contents of other people's minds. The algorithm also determineed their
spatial JpJI-F without additional computations. Using extracted spatial
sources, some seeds were selected and their temporal JpJI-F were
computed. After extracting the spatial sources as ROIs, we used spatial
JpJI-F to determine the type of those ROIs (joint, partially-joint, or
individual). If the JpJI-F of a source in different groups of subjects is
significantly different, it means that the source is a partially-joint
source. In the next step, two-sided t-test with FDR corrected p-value of
p < 0.05 was applied on the activated voxels in partially-joint sources
to find significant clusters among the groups of subjects. We expected
that only in partially-joint sources, significant clusters can be found.

Based on the results obtained from real fMRI data, we observed
several partially-joint sources. In the “social brain dataset” we had
K= 155 and C= 5 in spatial approach. The output of the algorithm
was 5 sources for each subject (C1 = 0, C2 = 4 and C3 = 1) and JpJI-F.
We could fit a line with a positive slope on the spatial JpJI-F of grouped
subjects concerning their age in each partially-joint source. The fitted
line indicates that by increasing the age of subjects, the spatial JpJI-F is
approximately increasing. Furthermore, the significant clusters (brain
regions) in partially-joint sources were in Precuneus, bilateral Inferior
Parietal Lobule, bilateral Lingual Gyrus, bilateral Middle Occipital
Gyrus, and Righ Middle Frontal/Temporal Gyrus.

In the temporal approach, we had K= 16 and C= 5 and three se-
parate JpJI-tICA. We investigated the temporal JpJI-F to determine the

global jointness of ROIs in each group of subjects. In our real study, we
only wanted to evaluate the visibility of algorithm in extracting joint
and partially-joint sources of some available datasets.

Our results on the real dataset were consistent with the existing
meta-analysis studies. We showed that spatial and temporal JpJI-F in
the theory of mind regions of brain increases with the age of subjects. In
future works, our algorithms can be used to investigate real multi-
subject fMRI datasets in a meta-analysis with further details.

5. Conclusions

In this paper, we have applied a source model (JpJI-MDM) to ana-
lyze multi-subject brain imaging datasets by considering three types of
sources (joint, partially-joint, and individual sources). Furthermore, a
new algorithm is presented to analyze multi-subject datasets based on
the JpJI-MDM source model. In this algorithm, a deflation framework is
employed to extract spatial and temporal sources across multiple da-
tasets, and sources of each dataset are extracted one-by-one by max-
imizing the cost function of the algorithm. Higher-order cumulants are
selected as the base of the cost function because the local convergence
of higher-order cumulants is not affected by the distributions of sources
with non-zero cumulants. The results from both simulated and real
fMRI data showed the benefits of the algorithm as either a com-
plementary or alternative method for the inference of fMRI group data.
Furthermore, the JpJI-sICA and JpJI-tICA algorithms can provide a
useful interpretation of multi-subject fMRI data and help to deal with
more complex and realistic source models.
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