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Abstract—Objective: Joint analysis of multi-subject brain imag-
ing datasets has wide applications in biomedical engineering. In
these datasets, some sources belong to all subjects (joint), a subset
of subjects (partially-joint), or a single subject (individual). In
this paper, this source model is referred to as joint/partially-
joint/individual multiple datasets unidimensional (JpJI-MDU),
and accordingly, a source extraction method is developed.
Method: We present a deflation-based algorithm utilizing higher
order cumulants to analyze the JpJI-MDU source model. The
algorithm maximizes a cost function which leads to an eigenvalue
problem solved with thin-SVD (singular value decomposition)
factorization. Furthermore, we introduce the JpJI-feature which
indicates the spatial shape of each source and the amount of its
jointness with other subjects. We use this feature to determine the
type of sources. Results: We evaluate our algorithm by analyzing
simulated data and two real functional magnetic resonance
imaging (fMRI) datasets. In our simulation study, we will show
that the proposed algorithm determines the type of sources
with the accuracy of 95% and 100% for 2-class and 3-class
clustering scenarios, respectively. Furthermore, our algorithm
extracts meaningful joint and partially-joint sources from the two
real datasets, which are consistent with the existing neuroscience
studies. Conclusion: Our results in analyzing the real datasets
reveal that both datasets follow the JpJI-MDU source model.
This source model improves the accuracy of source extraction
methods developed for multi-subject datasets. Significance: The
proposed joint blind source separation algorithm is robust and
avoids parameters which are difficult to fine-tune.

Index terms— Joint analysis, Multi-subject dataset,
Partially-joint sources, Independent component analysis, Mul-
tiple dataset unidimensional

I. INTRODUCTION

A. Background and Motivation

Integrating information of multi-subject datasets is receiving
much attention in biomedical engineering and neuroscience.
With the joint analysis of multiple datasets and the fusion
of their data, the cross-information of datasets is extracted.
The benefit of joint analysis is more significant for datasets
with common information, thereby the accuracy and validity
of extracted sources are improved. Employing proper methods
to extract relevant information from multiple datasets is of
paramount importance because many unknown variables af-
fect the underlying processes. Blind source separation (BSS)
methods are useful data-driven techniques to jointly analyze
multiple datasets [1].

The general BSS sub-problems can be categorized into four
classes [2], depending on the number of analyzed datasets (K)
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and the dependency model of sources. These classes are single
dataset unidimensional (SDU), multiple datasets unidimen-
sional (MDU), single dataset multi-dimensional (SDM), and
multiple datasets multi-dimensional (MDM). In Table I, the
features and related methods for each class are summarized. A
special case for MDM source model is joint/individual MDM
(JI-MDM) source model [3] [4], in which each dataset has two
parts, namely joint sources and individual sources, where joint
sources have exactly one equivalent (similar) source across
all datasets, while individual sources are independent of other
sources in that dataset and other datasets.

In [4], it has been shown that the JI-MDM source model
is suitable for multi-subject brain datasets, because real brain
datasets, e.g., fMRI signals of multiple subjects in the same
experiment, are not exactly similar in all regions across
subjects. Clearly, there are some active processes in the brain
of each subject that do not depend on the effect of the
experiment. Thus, to enhance the validity of the source model
of datasets, a number of individual (independent) sources
should be considered for each dataset. In the JI-MDM source
model, joint sources indicate potential relationships and cross-
information among subjects, while individual sources indicate
unique information of each subject.

In [4], an algorithm, referred to as Joint/Individual thin in-
dependent component analysis (JI-ThICA), has been proposed
to extract joint and individual sources of multi-subject datasets
based on the JI-MDM source model. It is worth mentioning
that the JI-ThICA algorithm has been inspired by the thin ICA
algorithm [15] [16], where the cost function of thin ICA is a
proxy non-Gaussianity measure obtained by combining higher
order cumulant matrices.

In order to further improve the accuracy of the source model
for multi-subject brain datasets, in this paper, we introduce
a new source model in which three types of sources are
considered, joint, partially-joint, and individual sources. Here
joint and individual sources have the same meaning as the
JI-MDM model; however, the newly defined partially-joint
sources indicate sources that are common only among subsets
of subjects. Hereafter, this source model is referred to as
joint/partially-joint/individual MDU (JpJI-MDU). It is worth
mentioning that we use unidimensional (U in JpJI-MDU)
instead of multi-dimensional (the second M in JI-MDM)
because dependent groups of sources are not considered in
the proposed model.

The JpJI-MDU source model has wide applications in many
studies analyzing multi-subject recordings from healthy and
disease subjects. In these studies, all subjects may have some
joint sources indicating common conditions of all subjects,



0018-9294 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2019.2953274, IEEE
Transactions on Biomedical Engineering

2

TABLE I
SOURCE MODELS USED IN BSS SUBPROBLEMS

General BSS
sub-problems Features Related methods

Single dataset
unidimensional

(SDU)

-K = 1
-Uncorrelated or independent sources

-Principal component analysis (PCA) [1]
-Independent component analysis (ICA) [1]
-Second order blind identification (SOBI) methods [1]

Multiple dataset
unidimensional

(MDU)

-K > 1
-Independent sources in each dataset
-Exactly one dependent source
between datasets

-Canonical correlation analysis (CCA) [5]
-Common feature analysis method [6]
-Cross cumulant tensor block diagonalization [7]
-Group information guided ICA (GIG-ICA) [8]
-Independent vector analysis (IVA) [9]

Single dataset
multi-dimensional

(SDM)

-K = 1
-One or more group of sources
-Dependent sources in each group

-Multidimensional independent component analysis (MICA) [10]
-Independent subspace analysis (ISA) [11]

Multiple dataset
multi-dimensional

(MDM)

-K > 1
-One or more group of sources in each dataset
-Dependent sources in each group
-Joint group of sources across all, some or
just one of datasets

-Joint and individual variation explained (JIVE) [12]
-Common orthogonal basis extraction (COBE) and common
nonnegative features extraction (CNFE) [3]
-Joint/Individual Thin ICA (JI-ThICA) [4]
-Multi-dataset independent subspace analysis (MISA) [13]
-Joint independent subspace analysis (JISA) [14]

some partially-joint sources which depend only on the con-
ditions of the group of disease subjects (or healthy subjects),
and some individual sources which are appeared due to the
independent conditions of each subject. Thus, designing a
new algorithm to analyze multi-subject datasets based on the
JpJI-MDU source model is of utmost importance which is
addressed in this paper.

There are lots of papers applying BSS techniques to analyze
biomedical datasets. In Table I, the related papers are listed [1],
[3]–[14]. Among the methods proposed in these papers, JIVE
[12], COBE [3], CNFE [3], and JI-ThICA [4], which have
the JI-MDM source model, are more relevant to this paper,
however, none of them can extract partially-joint source.

B. Contribution and Paper Organization

To the best of our knowledge, there is no algorithm to jointly
extract joint, partially-joint, and individual sources of multi-
subject datasets. In this paper, we are motivated to address this
issue and present a new data-driven algorithm utilizing higher
order cumulants to analyze the JpJI-MDU source model.

The algorithm maximizes a cost function to extract three
types of sources. The maximization problem leads to an
eigenvalue problem solved with thin-SVD factorization [16].
Furthermore, we introduce the JpJI-feature which indicates the
spatial shape of each source and the amount of its jointness
with other datasets. We use this feature to determine the type
of sources 1.

The proposed algorithm is applied to analyze simulated
and real fMRI datasets either to extract the underlying fMRI
components or to discriminate multi-subject datasets that have
partially-joint sources and divide them into separate groups. In
our simulation study, we will show that the proposed algorithm
extracts latent sources of simulated fMRI data and determines
the type of sources (joint, partially-joint and individual) with

1The MATLAB codes of proposed algorithm are available on:
https://github.com/Mansooreh-Pakravan/Joint-partiallyJoint-Individual-
Independent-Component-Analysis
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Fig. 1. An example for JpJI-MDU source model. (a) Subjects with
joint, partially-joint and individual sources such that C1 = 2, C2 =
[3,2,3,3,1,3,2,3,3,2], and C3 = [2,4,2,1,5,1,1,2,3,3]. (The same colors
means jointness). (b) Correlation source matrix for the source model shown
in (a). Black and white squares mean 1 and 0, respectively, and blue square
indicates that its value is unknown (0 or 1).

the accuracy of 95% and 100% for 2-class and 3-class clus-
tering scenarios, respectively. The algorithm also clusters the
datasets that have similar sources with the accuracy higher than
94% for both 2-class and 3-class clustering scenarios. We also
compare our algorithm with the CNFE [3] and JI-ThICA [4]
alternative methods and show the superiority of the proposed
algorithm in extracting partially-joint sources.
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Finally, we investigate two real fMRI datasets: i) same story
different story dataset [17] and ii) Depression dataset [18].
Our results in analyzing real datasets reveal that both datasets
follow the introduced JpJI-MDU source model. Furthermore,
we extract joint and partially-joint sources that are consistent
with the existing literature.

The rest of the paper is organized as follows. Section
II is devoted to present the proposed algorithm including
signal model, optimization cost function, the method used to
determine the type of sources, and comparison of CNFE in
[3], JI-ThICA in [4], and the proposed method. In Section
III, numerical results for simulated and real fMRI data are
reported. Finally, concluding remarks are presented in Section
IV.

C. Notation
In this paper, matrices are denoted by capital letters, e.g.,

Y (k) or M(c,k), where the superscripts (k) and (c,k) indicate the
index of “subject” and index of “source, subject”, respectively.
Furthermore, vectors are represented by boldface lowercase
letters, e.g., cth raw of the matrix Y (k) is indicated by y(c,k);
and scalars are denoted by lowercase letters, e.g., the vth entry
of the vector y(c,k) is denoted by y(c,k)(v). The values of indices
are typically ranging from 1 to their capital version, e.g., k =
1, ...,K.

II. PROPOSED ALGORITHM

A. Signal Model
In our JpJI-MDU model, we assume that there are K sub-

jects and the kth subject has C(k) latent sources, where C(k)
1 out

of these sources are considered to be joint with all other sub-
jects; and C(k)

2 components are joint with a subset of subjects,
which are referred to as partially-joint sources. Besides, C(k)

3
is the number of sources that are independent of all sources
in all other subjects (denoted as individual sources). Note that
the total numbers of sources (C(k) = C1

(k) +C2
(k) +C(k)

3 ) in
different subjects are not necessarily equal.

Fig. 1(a) shows an example of JpJI-MDU source model,
in which s(c,k)J , s(c,k)PJ , and s(c,k)I indicate that the cth source
in kth subject are joint source across all subjects, partially-
joint source across a subset of subjects, and individual source,
respectively. Note that the same colors means jointness. In
Fig. 1(a), we have C1 = 2, C2 = [3,2,3,3,1,3,2,3,3,2], and
C3 = [2,4,2,1,5,1,1,2,3,3].

It should be noted that our algorithm can analyze any
clustering scenarios, in which there are two or more clusters of
subjects for partially-joint sources, and subjects can be clus-
tered into either disjoint or no disjoint clusters. Furthermore, it
is clear that in JpJI-MDU source model, C1

(1) =C1
(2) = ...=

C1
(K) =C1.
We define K̃c,k as a subset of subjects in which the cth

source is common with the kth subject, and nK̃c,k
is the number

of subjects in K̃c,k. According to the JpJI-MDU model we have

nK̃c,k
=


K−1, if (c ∈ J )
less than K−1, if (c ∈ P J )
0, if (c ∈ I )

(1)

where J , P J , and I are the set of joint, partially-joint, and
individual sources, respectively. It should be noted that if cth
source in kth subject is individual (c∈ I ), it means that it only
is joint with itself, and nK̃c,k

= 0.
In Fig. 1(b), the cross-correlation matrices of subjects k1

and k2 are depicted for two scenarios: (k1 = k2) and (k1 6= k2).
For the case k1 6= k2, there are some blue squares, which their
values are 1 if k1 and k2 are in the same cluster; otherwise, they
are 0. Note that the JpJI-MDU source model can be reduced
to SDU, MDU and JI-MDM models if we set (K=1), (K >1,
C(k)

2 =0 and C(k)
3 =0 for k = 1, ...,K), and (K >1, C(k)

2 =0 for
k = 1, ...,K), respectively. Furthermore, if K >1, C1=0, C(k)

2 =0,
C(k)

3 6= 0 for k = 1, ...,K, the JpJI-MDU model represents K
separate and independent SDU source models.

Let V and N denote the number of voxels in an fMRI image
and the number of time samples in an observed blood oxygen
level dependent (BOLD) signal, respectively. The vectorized
versions of fMRI source images (or volumes) are processed
in our algorithm. In addition, O(k) represents the observation
signal of kth subject, which is related to the mixing matrix
(A(k) ∈ RN×C(k)

) and source matrix (S(k)) as follows

O(k) = A(k)S(k), k = 1, ...,K. (2)

Note that S(k) = [s(1,k)T
,s(2,k)T

, ...,s(C(k),k)T
]T , where s(c,k) ∈

R1×V for 1≤ c≤C(K) indicates cth source. Here, we assume
that the elements of S(k) (s(c,k)) are mutually independent and
locally stationary. In addition, these elements are normalized
to have unit variance and zero mean. The mixing matrices
A(k);k = 1, ...,K are also full-column rank.

In our study, latent sources are extracted by
exploiting cumulants and cross-cumulants. In multiple
datasets, cum

[
S(k1),S(k2)

]
, cum

[
S(k1),S(k2),S(k3)

]
and

cum
[
S(k1),S(k2),S(k3),S(k4)

]
are all tensors in RC(k1)×C(k2) ,

RC(k1)×C(k2)×C(k3) , and RC(k1)×C(k2)×C(k3)×C(k4) , respectively,
which are given by(

cum
[
S(k1),S(k2)

])
(c1,c2)

=
1
V

V

∑
v=1

cum
[
s(c1,k1)(v),s(c2,k2)(v)

]
(3)

(
cum

[
S(k1),S(k2),S(k3)

])
(c1,c2,c3)

=

1
V

V

∑
v=1

cum
[
s(c1,k1)(v),s(c2,k2)(v),s(c3,k3)(v)

]
(4)

(
cum

[
S(k1),S(k2),S(k3),S(k4)

])
(c1,c2,c3,c4)

=

1
V

V

∑
v=1

cum
[
s(c1,k1)(v),s(c2,k2)(v),s(c3,k3)(v),s(c4,k4)(v)

]
.

(5)

Note that s(c,k)(v) denotes the (c,v)th element of S(k). In
MDU, JI-MDM, and JpJI-MDU source models, nonzero ele-
ments are only for c1 = c2 = c3 = c4 = c. Furthermore, for the
JpJI-MDU model, we have

cum
[
s(c,k1)(v), ...,s(c,kη)(v)

]6= 0 if
(
∀ki1&ki2 ;ki1 ∈ K̃c,ki2

)
= 0 if

(
∃ki1&ki2 ;ki1 /∈ K̃c,ki2

)
(6)
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where η = 2,3,4 and i1, i2 = 1, ...,η.

B. Optimization Cost function

In the proposed algorithm, a deflation framework [1] is
employed to extract latent sources across multiple subjects. In
this algorithm, a cost function, referred to as joint/partially-
joint/individual ICA (JpJI-ICA), is used to extract sources of
each subject one-by-one.

In order to generate the preprocessed observations matrices,
Z(k); first, the principle component analysis (PCA) method
is applied to reduce the dimension of the observations. The
number of principle components C(k) for each subject can be
estimated by utilizing model order selection approaches using
information-theoretic criteria such as Bayesian information
criterion (BIC) [19] and Akaike information criterion (AIC)
[20]. In this study, we employ BIC to estimate C(k) for
k = 1, ...,K. Then, a pre-whitening system (W (k)

w =RZ(k)
−1/2) is

employed [1], where RZ(k) is the covariance matrix of Z(k). It is
worth mentioning that in the rest of the paper, we define matrix
U (k) as the demixing matrix for kth subject (S(k) =U (k)Z(k)).

In our algorithm, higher order cumulants are selected as
the base of the proposed cost function, because the local
convergence of higher order cumulants is not affected with
the distributions of sources with non-zero cumulant [21]. In
order to analyze multi-subject datasets based on the JpJI-MDU
model, we need to extract joint, partially-joint, and individual
sources of subjects in one algorithm. In this case, we have
defined three metrics; the first one is a measure of cross-
cumulant between subjects (C(c,K̃ )

(α,η) (v) in equation (7) ), the
second one is a sum of weighted norm of cross-cumulants
(D(c,k)

(α) (v) in equation (8)), and the third one computes D(c,k)
(α) (v)

across subjects that belong to the set K̃ and all of voxels
(M(c,k)

K̃ in equation (9)).

C(c,K̃ )
(α,η) (v) = cum

[
z(k)(v),y(c,K̃ (α))(v), ...,y(c,K̃ (α+η−2))(v)

]
,

(7)

D(c,k)
(α) (v) = ∑

η

wηC(c,K̃ )
(α,η) (v)

(
C(c,K̃ )
(α,η) (v)

)T
, (8)

and

M(c,k)
K̃ =

1
V ∑

v

nK̃

∑
α=1

D(c,k)
(α) (v), (9)

where η = 2,3,4, K̃ = randperm({1, ...,K} \ {k}), nK̃ is the
size of the set K̃ (nK̃ =K−1), and K̃ (α) is the αth element of
the set K̃ . Note that if α+η−2 > nK̃ for η = 3,4 we choose
mod(α+η− 2,nK̃ ) as the new subject index, where mod(,)
denotes the modulo operation. We also assume that the number
of subjects with joint or partially-joint sources are bigger than
η− 1 (nK̃ > η− 1). wη > 0 is the weight considered for the
ηth order cumulant; v= 1, ...,V indicates the index of pixels or
voxels; Y (k) =U (k)Z(k) represents the estimated source matrix,
in which u(c,k) denotes the cth raw of the estimated demixing
matrix (U (k)); and z(k)(v) is the vth column of Z(k).

Note that in equation (9), for each 1 ≤ α ≤ nK̃ in ∑α,
we use {k, K̃ (α),K̃ (α+ 1), K̃ (α+ 2)}th subjects in cross-
cumulants. If cth sources of these selected subjects are joint
(i.e.,

{
K̃ (α),K̃ (α+1),K̃ (α+2)

}
⊂ K̃c,k), then M(c,k)

K̃ gets
its maximum value, equation (10). In other words, for joint
sources, the values of D(c,k)

(α) (v) for different αs are equal (i.e.,

D(c,k)
(1) (v) = ...= D(c,k)

(nK̃ )(v)), hence we can write

M(c,k)
K̃ (v) = (K−1)D(c,k)

(1) (v) if (c ∈ J ) , (10)

On the other hand, in cases that cth source is partially-joint or
individual, all four selected subjects do not have necessarily
joint sources. This is due to the fact that the indices of subjects
are selected randomly, thus we have

M(c,k)
K̃ (v)< nK̃c,k

D(c,k)
(α0)

(v), (11)

where in D(c,k)
(α0)

(v), the indices α0, ..., α0+η−2 are the index
of η−1 of subjects that are joint with kth subject in cth source
(i.e., {K̃ (α0),K̃ (α0 +1),K̃ (α0 +2)} ⊂ K̃c,k).

By using equations (7), (8), and (9), we define a measure of
cross-cumulant between estimated source and sources in other
subjects as follows

ϒK̃ (y(c,k)) = u(c,k)
(

M(c,k)
K̃

)
u(c,k)T

. (12)

Based on equation (7), it is clear that in order to extract desired
sources and to align joint sources across subjects in equation
(12), it is not necessary to determine K̃c,k for each cth source
in kth subject, because the algorithm automatically converts
the cost function from K̃ to K̃c,k. This is due to the fact
that in equation (7), only subjects that are members of K̃c,k,
are important. Thereby, if Kc,k has no member, it means that
the cth source is an individual source of the kth subject, and
accordingly the cost function will be zero. In this case, we set
K̃ = {k}, and use equations (7), (8), (9), and (12) to extract
individual sources.

By considering Theorem 1 in [4] and [15], it can be shown
that a local maximum of the JpJI-ICA cost function (equation
(12)) can be used to extract one of joint or partially-joint
sources. We assume that there is a permutation set δ of indexes{

1, ...,C(k)
}

for independent components of kth subject so that
the following inequalities hold for k = 1, ...,K.

ϒK̃ (y(δ1,k)∗)> ... > ϒK̃ (y(δC(k) ,k)
∗
). (13)

It is worth mentioning that in equation (13) the relation
may not be absolutely increasing and > can be replaced with
≥. However, for the absolutely increasing relation we obtain
unique ordering for the extracted sources during different runs.

Thanks to the JpJI-ICA cost function, the permutation inde-
terminacy across subjects is resolved, and dependent sources
are automatically grouped across subjects. Furthermore, in this
method, parameters C1, C(k)

2 , and C(k)
3 are not necessary to be

known for each subject, because the algorithm automatically
determines the type of each source. Note that the type of each
extracted source (joint, partially-joint, or individual) can be
used as another information to cluster joint subjects, which is
discussed in subsection II.C.



0018-9294 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2019.2953274, IEEE
Transactions on Biomedical Engineering

5

The optimization problem in our algorithm is

u(c,k)∗ = argmax
u(c,k)

ϒK̃ (y(c,k)) subject to |u(c,k)|2 = 1, (14)

where y(c,k)∗ = u(c,k)∗Z(k) is the desired source, and u(c,k)∗ is
the optimum value of u(c,k). It is straightforward to show that
the optimum value of u(c,k) is the corresponding eigenvector of
the dominant eigenvalue of M(c,k)

K̃ ∈ RC(k)×C(k)
. The extracting

vector u(c,k) can be determined by thin-SVD factorization.
In the Theorems 1 and 2 of [16], it has been shown

that in each iteration, the choice resulting from the thin-
SVD factorization guarantees a monotonous ascent in the
cost function, and because of the bounded nature of the cost
function, the only strictly stable points of the algorithm are
the local maxima. Inspired by these Theorems, it is easy to
show that the JpJI-ICA cost function has a monotonous ascent
which its stable points are the local maxima and do not depend
on K̃ s (see Fig. 4 in the supplementary materials).

On the other hand, in [15] it has been shown that the global
maximum of the cost function leads to the extraction of the
desired sources. Furthermore, Theorem 2 of this paper showed
that although deceptive local maxima of the cost function
might exist, but under some assumptions (which are similar
to the assumptions considered in the JpJI-ICA cost function),
the only local maxima of the cost function correspond to the
solutions that extract one of the sources.

In the proposed algorithm, two iteration loops are con-
sidered to maximize the JpJI-ICA cost function, referred to
as inner iteration and outer iteration. The inner iteration is
repeated while the following inequality holds for ε0 = 10−6,

1−
∣∣∣u(c,k)u(cold ,k)T

∣∣∣2 ≥ ε0. (15)

Furthermore, the outer iteration is executed MaxIter times to
extract all optimum sources of all subjects. Note that in the
first iteration of the inner iteration, for each c and k we set its
observation as the initial guess of the desired source; and after
extracting a desired independent component (y(c,k)∗ ∈ R1×V )
in the inner iteration, its contribution is subtracted from the
observation matrix (Z(k)) by linear regression to obtain each
row of new observation matrix [1]. In Fig. 2, the illustrative
flowchart of the proposed algorithm is presented.

C. Determining the type of sources

We define ϒK̃ (y(c,k)) for K̃ = randperm({1, · · · ,K} \ {k})
as JpJI-feature for source c of kth subject (JpJIF(c,k)). Fur-
thermore, we have defined the number of subjects (except
kth subject) that have cth source (i.e., nK̃(c,k)

) as the jointness
of cth source in kth subject. Therefore, it can be concluded
that the upper bound of JpJIF(c,k) has a linear relation-
ship with the amount of its jointness with other subjects
(inequality (11)). Note that for joint sources, the JpJIF(c,k)

has a linear relationship with the amount of its jointness with
other subjects (equality (10)). It is worth mentioning that in
equation (12), ϒK̃ (y(c,k)) is zero (or very low) for subjects in
which cth source is neither joint or partially-joint, because the
cross-cumulant of mutually-statistically-independent random

variables in equation (12) is zero. Therefore, the following
relations are always true:

JpJIF(c,k) if c ∈ J > JpJIF(c,k) if c ∈ P J > JpJIF(c,k) if c ∈ I .
(16)

In order to determine the type of extracted sources, two
different approaches are proposed based on using either the
JpJI-feature or the spatial sources. In the first approach, the
JpJIF(c,k) is used to determine the type of extracted cth source
in the kth subject, as follows:

If JpJIF(c,k) ≈ (K−1) 1
V ∑v D(c,k)

(1) (v)→ (c ∈ J )
If σ0 < JpJIF(c,k) 6= (K−1) 1

V ∑v D(c,k)
(α0)

(v)→ (c ∈ P J )
If JpJIF(c,k) ≤ σ0→ (c ∈ I )

(17)

In this approach, first, we determine the joint sources, then
we decide about the type of the rest of sources using σ0.
To find the optimum threshold for σ0 (σopt ) without using
the label of sources, we have applied a simple and efficient
method based on the following steps:

1) Define the mean value of JpJI-features for joint sources
as JpJIFJoint .

2) Compute the parameter Ratio(c) = JpJIFJoint

mean(JpJIF(c,:))
for

C1 < c ≤ C(k);1 ≤ k ≤ K. Since the JpJI-feature of
partially-joint sources are closer to JpJIFJoint than
the individual ones, then the Ratio(c) of individual
sources are very bigger than the partially-joint ones (e.g.,
Ratio(c) for partially-joint and individual sources are
approximately in the range of [1 , 102] and [106, 108],
respectively).

3) Cluster Ratio into 2 clusters (i.e., partially-joint cluster
and individual cluster) using kmeans algorithm.

4) Determine the lower bound and higher bound of σopt as
max(JpJIF(c,:)) for c ∈ I and min(JpJIF(c,:)) for c ∈
P J , respectively.

5) σopt =
lower bound+higher bound

2 .

Simulation results show that using Ratio has better perfor-
mance than JpJI-features, because the Ratio of partially-joint
and individual sources have more different values than their
JpJI-features. It is worth mentioning that if there are no joint
sources, then one can use the gap between the JpJI-features of
partially-joint and individual sources for clustering. Note that
there should be at least one type of each three types of the
sources to use the first approach.

In the second approach, the spatial shape of the extracted
sources are used to determine their type. Since the JpJI-ICA
algorithm groups joint sources in a similar source index, we
have used the following method to determine the type of cth
source.

1) Group the cth source of all subjects in two classes (i.e.,
grouping in predefined classes).

2) Define a statistical test on each voxel with this null
hypothesis that the values of sources in one group of
subjects are similar to other subjects’ group with a
predefined FDR corrected Pvalue.
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For all 𝒌 = 𝟏,… ,𝑲 do:

Outer Iteration: While 𝑖𝑡𝑒𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 do

Inner iteration

Determine 

source type

Compute Υ෩𝒦 𝒚 𝑐,𝑘 with 
෩𝒦 =randperm( 1,… ,𝐾 \{𝑘}) 𝑐 ∈ 𝒥 or 𝑝𝒥

𝒖 𝑐,𝑘 ∗
← 𝑠𝑣𝑑 𝑀෩𝒦

(𝑐,𝑘)

𝒚 𝑐,𝑘 ∗
= 𝒖 𝑐,𝑘 ∗

Z(𝑘)
෩𝒦 ={𝑘}

No

Yes

Remove 

𝒚 𝑐,𝑘 ∗

from 𝑍(𝑘)

For all 𝒄 = 𝟏,… , 𝑪(𝒌) do:

Input: 𝑍(𝑘); Initialize: 𝑌(𝑘) = 𝑍(𝑘) for 𝑘 = 1,… ,𝐾; 𝑖𝑡𝑒𝑟 = 1

Is eq. (15) 

true?

Yes

No Thin-svd factorization

𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1;

Fig. 2. Illustrative flowchart of the JpJI-ICA algorithm.

3) If the null hypothesis is rejected and some significant
cluster of voxels can be found that their activities are
different in two groups of the subjects, then the cth
source is partially-joint or individual; otherwise it is a
joint source.

4) To discriminate between partially-joint and individual
sources, one can redefine a similar statistical test on the
different subgroups of subjects in each predefined group
which is made in step 1. If the null hypothesis is rejected,
the cth source is individual, otherwise, it is an partially-
joint source for the predefined classes.

It is worth mentioning that if the goal is classification or
clustering of the subjects based on their partially-joint sources
in different classes, then using the “JpJI-feature” approach is
more straightforward (as a feature for discrimination). On the
other hand, if the goal is to find significant ROIs in the brains
of subjects that had different activities in some predefined
classes of subjects, then it is better to use the “spatial source
approach”, because it gives automatically significant cluster
of voxels in which their activity are significantly different
across groups of subjects.

After determining the type of each source, one can simply
determine K̃c,k for each c and k. Note that for joint and indi-
vidual sources we have K̃c,k = K̃ and K̃c,k = {}, respectively.
In addition, k-means clustering algorithm [22] is applied to
automatically cluster subjects of partially-joint sources and
determine K̃c,k for k = 1, ...,K and c ∈ P J .

D. Comparing JpJI-ICA with JI-ThICA [4]

As mentioned, in [4] the JI-MDM source model, has been
assumed and the so-called JI-ThICA algorithm has been
proposed to extract latent sources. There are some similarities

and differences between JI-ThICA and JpJI-ICA algorithms.
Both methods extract the latent sources by maximizing the
sum of weighted higher order cross-cumulants among subjects.
However, their procedures to determine the type of sources
are different. The JI-ThICA algorithm introduces two cost
functions to extract joint and individual sources separately, but
the JpJI-ICA algorithm introduces one unique cost function
for joint, partially joint, and individual sources. The JI-ThICA
method uses the following cost functions to determine the type
of sources:

ϒ(y(c,k)) = u(c,k)
(

M̃ (c,k)
)

u(c,k)T
, for c ∈ J ; (18)

Ψ(y(c,k)) = u(c,k)
(

M(c,k)
)

u(c,k)T
, for c ∈ I ; (19)

where M̃ (c,k) and M(c,k) are computed as follows

M̃ (c,k) =
1
V ∑

v
∑

η=2,3,4
wη

∣∣∣cum
[
z(k)(v),y(c,k2)(v), ...,y(c,kη)(v)

]∣∣∣2,
(20)

M(c,k) =
1
V ∑

v
∑

η=2,3,4
wη

∣∣∣cum
[
z(k)(v),y(c,k)(v), ...,y(c,k)(v)

]∣∣∣2,
(21)

where in equation (20) k j ∈ {1, ...,K} \ {k} for j = 2, ...,η
indicate index of subjects. In addition, the operator |.|2 denotes
the squared norm. Note that these η−1 subjects are selected
randomly from {1, ...,K}\{k}, which are indexed as k2,..., kη

subjects. If the value of ϒ(y(c,k)) is higher than a given thresh-
old (σ0), then this method assumes that all of these selected
subjects are joint with kth subject, and the JI-ThICA algorithm
determines cth source as joint and maximizes equation (18) to
extract this source. On the other hand, if the value of ϒ(y(c,k))
is lower than σ0, then the JI-ThICA method assumes that the
source is independent from other subjects, and it determines
cth source as individual and maximizes equation (19) to extract
this source. This means that JI-ThICA cannot discriminate
partially-joint sources and considers partially-joint sources
randomly as joint or individual sources.

In the JpJI-ICA algorithm, we have combined equation
(18) and equation (19) in one cost function by introducing
a new parameter (K̃ ) where K̃ = randperm({1, ...,K} \ {k})
as follows

ϒK̃ (y(c,k)) = u(c,k)
(

M(c,k)
K̃

)
u(c,k)T

(22)

in which M(c,k)
K̃ is computed as follows

M(c,k)
K̃ =

1
V ∑

v

nK̃

∑
α=1

∑
η=2,3,4

wη∣∣∣cum
[
z(k)(v),y(c,K̃ (α))(v), ...,y(c,K̃ (α+η−2))(v)

]∣∣∣2
(23)

The main difference of two methods is the summation ∑
nK̃
α=1

in equation (23) which enables JpJI-ICA algorithm to dis-
criminate partially-joint sources. Accordingly, in the JpJI-ICA
algorithm, the equation (17) is used to determine the type of
sources.
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III. NUMERICAL RESULTS

A. Evaluation Metrics

The joint Signal-to-Interference Ratio (jSIR) [3] is com-
puted to evaluate performance of the proposed algorithm

as jSIR = 1
K ∑k

1
C(k) ∑c 10log10

(
(s(c,k))

(
y(c,k)

∗)T

(s(c,k)−y(c,k)∗)(s(c,k)−y(c,k)∗)
T

)
,

where y(c,k)∗ and s(c,k) denote normalized estimated and real
sources, respectively. Note that y(c,k)∗ and s(c,k) have zero
mean and unit variance. The higher jSIR means lower error
between the real and estimated sources, which is desired in
our performance evaluation. It is worth mentioning that the
fraction inside the logarithm function indicates the ratio of
correlation and distance of two vectors, thus, jSIR is the
difference of correlation and distance of two vectors in dB.
More details on the comparison of the jSIR and correlation
metrics are presented in Fig. 1 in the supplementary material.

The accuracy of JpJI-ICA algorithm in determining the
correct numbers of joint, partially-joint, and individual sources
is evaluated by Acc(C ), which is computed as Acc(C ) =

1
NRun

∑r Acc(C ,r) where Acc(C ,r) denote the correctness of
the estimated number of sources (separately for joint, partially-
joint, and individual) in rth run of the algorithm, and NRun is
the total number of runs. Note that Acc(C ,r) is a Boolean
variable, and it is 100 if the estimated number of sources is
correct; otherwise, it is 0.

We also evaluate the accuracy of the proposed algorithm in
clustering subjects with respect to their partially-joint sources
by computing Acc(K̃all) = 1

NRun
∑r

1
K ∑k

1
C(k) ∑c Acc(K̃c,k,r),

where Acc(K̃c,k,r) is a Boolean variable denoting the ac-
curacy of the algorithm in its rth run to find K̃c,k for kth
subject. If all elements of the estimated K̃c,k are correct, then
Acc(K̃c,k,r) = 100; otherwise Acc(K̃c,k,r) = 0.

B. Results on Simulated fMRI Data

We synthesize multi-subject fMRI datasets by using the
SimTB toolbox2 [23] to evaluate the JpJI-ICA algorithm. The
SimTB toolbox in its default settings generates 27 spatially
independent brain sources, and in this study, we use these pre-
generated sources. We generate fMRI images with 64× 64
pixels. Furthermore, the same synthesized spatial maps are
assigned across all subjects for joint sources, whereas different
spatial maps are assigned for individual sources. Moreover,
time courses generated with SimTB toolbox are used as a
mixing matrix. Interested readers are referred to see [23] for
further details about the SimTB toolbox and simulated fMRI
datasets. Spatial ICA is applied to analyze fMRI data in which
a weighted linear combination of C(k) spatial sources compose
each fMRI image of kth subject over time.

It should be noted that the number of simulated sources
in SimTB toolbox is limited to 27, thus, there are some
limitations to increase K, C1, C(k)

2 , and C(k)
3 in the simulation

of JpJI-MDU source model. Fig. 2(a-b) in the supplementary
material show an example of a simulated JpJI-MDU source
model with SimTB toolbox and the estimated sources with

2This toolbox is available at http://mialab.mrn.org/software/simtb/ [Ac-
cessed: 2017-03-20].

(a) (b) (c)

(d)

Fig. 3. (a-d) Performance of the JpJI-ICA algorithm versus different iterations
in terms of (a) the convergence rate of jSIR (dB), (b) Acc(C), (c) Acc(K̃all),
(d) JpJI-feature for K = 10,C1 = 3,C(k)

2 = 2,C(k)
3 = 1,k = 1, ...,K versus outer

iterations.

JpJI-ICA algorithm with jSIR=21.3 dB and correct estimations
for source types, respectively.

Though the JpJI-ICA cost function should be optimized with
respect to the weights w2, w3, and w4, here for the sake of
brevity, we set w2 = 0.5, w3 = 0.75, w4 = 1. Note that in [4],
different weights settings for order cumulants in the JI-MDM
source model have been analyzed, and it has been shown that
the fourth order cumulant has the most contribution on the
performance improvement, and using the second and third
order cumulants can slightly improve the performance of the
JI-ThICA algorithm. Our results in this study reveal that this
conclusion is also valid for the JpJI-ICA cost function.

The number of latent sources of each subject (C(k)) is
estimated by utilizing the BIC method with the maximum
likelihood ICA algorithm [24]. Fig. 3 in the supplementary
material presents the impact of the estimated model order for
simulated data on the results of the JpJI-ICA algorithm.

We have designed some experiments to evaluate the per-
formance of JpJI-ICA algorithm in terms of its convergence
rate and its accuracy to extract correct latent sources (in terms
of mean jSIR), estimation of the correct numbers of joint,
partially-joint, and individual sources, and determining K̃c,k
for all sources of all subjects.

We have analyzed the convergence rate of the algorithm to
evaluate its performance when the outer iterations increases.
Figs. 3(a-c) show the convergence rate of the JpJI-ICA al-
gorithm in terms of jSIR (dB), Acc(C), and Acc(K̃all) for
K = 10,C1 = 3,C(k)

2 = 2,C(k)
3 = 1,k = 1, ...,K versus outer iter-

ations. Fig. 3(d) represents the JpJI-feature separately for joint,
partially-joint, and individual sources versus outer iteration.
The results are obtained from 50 Monte Carlo runs. Results
reveal that 5 or 6 iterations of the outer iteration are sufficient
for the convergence of the algorithm. In the rest of the paper,
we set MaxIter = 5.

We have analyzed the performance of the algorithm when
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Fig. 4. Performance of the JpJI-ICA algorithm in determining optimum value
for σ0 (σopt ) in the different 50 Monte-Carlo runs (K = 10, C1 and C(k)

2 are
selected randomly, C(k)

3 = 1,k = 1, ...,K) for 4 different simulation scenarios,
(a) optimum range for σ0, (b) accuracy of determining the type of each joint,
partially-joint and individual sources separately.

σ0 changes manually. Performance of JpJI-ICA algorithm in
determining the type of each extracted source is presented in
the Fig. 5 in the supplementary material. Fig. 4(a) presents the
range of obtained σopt for four different simulation scenarios
and 50 Monte-Carlo runs (K = 10, C1 and C(k)

2 are selected
randomly, and C(k)

3 = 1,k = 1, ...,K). After determining σopt ,
the accuracy of estimating correct number of joint, partially-
joint, and individual sources are shown in Fig. 4(b) separately.

It is worth mentioning that for the simulated fMRI datasets,
we apply JpJI-feature based approach to determine the type
of sources and select σopt as the threshold to discriminate the
partially-joint and individual sources. However, for real fMRI
datasets, we use source based approach to determine the type
of each extracted sources and obtain significant clusters of
voxels that are different in some groups of subjects based on
their partially-joint sources.

Furthermore, we have prepared two scenarios to evaluate the
performance of the algorithm. In the first scenario, we assume
that there are only two clusters of subjects that have similar
partially-joint sources. The results of this scenario are referred
to as 2-class. Similarly, in the second scenario, we assume that
there are three clusters of subjects that have similar partially-
joint sources. The results of this scenario are referred to as 3-
class. We also compare results of clear and noisy observations,
where for noisy observations, a white Gaussian noise is added
to the observations with signal to noise ratio (SNR) of 3dB,
where SNR = 10

(
log10

Signal Power
Noise Power

)
.

In Figs. 5(a-d), simulation results are shown for different
numbers of subjects (K). Note that the results are obtained
from 50 Monte Carlo runs in which C1 and C(k)

2 are selected
randomly to simulate source data. As mentioned, since the
number of simulated sources in SimTB toolbox is limited to
27, only for K = 16, the numbers of individual sources are
nonzero (i.e., N = 150, 0≤C1,C

(k)
2 ≤ 8, C1+ C(k)

2 6= 0, C(k)
3 = 1

for k = 1, ...,K and K = 16). However, for K > 16, subjects
do not have individual sources (i.e., C(k)

3 = 0 for k = 1, ...,K
and K > 16).

Figs. 5(a) and 5(b) show accuracy of our algorithm to
estimate the number of joint, partially-joint, and individual
sources, Acc(C ), and to cluster subjects with their partially-
joint sources, Acc(K̃all), for clear and noisy observations,

respectively. In 5(a), we observe that the algorithm has a better
Acc(C ) in the 3-class scenario, and its clustering accuracy
is approximately the same in all cases. In addition, the
algorithm also clusters the subjects that have similar sources
with accuracy higher than 94% in both 2 and 3 class clustering
scenarios (Fig 5(b)).

In Figs. 5(c) and 5(d), the mean jSIR and run time of
the algorithm are depicted for clear and noisy observations,
respectively. As expected, clear observations have a better
jSIR, and the run time of the algorithm is increased by
increasing K. It should be noted that an Intel(R) Core(TM) i7-
2.40 GHz computer with 8.0 GB of RAM is used to conduct
all experiments.

Figs. 5(e-g) represent the performance of the JpJI-ICA al-
gorithm versus the SNR of observations in dB (K = 10,C(k)

3 =

0,k = 1, ...,K, C1 and C(k)
2 are selected randomly). We observe

that the increase of SNR improves the accuracy of estimating
the number of joint and partially-joint sources (Fig. 5(e)), the
accuracy of determining K̃c,k for all c and k for partially-joint
sources (Fig. 5(f)), and mean jSIR (Fig. 5(g)).

We have designed further experiments to investigate the
relation of JpJI-feature with the spatial shape and type of
extracted sources. In the investigated scenarios, the fourth
order cumulant has more effect on the JpJI-feature, thus, here
we only test the fourth order cumulant of the extracted source
as a feature for spatial shape. Note that the forth order cumu-
lant of y(c,k) with zero mean and unit variance equals to the
kurtosis of y(c,k) [1]. In Fig. 5(h), the scatter plot of the JpJI-
feature versus the kurtosis of extracted sources are depicted
(C1 = 3,C(k)

2 = 2,C(k)
3 = 0,k = 1, ...,16) for 100 Monte Carlo

runs. By fitting a curve on the scatter plot, we found that the
JpJI-feature and kurtosis have a linear relation (in logarithmic
space) for joint sources, which is depicted with dashed red line

(Fig. 5(h)), where JpJIF(c,k) ≈ 14.8
(

Kurt
[
y(c,k)

])2
+8712.7.

Although there is no other algorithms with the JpJI-MDU
source model, it is interesting to compare the introduced JpJI-
ICA method with the existing algorithms designed based on
the JI-MDM source model to show the advantage of the JpJI-
MDU model over the JI-MDM alternative. To this aim we
compare the results of JpJI-ICA, JI-ThICA [4], and CNFE
[3], where in CNFE the Thin ICA method [15] is used in
estimating the number of joint, partially-joint and individual
sources (K = 10,C1 = 2,C(k)

2 = 2,C(k)
3 = 1,k = 1, ...,K). Figs.

6(a) and 6(b) show the Acc(C ) for clear and noisy observa-
tions, respectively. We observe that the CNFE+Thin ICA can
estimate the number of joint sources for clear observations, but
it cannot discriminate the partially-joint and individual sources
(Fig. 6(a)); on the other hand, this algorithm fails in estimating
the number of joint, partially-joint, and individual sources for
noisy observations (Fig. 6b).

Furthermore, the results in Fig. 6 reveal that the JI-ThICA
method cannot discriminate partially-joint sources, and it con-
siders partially-joint sources randomly as joint or individual
sources; note that these results confirm our discussion in
Section II.D. Thus, the JpJI-ICA algorithm is proposed as a
promising solution which determines correctly the numbers of
three types of sources (with accuracy of 100% for joint sources
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(a) (c)(b) (d)

(e) (f) (g) (h)

Fig. 5. (a-d) Performance of the JpJI-ICA algorithm versus the number of subjects, (a) accuracy of estimating correct number of sources for clear and
noisy observations (with SNR 3db), (b) mean accuracy of determining K̃c,k for all c and k based on the partially-joint sources, (c) mean jSIR (dB), and (d)
mean run time in seconds; (e-g) performance of the JpJI-ICA algorithm versus the SNR of observations in dB (K = 10,C(k)

3 = 1,k = 1, ...,K, C1 and C(k)
2 are

selected randomly) in terms of (e) its accuracy to estimate the number of joint and partially-joint sources, (f) its accuracy to determine K̃c,k for all c and k for
partially-joint sources, (g) mean jSIR (dB); and (h) relating JpJI-feature and the Kurtosis of extracted source (K = 16,C1 = 3,C(k)

2 = 2,C(k)
3 = 0,k = 1, ...,K).
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Fig. 6. Performance comparison of CNFE+Thin ICA, JI-ThICA, and JpJI-
ICA algorithms (K = 10,C1 = 2,C(k)

2 = 2,C(k)
3 = 1,k = 1, ...,K) in terms of

their accuracy to estimate the number of joint, partially-joint, and individual
sources separately, (a) for clean observations, (b) for noisy observations, where
J, PJ, and I mean joint, partially-joint and individual sources, respectively.

in clear and noisy observations, 100% for partially-joint and
individual sources in clear observations, and 95%± 5% for
partially-joint and individual sources in noisy observations).

Fig. 6 in the supplementary material shows an example
for the JpJI-MDU source model. We have also presented the
extracted sources by CNFE+thin ICA algorithm, JI-ThICA
algorithm, and JpJI-ICA algorithm for noisy observations.

C. Results on Real fMRI Datasets

In this section, we introduce the analyzed two real fMRI
datasets and present the extracted results.

1) Same story, different story dataset [17]: The interpre-
tation of people about events depends on the external inputs
from the world and internal cognitive processes in their brain

[25]. In [17], the external inputs as stimuli are constant, and
the beliefs of two groups of subjects with respect to stimuli
are changed before presenting the stimuli. The authors wanted
to figure out how the brain conducts the same stimuli in
different ways. The dataset is downloaded from the dataspace
of Princeton Neuroscience Institute3.

The details of fMRI stimuli and the procedure of the data
analysis applied in [17] are presented in the supplementary
material.

fMRI data analysis: In the current study, we apply the
entropy rate (ER)-based order estimation method using finite
memory length model (ER-FM) [26] to estimate C(k);k =
1, ...,K (Fig. 7(b)). This order selection model is shown to
be a good match of fMRI data [26]. Note that the original
number of BOLD signal’s time points is 475.

Since the subjects are from more than one class (e.g., cheat-
ing and paranoia), partially-joint sources are more important to
find the differences between the brain activities of subjects. On
the other hand, it is clear that min(C1 +C(k)

2 ; k = 1, ...,K)≤
min(C(k) ; k = 1, ...,K), therefore min(C(k) ; k = 1, ...,K) is
considered as the number of independent components for all
subjects in order to make sure that at least min(C(k)

2 ; k =
1, ...,K) partially-joint sources are extracted. Then we apply
the JpJI-ICA algorithm on the preprocessed fMRI data of 40
subjects to extract 48 independent components.

Fig. 7(a) show the mean spatial distribution of significant
sources (p < 0.05 FDR corrected) of the first 18 extracted
independent components for 2 classes of subjects, 20 subjects
in the cheating class and 20 subjects in paranoia class. It is

3This dataset is available at
http://arks.princeton.edu/ark:/88435/dsp0141687k93v [Accessed: 2018-10-12]
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Fig. 7. (a) Mean spatial distribution of the first 18 significant sources (p < 0.05 FDR corrected) from 20 subjects in the cheating class and 20 subjects in
the paranoia class using the JpJI-ICA algorithm, (b) estimated order for 40 subjects using ER-FM model (C(k),k = 1, ...,40) ,(c) JpJI-feature for the first 25
extracted sources, and (d) map of significant clusters in the source 3.

worth mentioning that the spatial distribution of brain activities
in Figs. 7 and 8 are plotted using nilearn toolbox [27].

As it can be seen in Fig. 7(a) the sources with index bigger
than 18 for 2 classes are not presented, because their mean
spatial map across subjects in each class had no significant
voxel with p < 0.05 FDR corrected. This is because these
extracted sources are individual and their averages across sub-
jects are not significant. Fig. 7 in the supplementary material
represents an example of individual sources in sources with
the index 23 and 30 for 5 subjects selected randomly (3 from
cheating class and 2 from paranoia class).

Furthermore, Fig. 7(c) represents the JpJI-feature for the
first 25 extracted sources. This plot shows that for sources with
indexes bigger than 22 we can surely conclude that there are
no joint or partially-joint sources across cheating and paranoia
classes.

Comparisons between the two groups of subjects were made
by using t-tests in the spatial map of sources, with this null
hypothesis that for each voxel, the mean of source values
in paranoia condition is equal to the mean of source values
in cheating condition (Pvalue = 0.01). The null hypothesis
is rejected only in source 3 (colored clusters in Fig. 7(d)).
Therefore, using the spatial shapes of extracted sources, we
observed that the source 3 is a partially-joint source with
disjoint clusters for cheating and paranoia classes.

In Fig. 7(d) the clusters in each map are numbered, where
number 1 is related to right Caudate with cluster size of 90 and
center of the mass (CM) of cluster with [+40.7,+10.6,−33.0]
in millimeter; and number 2 is related to left Caudate with

cluster size of 68 and cluster CM with [+43.5,+9.3,+24.0].
The bilateral Caudate nucleus is significant brain region in
which its activity is different in cheating and paranoia condi-
tion (bilateral Caudate nucleus is activated in a greater extent
in cheating condition), as shown in Fig. 7(d). However, in
[17], the Caudate nucleus was not found in the whole brain
exploratory analysis as a region that is significantly different
in the two conditions.

It is worth mentioning that the Caudate has been implicated
in a variety of cognitive processes [28]. For example, tasks that
require critical processes for goal-directed actions in a social
context robustly activate the Caudate [29]. The role of the
Caudate in the complex interactions between social influences
and reward is also highlighted by examining the modulation of
Caudate activity by perceptions of moral character and altruis-
tic punishment [30]. We can conclude that the Caudate nucleus
processes feedback information [31] especially when feedback
is behaviorally relevant [32]. Similarly, in our study, bilateral
Caudate nucleus is a significant brain region that behaves
differently in mentalizing cheating and paranoia condition.
Thus, previous beliefs of two groups of subjects concerning
stimuli (as feedback information) influence the activation of
Caudate. This finding is consistence with previous studies [31],
[32].

2) Depression dataset [18]: The goal of this dataset is to
compare the brain activity of depressed and control (healthy)
subjects when they listen to emotional auditory stimuli, where
emotional kinds of music (positive and negative) and sounds
(positive and negative) stimuli are used. This data was obtained
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from the Openneuro data repository. Its accession number is
ds0001714.

The details of fMRI stimuli and the procedure of the data
analysis applied in [18] are presented in the supplementary
material.

fMRI data analysis: In this study, we have performed
fMRI preprocessing steps by using the AFNI for raw data
of 39 subjects including: (1) registering functional images to
the first image (using align epi anat.py), (2) normalizing each
participant’s anatomical image to the Montreal Neurological
Institute (MNI) template (using align epi anat.py), (3) regis-
tering head motion-corrected functional images to participant’s
normalized anatomical image (using align epi anat.py), (4)
slice-timing correction by using heptic interpolation (using
3dTshift function, (5) smoothing by using a Gaussian filter
with 6 mm kernel (using 3dmerge function), and (6) high-
pass filtering and spike removing the BOLD signals (using
3dBandpass function with fbot=0.009). In addition, the data
of 39 subjects for four different stimuli are concatenated and
supposed as 156 (39×4) different subjects.

We have used the ER-FM order selection model to estimate
C(k);k = 1, ...,K for subjects in different stimuli types (Positive
music in Fig. 8(a), Negative music in Fig. 8(b), Positive sound
in Fig. 8(c), and Negative sound in Fig. 8(d)). Note that the
original number of BOLD signal’s time points for music and
sound stimuli are 60 and 40, respectively.

We have selected C(k) = 10, k = 1, ...,156
(min

{
C(1), ...,C(K)

}
= 7) because joint sources and partially-

joint sources that cluster subjects to two classes (control
and depressed) are more important in analyzing the dataset.
Then we apply the JpJI-ICA algorithm on the preprocessed
fMRI data. Fig. 8(e) shows the mean spatial distribution of
significant sources (p < 0.05 FDR corrected) of the first 4
extracted independent components for 2 classes of subjects
for all 4 stimuli types. The results for depressed and control
subjects are presented separately, 20 subjects in the control
class and 19 subjects in the depressed class. The sources
with index bigger than 5 for 2 classes are not presented,
because their mean spatial map had no significant voxel. This
is because these extracted sources are individual and their
averages across subjects are not significant. Fig. 8 in the
supplementary material represents an example of individual
sources in the 7th extracted source for one random subject
from the control class and one random subject from the
depressed class. These sources are presented for all stimuli
types, separately.

Fig. 8(f) represents the mean JpJI-feature of extracted
sources for 4 stimuli types and 2 group of subjects, separately.

Fig. 8(g) shows maps of significant clusters (FDR corrected
Pvalue = 10−2) of the first three extracted sources. We observe
that in source 1 two different parts of Precuneus are activated
for control and depressed subjects. Besides, sources 2 and
3 are higher in depressed subjects with all types of stimuli
and depressed subjects with music stimuli, respectively. The

4This dataset is available at
https://openneuro.org/datasets/ds000171/versions/00001 [Accessed: 2018-10-
01].

TABLE II
THE NUMBER, SIZE, CENTER OF MASS AND NAME OF SIGNIFICANT

CLUSTERS IN EXTRACTED PARTIALLY-JOINT SOURCES FOR ”DEPRESSION”
DATASET.

Cluster
size CM [x,y,z] Cluster name

Source 2
(Higher in Depressed)

467 +3.2 +32.8 -3.4 (1) left Culmen
253 +0.7 +3.1 -14.2 (2) left Subcallosal Gyrus

Source 3
(Higher in Depressed-Music)

186 +31.5 -57.0 9.8 (1) Left Middle Frontal Gyrus
159 -23.5 -59.0 +12.5 (2) Right Middle Frontal Gyrus

clusters in each map are numbered (Fig. 8(g)), and the number,
size, center of mass, name, and function of significant clusters
in extracted partially-joint sources are listed in Table 2.

It is worth mentioning that in source 2 the left Culmen has
higher activity in depressed patients which is consistent with
[33] which comprising 188 depressed patients and 169 healthy
controls. Other neuroimaging studies of treatment in depressed
patients also show consistent activations in the left Culmen
[34]. On the other hand, the left Subcallosal Gyrus (SCG) has
higher activity in depressed subjects in source 2. Our results
are consistent with the previous imaging studies which show
an increased SCG activity in patients with depression [35]–
[37]. This finding further supports the argument that the SCG
is an important region in the pathophysiology of depression.
It is worth mentioning that Culmen and SCG were not found
as significant brain regions in the original paper [18].

IV. CONCLUSIONS

In this paper, we introduced a new source model, referred
to as JpJI-MDU, for joint analysis of multi-subject datasets.
Accordingly, we presented a new algorithm (JpJI-ICA) to
extract three types of sources: joint (common among all
subjects), partially-joint (common among a subset of subjects),
and individual (specific for each subject). In the JpJI-ICA
algorithm, a deflation framework is employed to extract latent
sources across multiple subjects, and sources of each subject
are extracted one-by-one by maximizing the cost function of
the algorithm. Higher order cumulants are selected as the base
of the cost function of the JpJI-ICA algorithm because the
local convergence of higher order cumulants is not affected
by the distributions of sources with non-zero cumulant. The
results from both simulated and real fMRI data showed the
benefits of the proposed algorithm as either a complementary
or alternative method for the inference of fMRI group data.
Furthermore, the JpJI-ICA algorithm can provide a useful
interpretation of multi-subject fMRI data and help to deal with
more complex and realistic source models. The algorithm de-
termines the types of sources in 2-class and 3-class simulation
scenarios with accuracy of 95% and 100%, respectively. Also,
in both scenarios, subjects with similar sources are grouped
with the accuracy higher than 94%. We also compared our
algorithm with its alternatives designed for the JI-MDM source
model (the so-called JI-ThICA and CNFE) and showed that it
significantly outperforms the existing methods in extracting
partially-joint sources. By using real fMRI data, we have
demonstrated that multi-subject datasets follow the JpJI-MDU
source model, and the JpJI-ICA algorithm can extract plausible
significant joint and partially-joint spatial maps across different
groups of subjects.
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Fig. 8. (a-d) Estimated order for 39 subjects (C(k),k = 1, ...,39) with different stimuli types (Positive music, Negative music, Positive sound, Negative
sound) using ER-FM model, (e) mean spatial distribution of the first 4 significant sources (p < 0.05 FDR corrected) from control and depressed subjects, (f)
JpJI-feature for the first 10 extracted sources separately for different stimuli, (g) map of significant voxels in source 1, 2, and 3.
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