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Abstract: Fetal electrocardiogram (fECG) monitoring is a beneficial method for assessing fetal 

health and diagnosing the fetal cardiac condition during pregnancy. In this study, an algorithm is 

proposed to extract fECG from maternal abdominal signals based on doubly constrained block-term 

(DoCoBT) tensor decomposition. This tensor decomposition method is constrained by quasi-

periodicity constraints of fetal and maternal ECG signals. Tensor decompositions are more powerful 

tools than matrix decomposition, due to employing more information for source separation. 

Tensorizing abdominal signals and using periodicity constraints of fetal and maternal ECG, 

appropriately separates subspaces of the mother, the fetus(es) and noise. The quantitative and 

qualitative results of the proposed method show improved performance of DoCoBT decomposition 

versus other tensor and matrix decomposition methods in noisy conditions. 
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1. Introduction 

The abdominal fetal electrocardiogram (fECG) is the electrical activity of the fetal heart that is 

recorded by abdominal electrodes. It is a very important tool for monitoring and evaluation of fetal 

cardiac activity. This signal is generated from a small heart, so the signal amplitude is low and it is 

morphologically quite similar to the adult ECG, with a higher heart rate. Non-invasive fECG 

extraction means extracting a clean fECG signal from the abdominal mixed signals, which is an 
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interesting issue for several reasons [1]. The fECG provides useful information about fetal health for 

clinicians and helps them in better diagnosis. It also provides more precise data on fetal heart rate 

compared to ultrasonic Doppler techniques [2]. Nevertheless, there are limitations in non-invasive 

fECG extraction, due to the presence of interference signals such as the much stronger maternal ECG 

as the main interference source, muscle noise, motion artifacts, and etc. Moreover, since fECG and 

maternal ECG have temporal and spectral overlap, fECG separation from the abdominal mixture is 

complicated [3]. These limitations could be considered as the major difficulties in fECG extraction, 

which have turned it to one of the major challenges in biomedical signal processing. 

In the field of non-invasive fECG extraction, there are many mathematical based methods such 

as Kalman Filter [4–6], wavelet transform [7–11], blind source separation [12–17], and matrix 

decomposition [18,19]. These methods attempt to detect R-peaks or extract the fECG from either 

abdominal or abdominal and thoracic recordings. In recent years, an approach has been developed in 

which, tensor decompositions have been employed for signal processing and fECG extraction, 

whereby promising results have been achieved [20]. An effective solution for the extraction and 

separation of sources from tensorized observations could be obtained by constrained tensor 

decomposition and modified cost function. In addition, a correct selection of decomposition type and 

the method of constructing tensors from observation data are very important in achieving significant 

results. 

In [21], a tensor decomposition-based algorithm for fECG extraction is introduced by adding 

fetal periodicity constraint to Tucker decomposition. Because of the low-amplitude of the fetal signal 

compared to the high-amplitude of the maternal signal, the drawback of this method, especially in 

Low SNRs, is the use of only the fetal periodicity constraint. 

Block-term decomposition (BTD) decomposes a tensor into tensors with a rank greater than one. 

In the application of fECG extraction, by changing the cost function and applying constraints on it, 

the structure of the BTD can be modified to decompose the tensor into three blocks containing 

maternal, fetal, and noise subspaces. In this paper, by using some source separation methods (πCA or 

ICA), the fECG peaks are first extracted and then, by using the extracted subspace from the 

observation matrix (abdominal mixed signals), the observation tensor is formed, and finally by 

applying periodicity constraints on BTD, the fECG signal could be extracted. In fact, by utilizing the 

useful information of the ECG signal, the semi-periodicity property, is the objective of constraining 

the BT decomposition. Regarding the semi-periodicity of both the maternal ECG (mECG) and fECG 

signals, we apply two constraints on the BTD, simultaneously. 

The remainder of this paper is organized as follows. Section 2 presents the concepts and 

relations of BTD. Section 3 involves how to construct the observations tensor and the proposed 

constrained BTD. Finally, the results and conclusion are presented in sections 4 and 5, respectively. 

2. Block term decomposition 

A tensor is a multidimensional array, which is the higher-order generalization of vector and 

matrix [22]. Decompositions of tensors have applications in many fields such as signal processing 

and image processing. CP (Canonical Polyadic) decomposition approximates a tensor by a sum of 

Rank-1 tensors. 
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Figure 1. The analogy between CPD and BTD [20]. 

In many applications, e.g. blind source separation (BSS), a given tensor should be decomposed 

into tensors of rank higher than one. BTD has been introduced for this purpose. In contrast to the 

CPD, BTD approximates a tensor by a sum of higher-rank terms (Figure 1). In this section, 

definitions and characteristics of BTD are represented. A block term decomposition of a tensor 

         is a decomposition of   of the form 
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where the main tensor          is decomposed to a sum of Rank-(  ,   ,   ) terms; A  

     ,     
    , and C   

     are the factor matrices where     ,     ,     , 

      and      
         are the core tensors. A visual representation of a third-order 

tensor is shown in Figure 2. 

 

Figure 2. Visualization of the decomposition of a tensor in a sum of Rank-(L,M,N) 

terms [23]. 

Another type of BT decomposition writes a third-order tensor as a sum of R Rank-(  ,   ,1) 

terms. Each of these terms can be written as the outer product of a matrix and a vector  

(2)   ∑ (A    
 )    
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147 

Mathematical Biosciences and Engineering                                                          Volume 17, Issue 1, 144–159. 

The matricized form of BT decomposition based on factor matrices could be expressed as 

follows 

(3) 

  ( )  (  C) A    

 ( )  (A C)     

                                    ( )  ,   (E )   (E )     (E )- C
  

where A,   and C are more general matrices and considered as A  ,A A   A -,   ,        -, 

and C  ,        -. Figure 3 shows this decomposition. 

 

Figure 3. Visualization of the decomposition of a tensor in a sum of Rank-(L_r, L_r,1) 

terms [24]. 

The optimal estimate of the factor matrices A ,    and C  could be obtained by solving the 

optimization problem (4) by using the alternating least square method [23]. 

(4)    
A   C

    ∑(A    
 )    

 

   

  

Other tensor decomposition methods and more details of BTD are presented in [22,23,25,26]. 

3. Proposed method: DoCoBT decomposition 

In this section, the proposed method for fECG extraction based on tensor decomposition is 

explained in two parts: The doubly periodicity constraints and the DOCoBT decomposition. 

Figure 4 shows the block diagram of the proposed method and contains tensor construction by using 

maternal abdominal signals, constrained BT decomposition by using maternal and fetal periodicity 

constraints, detection, and selection of fetal sources and reconstruction of fECG in the sensor space. 

 

Figure 4. The proposed algorithm for fECG extraction. 
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3.1. Tensor construction  

The tensor used in this study is a third-order one          with channel   time   subspace 

structure (L = number of channels, N = number of time indecis, K = number of subspaces).  

In order to create this tensor, the abdominal signals and fECG subspace obtained by using a 

source separation methods (ICA or 𝜋CA) are placed in the first and second slice of the third mode of 

the tensor, respectively. Figure 5 shows the structure of these tensors. 

 

Figure 5. Third-order tensor with channel   time   subspace. 

3.2. Fetal R-peak detection 

To eliminate user interference and to speed up processing for fECG extraction, it is important to 

automatically identify the type of sources (maternal, noise and fetal sources) obtained from source 

separation methods. The type of sources can be determined by employing the maternal and fetal 

R-peaks and using correlation analysis. In order to extract fetal R-peaks, a πCA-based algorithm is 

proposed in this section (Figure 6). Due to the dominance of mECG signals, at first, the maternal R-

peaks are extracted using one of the common peak detection methods [27,28]. Then, the observation 

m trix is de omposed into its sour es using πCA  nd m tern l R-pe ks  In the πCA  lgorithm, the 

extracted sources are ranked according to their synchronization degree (periodicity) with a vector of 

peaks impulse train. Therefore, since the maternal R-pe ks  re used  s the impulse tr in in the πCA 

method, the extracted sources are ordered based on their similarity to the mECG. So, the most similar 

sources to the mECG could be observed in the source matrix from the first to the last extracted 

component. Consequently, the last signals have the least similarity to the mECG, and accordingly, 

the fetal components could be observed in the last rows. Since the average beat-rate for mother and 

fetus are different significantly, after extracting the R-peaks of the last signals, we calculate average 

RR interval and compare it with a threshold T = 0.5 sec (the average RR interval for mother and 

fetus are about 0.9 sec and 0.45 sec respectively). The first semi-periodic source with average RR 

interval less than 0.5 sec is recognized as fetal signal and its R-peaks are utilized as fetal R-peaks.  
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Figure 6. The πCA based algorithm for fetal R-peak extraction.  

3.3. Periodicity constraint 

Biomedical signals usually contain information that could be employed for separation and 

extraction of desired sources. The semi-periodicity of ECG and fECG signals could be considered as 

the mentioned information. 

In [29], the cost function (5) has been introduced as a criterion of periodicity for semi-periodic 

signals. Thus, the maximization of the following cost function could be used as a means of extracting 

the semi-periodic signal  ( ) 

(5) ε( )   
  * ( ) (    )+

  * ( )
 +

 

where   *+ represents averaging over time index  , and     is the time-varying period of  ( ). This 

maximization problem could be reformed as a minimization problem: 

(6)    
 
|  * ( ) (    )+     * ( )

 +|  

In [21], the penalty (5) has been used in order to force Tucker decomposition (called it 𝜋Tucker) 

to extract fetal components as periodic signals. In this method, the mother’s ECG as a strong periodic 

interference has been ignored.  

3.4. DoCoBT decomposition 

In order to extract the fECG from abdominal signals, we first construct an observation tensor 

and then decompose it into three blocks or tensors using BTD. The first and second blocks are 

constrained by fetal and maternal ECG periodicity constraints, respectively, and the third one is 

considered as a noise block (Figure 7). 



150 

Mathematical Biosciences and Engineering                                                          Volume 17, Issue 1, 144–159. 

 

Figure 7. Decomposition of the observation tensor into three blocks. 

By considering the BTD for three blocks, Eq 2 for observation tensor          could be 

written as 

(7)   (    
     )  (    

     )  (    
     ) 

The matricized form of Eq 7 could be represented as 

(8) 
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where, A, B and C contain the factor matrices and A and C are obtained by closed equations [26] 
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   )  contain channel, 

temporal and subspace components, respectively. Thus, the penalty (6) could be written for B1 and 

B2 factor matrices that are initialized with R1 fetal and R2 maternal sources, extracted from a BSS 

algorithm such as ICA 
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where     and     are the fECG and mECG time-varying periods, respectively.   ( ,  ) and   ( ,  ), 

as  th rows of the factor matrices B1 and B2, contain the  th time index of fetal and maternal 

components, respectively. Moreover, B3 is initialized with R3 noise components extracted from the 

BSS algorithm. Finally, to estimate matrix B (sources matrix), the following optimization problem 

with doubly periodicity constraints could be obtained 

(12) 
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where    and    are the penalty coefficients of fECG and mECG periodicity constraints, 

respectively. 
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Now, by using  ( ,  )    
   and defining       {        
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Since the optimization problem (13) does not have a closed-form solution, one can use the 

gradient descent algorithm to update the factor matrices B1, B2 and B3, alternatively. So the 
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Using Eq 15 we introduce Algorithm 1 to estimate matrices A,  , C and to extract the fetal ECG 

using doubly constrained block term decomposition. We named this algorithm as ―doubly 

constrained block term (DoCo  )‖ 

(15)              
  

   
|
       

             

Algorithm 1 DoCoBT decomposition 

Input:         ,   ,   ,   

Output:       

1:  procedure DoCoBT 

2:              Initialize :  ,                     (C is initialized randomly) 

3:              while not converge do 

4:                ,(     )   ( )-
   

5:              
  

   
|
       

              

6:                *,(      )    (       )     (       )   -
   ( )+ 

  

7:               ∑ (    
 )    

 
     

8:             end while 

9:  end procedure 

10: return       
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Eventually, the fetal subspace is achieved via updated factor matrices       and    as 

(16)   (    
     ) 

4. Results 

In this section, we present the datasets and evaluation measures at first. Then, the proposed 

method using both synthetic and real data is evaluated. 

4.1. Dataset and evaluation criterion 

4.1.1.  Synthetic dataset 

In order to evaluate the proposed method, we use a synthetic dataset that resembles real fECG 

signals. These data must contain mECG as the main interference and other noises such electrode 

movement and clear fECG to compute signal to noise ratio. The open-source electrophysiological 

toolbox (OSET) contains the required functions for generating synthetic maternal-fetal ECG datasets, 

using the following data model for modeling maternal abdominal signals [30]. 

(17)  ( )      ( )     ( )     ( )    ( ) 

In this model,    is the maternal ECG as interference and    is the fetal ECG.   and   represent 

colored and white noises respectively. Therefore, parameter   controls the signal-to-interference 

ratio (   ) and the parameters   and   control the signal-to-noise ratio (   ). In order to evaluate 

the quality of the extracted fECG, the signal-to-interference and noise ratio (    ) is calculated for 

the extracted fECG (output) signal and the                 is calculated as a measure of fECG 

denoising performance [31]: 
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                            –          . 

The synthetic data that are generated and used in this paper have the dimensionality of 8   

 10000 (8 channel and 10000 time indices and thus the size of the tensor is 8   10000   2). 

4.1.2. Real dataset 

In addition to the synthetic signals, the real dataset Abdominal and Direct Fetal 

Electrocardiogram Database (ADFED) is used to evaluate the generalization of the proposed 

method. ADFED consists of five channels (four channels of abdominal ECG and one channel of fetal 

scalp ECG) with 1 kHz sampling rate and length of 10 seconds [32].  



153 

Mathematical Biosciences and Engineering                                                          Volume 17, Issue 1, 144–159. 

4.2. Evaluation of the proposed method 

As for real data, the clean fECG is unknown. Therefore, the SINR and the performance of the 

proposed method can not be calculated quantitatively. Therefore, the proposed approach is evaluated 

on simulated data with different noise levels. To attain this goal, 10,000 samples of eight lead 

synthetic ECG mixtures with SINRinput = {-5,-10,-15,-20,-25} and 1000 Hz sampling rate are 

generated 10 times per SINR. The performance of the proposed method is compared with some 

related source separation methods such as ICA (using the JADE algorithm) [33], πCA [29] and 

π u ker [21]  In πCA  nd ICA methods, first, the components of the mother and fetus are extracted. 

Then, the fetal subspace is reconstructed using the fetal components. Regarding the π u ker method, 

the fetal sources are extra ted from the o serv tion tensor  y using πCA or ICA   hen, the mode 2 

factor matrix including the fetal sources is updated, iteratively. Finally, the main tensor is 

reconstructed again via the updated mode 2 factor matrix. 

In the proposed method, we need to have an estimation of the fetal and maternal signals as 

initial sources. Therefore, the observation tensor has to be matricized to extract initial sources using 

source separation methods. For automatic detection of mECG and fECG sources, the correlation 

criterion is applied between the R-peaks of these initial sources and the R-peaks of maternal/fetal 

signals derived from the maternal/fetal R-peak detection algorithm (section 3.2). Finally, the 

determined fetal and maternal sources are placed in the B1 and B2 factor matrices as the initial 

estimation of the tensor decomposition. The sources that do not pass the correlation criterion are 

considered as noise and are placed in the factor matrix B3.  

Here, BTD decomposes the observations tensor into three tensors. According to the proposed 

method, the factor matrices B1, B2 and B3 are updated using the gradient descent algorithm, 

alternatively. However, the matrix B3 could be calculated by solving 
   

   
   , considering that no 

constraint is imposed on it. Eventually, the first, second and third blocks are reconstructed via 

updated factor matrices. The first slices of the first block and the second block represent fECG and 

mECG subspaces, respectively. Moreover, to obtain parameters   ,    and  , the data are divided 

into two parts. A portion of data is utilized to obtain the parameters experimentally, while the 

remaining part is employed for the algorithm validation. In this algorithm,   ,    and    are chosen 

to be   , (    )  and 10
-6

, respectively. 

Table 1. SINR improvement for SINRinput = -5, -10, -15, -20, -25. 

SINRinput(dB) ICA πCA πTucker DoCoBT 

(ICA) 

DoCoBT 

(πCA) 

-5 14.31 14.58 11 14.92 15.04  

-10 17.93 18.35 16.4 18.27 18.57 

-15 19.25 20.22 20.74 22.23 22.71 

-20 22.84 22.53 23.87 24.47 25.02 

-25 23.89 22.98 24.5 25.45 25.64 
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The quantitative results of the evaluation of the proposed methods in comparison with the other 

mentioned methods are summarized in Table 1 and a visual outline of SINR improvement of all 

methods can be observed in Figure 8. DoCoBT represents the proposed method. DoCoBT (ICA) 

corresponds to the case, where the initial sources of the factor matrices are the components of the 

ICA decomposition and the second slice of the input tensor is the fECG subspace estimated by 

employing ICA. In DoCoBT (πCA), the se ond sli e of the tensor  nd the initi l sour es  re 

estimated through the πCA  lgorithm   

 

Figure 8. SINR improvement for SINRinput = -5, -10, -15, -20, -25. 

As could  e seen, the proposed method performs  etter th n ICA, πCA,  nd π u ker methods 

for a large range of SINRin values. It can also be concluded that using the results of other methods 

(ICA  nd πCA) will improve the    ur  y of fECG extraction. In fact, one of the advantages of 

tensor decomposition is that it uses additional information alongside the main observations to obtain 

more accurate results. The most important conclusion is that the simultaneous usage of maternal and 

fetal periodicity constraints can result in the extraction of fECG with higher SINR values. The 

extracted fECG sources using the mentioned methods are shown in Figure 9. In order to demonstrate 

the performance of the proposed method for subspaces reconstruction, several channels of 

reconstructed subspaces are illustrated in Figures 10 and 11. In this paper, the real data are used to 

evaluate the generalization of the methods. The reconstructed fetal components in sensor space are 

represented in Figure 12. The ability of the proposed method in fetal subspaces reconstruction is 

obvious in Figures 10 and 12.  
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Figure 9. Extracted fECG components using ICA, πCA  nd DoCo  D methods. 

 

Figure 10. Reconstructed fECG signals in sensor space. 
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Figure 11. Reconstructed mECG signals in sensor space. 

 

Figure 12.  he results o t ined  y  pplying ICA, πCA  nd DoCo  D methods on re l 

data. 

5. Conclusion 

In this study, we proposed a constrained tensor decomposition method based on BT tensor 

decomposition to extract fECG from maternal abdominal recordings. First, the observation tensor is 

constructed using abdominal recordings and the fECG subspace (obtained from an existing approach, 

such as ICA). Then, the observation tensor is decomposed into three tensors by using the BT 
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decomposition constrained with two constraints related to the period of the fetus and mother's ECG. 

In this method, the estimated fetal and maternal sources are placed in the factor matrices as the initial 

values of the tensor decomposition and updated in an alternative algorithm. Experimental results 

show that decomposition of the main tensor to three tensors and simultaneous usage of maternal and 

fetal quasi-periodicity constraints lead to an increase in SINR improvement in noisy conditions 

compared to ICA and πCA methods. In addition, the limitations of the proposed method are: (1) 

Slow convergence of the gradient descent algorithm, and (2) the requirement for choosing (tuning) 

the values of the regularization parameters    and   . 

In order to achieve superior results, a post-processing step such as Kalman filtering can be 

considered to denoise the sources of the factor matrices. Also, the use of other tensor decompositions 

such as CP and rewriting their cost functions based on periodicity constraints could be considered as 

another future work.  
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