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ABSTRACT

This paper presents a methodology to extract a number of quantifier features to characterize volumetric
behavior of trajectories in phase space. These features quantify expanding and contracting behaviors and
complexity that can be used in nonlinear and chaotic signals classification or clustering problems. One of
the features is directly extracted from the distance matrix and seven features are extracted from a matrix
that is subsequently obtained from the distance matrix. To illustrate the proposed quantifiers, Mackey-
Glass time series and Lorenz system were employed and feature evaluation was performed. It is shown
that the proposed quantifier features are robust to different initializations and can quantify volumetric
behavior characteristics. In addition, the ability of these features to differentiate between signals with
different parameters is compared with some common nonlinear features such as fractal dimensions and

recurrence quantification analysis features.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

There are two separate, but interacting lines of development
characterizing chaos and nonlinear theory. The first line focuses
on ordinary nonlinear differences and differential equations that
may have chaotic behavior meaning the system is available. In the
second line, the system is not available and relies heavily on the
computational study of chaotic system outputs and includes meth-
ods for investigating potential chaotic behavior in observed time
series.

Describing global and local behavior of trajectories can lead to
a better understanding of attractor properties. These properties of
attractor can give us valuable information about systems and their
behavior. For example, Lyapunov exponents that are extracted from
trajectory can indicate dissipation of the system [1]. In this paper,
eight features based on local and global behaviors of trajectory in
phase space are proposed in terms of volumetric and complexity.
Lyapunov exponents provide rate of local separation in each di-
mension of space, while the proposed method can provide a single
value of expansion rate for the whole trajectory globally. Moreover,
the rates of expansion and contraction will be achieved separately.
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Fractal dimensions focus on occupying space capacity in detail [2],
whereas the proposed method presents a feature that provides
occupied space globally. The complexity feature in the proposed
method presents a new meaning of complexity that has a differ-
ent meaning from approximate [3] and sample [4] entropies. This
meaning has a relationship with the variations in expansion and
contraction speed. Some of the proposed features have indepen-
dent meanings and some other features have meanings in compar-
ison to other features. These features quantify some properties of
the trajectories obtained from nonlinear and chaotic signals. There-
fore, they can be employed in classification problems in applica-
tions such as biomedical signal processing, finance, electronics, etc,
in which the observed signals are nonlinear or chaotic.

The rest of the paper is organized as follows. Section 2 re-
views some related works. The proposed method is described in
Section 3. Section 4 is devoted to evaluate and discuss the pro-
posed method by comparing two nonlinear systems with different
parameters. Finally, our conclusions are stated in Section 5.

2. Related work

In many studies, trajectory in phase space is reconstructed from
time series and features or properties are extracted. These features
characterize the behavior of trajectories or attractors that help to
identify or classify systems and trace their changes. For example,
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Fig. 1. Trajectory in phase space. In-ward and out-ward sequences of X, are shown.
T; ; is distance between X; and x;.

there are entropy-based features [5] such as approximate entropy
(ApEn) [3], which is a technique to quantify the amount of reg-
ularity and unpredictability of fluctuations over time-series data
[6], and sample entropy (SampEn), which is a modification of ap-
proximate entropy, used extensively for assessing complexity of a
physiological time-series signal, thereby diagnosing diseased state
[4]. Lyapunov exponent is a quantifier that characterizes the rate of
separation of infinitesimally close trajectories [1,7]. The character-
istics of some features are focused on measuring the space-filling
capacity of patterns that illustrate how a fractal scales differently
from the space it is embedded in [8], namely Fractal dimension
[2] such as Higuchi [9]. Katz feature [10] characterizes stretching
and distribution of trajectory in phase space by comparing the re-
lationship between the length of trajectory and diagonals. In some
cases, quantification of behavior of signals or systems is done by
a transform such as Discrete Fourier Transform (DTF) [11], Discrete
Wavelet Transform(DWT) [12], and Singular Value Decomposition
(SVD) [13]. These transforms are relatively general and can be used
in a variety of applications. Local Fractional z-Transforms [14], Lo-
cal Fractional Continuous Wavelet Transform [15] and Local Frac-
tional Discrete Wavelet Transform [16] are examples of more spe-
cific transforms applied on signals that are defined on cantor sets.
Recurrence quantification analysis (RQA) [17] characterizes recur-
rence and returning behavior of a trajectory by using Recurrence
Plot (RP) [18]. All of these features characterize properties of be-
havior of trajectories in phase space and each is used in many ap-
plications in physics, finance or engineering [19-26].

3. Method

This paper proposes a method to extract features from phase
space of nonlinear systems. In this study, we focus on finding prop-
erties of trajectories that can present “volumetric behavior” of se-
quence of state vectors. Volumetric behavior characterizes occu-
pied space and changes in occupied space of trajectory in space.
First, we introduce the concept of phase space availability Section
2.1), and then we present a method to extract appropriate features
(Section 2.2). This section is followed by describing these features
(Section 2.3).

3.1. Trajectories in phase space

Dynamical systems are usually represented in three types:
1- phase space 2- time series 3- time-evolution law. In a d-
dimensional phase space of a dynamic system at a fixed time t, the
state of the system can be specified by d variables. These variables
form vector X (t):

X () = X1 (), x2(0), ..., X (E)T (1)

For continuous-time systems, the evolution time is given by a
set of differential equations. In fact, the evolution time law allows
us to determine the state of the system at time t from the state at
all previous times.

—

dX®) _px)

. pd ., pd
i F:R R

X (t) = (2)

The vector X (t) defines a trajectory in d-dimensional phase
space.

In an experimental setting, we do not often have access to all
d states of phase space and a single discrete time measurement is
available. In this case, phase space has to be reconstructed from
time series x(t) = {x1.x2.?,Xy} [27]. Takens method [28] is fre-
quently used for reconstructing phase space from time series x(t)
using two parameters embedding dimension ¢ and delay 7:
Xit) = (X, Xigrs - i=[1 N—(u-Dt] (3)

The false nearest-neighbors algorithm [29] and the mutual in-
formation [30] can be used for choosing appropriate dimension w
and delay T parameters, respectively.

In next subsection, we propose a method to quantify volumetric
behavior of trajectory.

< Xip(u-1)1)>

X X X X X
?11 t ?nﬂ n?jfz n+3° 11:4 -
1 1+1 142 143 1+4
0 2 3 3.5 375 2 3 35 375
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T = 3 1 0 05 075 (=T, = 3 1 0.5 0.75
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Fig. 2. An example of calculating matrix T*. Xn, Xn11, Xn42, Xni3 and X,,4 are stated in one-dimensional space. T is distance matrix that is provided by calculating distance of
each pair of states. Matrix Ty is achieved by removing the main diagonal of matrix T. This matrix is converted to T* by using Eq. (8).
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Fig. 3. Samples of different volumetric behavior of trajectory in phase space. Red circle is start time.

3.2. Volumetric behavior of trajectory

The proposed method is based on volumetric behavior of tra-
jectory and extracts features that can reveal a number of charac-
teristics of trajectory in phase space.

3.2.1. Definitions
Suppose trajectory L is constructed from N state vectors:

- - —
L= X1, X2,..., XN. (4)

Before extracting features, we need to define matrix T and T*
which include information about the relationship between state
vectors. Distance matrix T is given by Eq. (5) which presents dis-
tance between all vector states of trajectory:

Tij = Distance(X i, Yj), i,j=[1 N]
0 T]Yz T]‘N
T2,l 0 TZ,N
I : ) : (5)
Tvi ... ... 0

Matrix T is the basis of recurrence plots method [17]. Recur-
rence plots method uses the Heaviside function ®(x)and matrix
R; j is obtained as:

Rij(e) =0O(c -T;)), i,j=[1 N] (6)

where ¢ is distance threshold.

Matrix T is the source of “Occupied Space (0S)” feature that is
described in Section 2.2.2 and used to construct matrix T*. Before
this construction, three definitions are needed:

« Moving forward through time: sequence of occurrence times of
state vector. As in Fig. 1, order of state vectors in time is dis-
played by subscripts.

In-ward and out-ward sequences of state vector X ¢: if by mov-
ing forward through time, subscript of state vector gets closer
to t, we have an in-ward sequence of state vector X, Con-
versely, if by moving forward through time, subscript of state
vectors gets away from t, we have an out-ward sequence of
state vector X (Fig 1). For example, sequence { X;_ 2, X¢ 1,
X }is an in-ward sequence and sequence { X, T(’M, KXo}
is an out-ward sequence.

Getting closer to (or getting away from) the state vector X:
in an out-ward sequence of state vector if moving forward
through time, (or in an in-ward sequence moving backward
through time,) causes reduction (or increase) of distance be-
tween state vectors and state vector X (T in Fig. 1) we have
getting closer to (or away from) the state vector Xt

In the proposed method in Section 2.2.2, eight features will be
presented to characterize global behavior of getting closer to and
away from state vectors that is the meaning of volumetric behav-
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Table 1
Value of eight features of the method that are extracted from Fig. 3 trajectories.
no. states  OS ACS AES AC AE SDCS SDES Complexity
a 90 1.27311 0.03374 0.03378 0.01687 0.01687 0.01692 0.01689 0.01691
b 900 1.27324 0.00348 0.00348 0.00174 0.00174 0.00169 0.00169 0.00169
[« 900 0.76973 0.01074 0.01027 0.00565 0.00487 0.00805 0.00800 0.00803
d 90 0.77053 0.1037 0.09849 0.05452 0.04671 0.07772 0.07716 0.07745
e 90 0.77053 0.09849 0.1037 0.04671 0.05452 0.07716 0.07772 0.07745
f 900 1.00923 0.00623  0.00554  0.00312 0.00277 0.01783 0.00531 0.01158
g 90 104832 051986  0.54121 026272 02677 036711 036354  0.36535
h 900 105748 051099  0.50583 025433 025407 037294 037351  0.37323
i 90 770528 010370 009849  0.05452 004671 007772 0.07716  0.07745
Table 2
Value of eight features of the method that are extracted from Fig. 4 trajectories.
no. states  OS ACS AES AC AE SDCS SDES Complexity
a 50 ~ 0 2.01288 2.01288 0.47722 0.47387 ~ 0 ~ 0 ~ 0
b 50 0.3332 0.05942 0.05942 0.02941 0.02941 0.006 0.006 0.006
c 50 0.33986  0.04041 0.07661 0.01980  0.03907  0.02691 0.03034  0.02866
d 50 0.5000 2 2 0.98 0.98 0 0 0
e 50 0.35316 0.81154 0.84567 0.42132 0.40663 0.61938 0.6384 0.628535
a) state=1+epsilon b) state=time/50
1.001 T T 1 - -
2 2
© 1 « 0.5 1
[%] [%]
0.999 . . . . 0 . . . .
0 10 20 30 40 50 0 10 20 30 40 50
time time
c) state=(time/50)2 d) state=0 if time is odd and 1 if time is even
1 T r
2 2
® 0.5 ©
(2] [%]
0 . . .
0 10 20 30 40 50
time time
e) state=random
1
o
© 0.5
2]
0 . . . .
0 10 20 30 40 50
time
Fig. 4. Samples of different volumetric behavior of trajectory in one-dimensional phase space.
ior. To extract these features, matrix T* is defined. Matrix T* is “getting away to the state vector”.
constructed from T in two steps: in the first step, the elements . .
om p p. t ; T, =T, -Ty.. i=[1 N, j=[1 N-2] (8)
above the main diagonal are shifted to left and matrix Ty of size LJ L Li+1

N % (N —1) is built. This is because of removing zero elements of
the main diagonal (Eq. (7)).

Ti> T (no1y Tin
T TN
T, = (7)
Tin-1).1 Tin-1).N
Tna Tviv-1)

In the next step, by using Eq. (8) matrix T* is achieved. Each
row of this matrix represents distance difference between a state
point and other consecutive state points, so by extracting statis-
tical characteristics of matrix T* volumetric behavior can be pre-
sented. Row j of matrix T* represents distance difference between
each two sequential state vectors and jth state vector of trajectory.
Ifi <j+1in T, j)* sequence of difference follows “getting closer
to the state vector” and if i > j+ 1 sequence of difference follows

Fig. 2 shows an example of two steps of constructing T* matrix
from a one-dimensional trajectory. In the next sub-section by using
matrix T and T*, eight features will be extracted to characterize
volumetric behavior of trajectory.

3.2.2. Extracting features from matrix T and T*

Elements of matrix T contain information about distance of
state vectors. Average of T;; can be used to characterize occupied
space by trajectory. Thus, “occupied space (0S)” feature is defined
as Eq. (9):

1
05 =35

Ti, j
1

(9)

N

]

—_

Also T* contains information about the behavior of trajectory. Row
i of matrix T* is arised from the relationship between all state
vectors and vector i and is constructed from some positive and
negative numbers. Positive numbers are arised from the sequence
of T; j — T; j1 where T;; >T; j,1, so in this sequence, trajectory is
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Fig. 5. X time series of Lorenz model with different parameters.
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Fig. 6. Embedded trajectories in phase space that are extracted from X time series of Lorenz model with different parameters.

getting closer to X; state vector. Conversely, negative numbers are
arised from T; ; <T;;,; and in this sequence, trajectory is going
away from x; state vector. Average value of the positive (or nega-
tive) numbers characterizes average speed of trajectory contraction
(or expansion) toward Xx; state vector. Therefore, two features “av-
erage of expanding speed (AES)” and “average of contracting speed
(ACS)” are defined as follows:

53 T
ACS = =4 1
CS oS
(i, jIT;; > 0), (p=number of positive T;;) (10)
AES — |1 >ij Tl
- (0

@i, jIT;; < 0), (n=number of negative T;;) (11)

To present expanding or contracting behavior of trajectory, two
features of average expanding “AE” and average contracting “AC”
are defined as Egs. (12) and (13), respectively:

1
| 2ij T

AC = e (i, jIT;; > 0) (12)
lve— i T .
AE = % (i.jIT;; < 0) (13)

Variation of positive and negative numbers of matrix T* can
characterize volume behavior variation of trajectory. Hence, “stan-
dard deviation of expanding speed (SDES)” and “standard deviation
of contracting speed (SDCS)” features are defined as Eqs. (14) and
(15):

std (T} i

DCS = —5z (i. jIT;; > 0) (14)
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feature 1 — OS (for normalized signal) feature 2 - ACS feature 3 - AES feature 4 - AC
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Fig. 7. Box plot of the eight features of the proposed method that are extracted from trajectories of Lorenz model with ten different random initializations.
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Fig. 8. Time series of Mackey-Glass model with different parameters.
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Fig. 9. Embedded trajectories in phase space that are extracted from time series of Mackey-Glass model with different parameters.
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Fig. 10. Box plot of the eight features of the proposed method that are extracted from trajectories of Mackey-Glass model with ten time random initialization.
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Fig. 11. Box plot of some common nonlinear features: fractal dimensions, RQA features, Largest Lyapunov Exponent (LLE), Approximate and Sample entropy for Lorenz signal
with different parameters and random initial points.

DES = L

std(T: .
-7 0s

(i jIT;; < 0)

where std(x) is standard deviation of x.

Each of SDES and SDCS features is limited to either expanding
or contracting behavior separately. By mixing these features, Com-
plexity feature is achieved:

SDCS x p+ SDES xn

Complexity =

N+ (N—2)

(15)

(16)

3.3. Feature description and discussion

With d + 1 state vectors in a d-dimensional space, topology (ex-
cept position and orientation) is achievable by having the distance
between these vectors, matrix T. On this basis, “occupied space
(0S)” feature is defined. This feature characterizes occupied spaces
by state vectors independent of time or sequence of state vectors.
The value of OS feature depends on the number of state vectors
and distance between state vectors but in two trajectories with the
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Fig. 12. Box plot of some common nonlinear features: fractal dimensions, RQA features, LLE, Approximate and Sample entropy for Mackey-Glass signal with different

parameters and random initial points.

same topology and different numbers of state vectors. OS feature
value of these two trajectories is almost the same (Fig. 3a and b).
In the same population of state vectors in a d-dimensional convex
volume, if points are located on convex volume, OS has maximum
value in this d-dimensional convex volume (Fig. 3b OS has greater
value compared with that of Fig. 3f).

“AES” against “ACS”, “AE” against “AC” and “SDES” against
“SDCS” features have dualistic relationships. AES and ACE de-
scribe average speed of expanding and contracting. Normalization
of these features to the number of positive and negative elements
in matrix T* gives AE and AC features, respectively. Dualistic rela-
tionship between AE and AC can describe global behavior of ex-
panding or contracting. For example, in Fig. 3d AC>AE shows tra-
jectory has a global contracting behavior. In other words, AE/AC
ratio can be defined as expanding ratio. After extracting global be-
havior of trajectory, AES and ACS present speed of this behavior.
Average speed of expanding and contracting cannot describe global
behavior. For example if according to AE/AC ratio, the trajectory
has global contracting behavior, it is possible that AES>ACS. This
conflict is caused by inequality of positive and negative element of
matrix T*. Trajectories in Fig. 3c and d look the same, but speed of
moving through time of trajectory in Fig. 3d is greater than Fig. 3c,
so AES; is greater than AES.. The trajectory in Fig. 3c is interpo-
lated by the trajectory in Fig. 3d by a rate of 10, so AES; [AES: ~
10.

Complexity feature is related to variations of speed of expan-
sion and contraction of trajectory. Increasing variations of speed
of expansion and contraction and subsequently increasing value of
complexity feature means existence of more local behavioral diver-
sity. Two trajectories must have the same number of state vectors
to compare complexity feature. For example, trajectories in Fig. 3d

and g and trajectories in Fig. 3¢ and h have the same number
of state vectors, but according to Table 1 Complexity,>Complexity.
and Complexityy>Complexity;.Moreover, the trajectories in Fig. 3g
and h have random behavior so their complexity must be greater
than that of other trajectories. In addition, in the same number of
state vectors, random behavior has greater value of complexity.

To remove the effect of range of state vectors values, all features
can be divided by OS feature. That means all features except OS
feature are independent of amplitude range. For example trajectory
in Fig. 3i is achieved by scaling trajectory in Fig. 3d ten times and
as Table 1 shows all features of these two trajectories except OS are
equal. Nevertheless, in some applications this normalization may
be harmful and therefore be ignored.

Fig. 4 shows five one-dimensional trajectories and the feature
values of these trajectories are reported in Table 2. Trajectories
a, b and d have the simplest behavior in one-dimensional phase
space (fixed, linear and periodic behavior, respectively), and com-
plexity feature of these trajectories is almost zero. On the other
hand, random behaviors have greater complexity values. Trajectory
¢ has expanding behavior through the time, so for these trajecto-
ries AE>AC. Trajectory a, b, d and e do not have expanding or con-
tracting behavior, so AC=AE. The rest of the features are the same.

4. Evaluation and discussion

Two time series, Mackey-Glass and Lorenz, are utilized to eval-
uate the proposed features. Lorenz equations were proposed by Ed-
ward Norton Lorenz to develop a simplified mathematical model
for atmospheric convection. This model consists of 3 equations as
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Fig. 13. The number of paired t-test between each common nonlinear feature of Lorenz signals with different parameters and random initial points whose p-values are less
than specific value.
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Fig. 17. P-value of ANOVA test for all volumetric and common nonlinear features for Lorenz signals with different parameters and random initial points.

Eq. (17). where in this study r=17,b=0.1 and c=10. “a” was
dX considered as a variable parameter with values of a=
= pX-Y) {0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75}. An example of

Mackey-Glass time series with random initialization is shown
dy

i =XZ+1rX-Y (17) in Fig. 8.

t These time series are very similar in time domain, by embed-
% — XY —bZ ding with u =3 and 7 = 12 parameters, their difference is shown
dt in Fig. 9. The features set is extracted for 5000 sample time se-

Where, p, r and b are the parameters of the Lorenz model.

In this study only X value is used as time series. In simulation
p and b are considered as constant parameters, p = 16 and b = 4.
We aim at evaluating variations of the proposed features by chang-
ing r values (Fig. 5). The features are extracted from phase space.
We embedded time series X to phase space by using Cao method
with dimension p = 3 and delay 7 = 6. After embedding in r = 10,
the trajectory is attracted to (-6,-6,-6) point (Fig. 6a). Therefore, the
behavior of trajectory is compressing. For this trajectory with any
initial point AC feature is greater that AE feature.

All the eight features are extracted for 4000 sample time series
with r = {10, 20, 30, 40, 50, and 60} and then different random ini-
tial points for 10 times. Fig. 7 shows box plot of the features of
these trajectories.

As it can be seen in Fig. 6, by increasing r value the occupied
space of trajectories increases. This behavior is characterized by in-
creasing OS feature (Fig. 7a). Moreover, by increasing r value trajec-
tories behave more complex and attractors become more compli-
cated. In the proposed method, complexity is described as changes
in local volumetric behavior. Therefore, by increasing complexity,
SDES and SDCS features must be increased. Figs. 7f and g show in-
creasing changes of local behavior (complexity in this context) by
increasing r value. As can be seen, this features set makes the dis-
tinction between trajectories with different r values, although there
are similarities between the trajectories with “r =40 and 50" and
“r =50 and r = 60” (Fig. 6).

In this study, a discretized variant of the Mackey-Glass is used
as nonlinear time series that can have chaotic behavior. Discretized
variant of the Mackey-Glass is defined as:

aX({i-r) X ()

(18)

ries with different a values and random initializations 10 times.
Fig. 10 shows box plot of features of these trajectories. The features
set is extracted for each time series making a complete distinction
between time series with different a parameters.

4.1. Comparison with other nonlinear features

There are a number of common nonlinear features that are used
in many different applications. Fractal dimensions, entropies, Lya-
punov exponent and RQA features are the most commonly used
nonlinear features. The ability of these features to distinguish be-
tween signals with different parameters and not to distinguish be-
tween chaotic signals with the same parameters and different ini-
tial points are compared with the proposed features. Two chaotic
signals generators, Mackey-Glass and Lorenz, are used for this
comparison. Figs. 11 and 12 show values of these nonlinear fea-
tures that are extracted from Lorenz and Mackey-Glass signals 10
times for each parameters with random initial points.

Analysis of variance (ANOVA) test is employed to quantify abil-
ity of each feature to show the effect of changing parameters and
initial points. ANOVA test can be used to analyze the differences
among group means and their associated procedures. In most clas-
sification applications, the range of p-value is important and there
is no significance in comparison with p-values, because only sepa-
rability matters. In these applications p-values under specific num-
bers such as 0.05 are treated the same and mean the null hy-
pothesis is rejected. However, in nonlinear and chaos quantification
there are two important issues:

1. Separability by changing parameters. For example, vertical sep-
arability in boxes in Figs. 7 and 10-12.
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Fig. 18. P-value of ANOVA test for all volumetric and common nonlinear features for Mackey-Glass signals with different parameters and random initial points.

2. Inseparability by changing initial points with the same parame-
ters. For example, lower height of each box in Figs. 7 and 10-12
with less variance is better.

With these issues, comparison of p-values is significant. Thus,
to compare efficiency of features, p-value of ANOVA test and t-test
can be used. Less p-value means more separability by changing pa-
rameters and fewer changes with different initial points with the
same parameters. Two approaches are used for comparing p-values
of common features and the method features. First, for each fea-
ture t-test’s p-value of every pair of parameters is achieved and
fip) (Eq. (19)) curves are plotted in Fig. 13-16.

f(p) = number of p-values of paired t-test that are less than p.
(19)

The best feature is the one that has the most area under the
fip) curve. Figs. 13 and 14 show that Complexity, SDES and LLE fea-
ture are the best in Lorenz signal quantification and Figs. 15 and
16 show that OS feature has the best performance as nonlinear
quantification for Mackey-Glass signal.

In another approach, ANOVA test is applied on all features ex-
tracted from two signal sets. Figs. 17 and 18 show the p-value of
tests. As it can be seen all volumetric features have less p-value
than most of the other common nonlinear features.

5. Conclusion

In this paper, a volumetric behavior method that is an experi-
mental and numerical approach has been proposed to characterize
behavior of trajectories in phase space. This method extracts eight
features from trajectories. The features are extracted from two ma-
trices T and T*. These matrixes are easily constructed and features
extraction is done by simple operations, so the volumetric behavior
method has very low complexity to extract the features.

Expanding and compressing behavior are identified by com-
paring AE and AC features. Also, the complexity of behavior is
characterized by SDAE and SDAC features. Two nonlinear systems
(Lorenz and Mackey-Glass) with variant parameters are evaluated
to present the ability of the method to identify changes of systems.
These eight features can be used to compare different time series

of nonlinear systems and provide useful information about the tra-
jectory of systems. This method requires to estimate embbeding
dimension and time delay to reconstruct the phase space which
may be challenging for some signals. Nevertheless, the proposed
features are robust to initial conditions and sensitive to dynamic
changes. Moreover, each of these features describes a specific and
meaningful characteristic of trajectory in phase space.

The method should be employed in different areas of applica-
tions in the future work. As the objective can be different in differ-
ent applications, some features may be more effective in those ap-
plications. In this case, metaheuristic algorithms such as monarch
butterfly optimization (MBO) [31], earthworm optimization algo-
rithm (EWA) [32], elephant herding optimization (EHO) [33] and
moth search (MS) [34] algorithm can be used to select a good sub-
set of features.
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