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In this paper, we propose a novel method for extracting fiducial points (FPs) of the beats in electro-
cardiogram (ECG) signals using switching Kalman filter (SKF). In this method, according to McSharry’s
model, ECG waveforms (P-wave, QRS complex and T-wave) are modeled with Gaussian functions and
ECG baselines are modeled with first order auto regressive models. In the proposed method, a discrete
state variable called “switch” is considered that affects only the observation equations. We denote a mode
as a specific observation equation and switch changes between 7 modes and corresponds to different
segments of an ECG beat. At each time instant, the probability of each mode is calculated and compared
among two consecutive modes and a path is estimated, which shows the relation of each part of the
ECG signal to the mode with the maximum probability. ECG FPs are found from the estimated path. For
performance evaluation, the Physionet QT database is used and the proposed method is compared with
methods based on wavelet transform, partially collapsed Gibbs sampler (PCGS) and extended Kalman fil-
ter. For our proposed method, the mean error and the root mean square error across all FPs are 2 ms (i.e.
less than one sample) and 14 ms, respectively. These errors are significantly smaller than those obtained
using other methods. The proposed method achieves lesser RMSE and smaller variability with respect to
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1. Introduction

An electrocardiogram (ECG) describes the electrical activity of
the heart. Onset, offset and peak location of ECG waves are known
as fiducial points (FPs). Up to now, different methods have been
used for detecting the QRS complex. See [1] for a review. These
methods are based on mathematical functions, filtering approaches
(digital filters [2], adaptive filters [3]), classification methods (neu-
ral network approaches [4], support vector machine (SVM) [5],
fuzzy C-means algorithm [6]), wavelet transform [7] and empirical
mode decomposition (EMD) [8]. Low pass differentiation (LPD) [9],
hidden Markov models (HMM) [10-14], partially collapsed Gibbs
sampler (PCGS) [15], wavelet transform [16-18], correlation analy-
sis [19,20] and extended Kalman filter (EKF) [21-24] are also used
for ECG FP extraction.

FP extraction has been used as a preprocessing step in several
applications such as detection of fragmented QRS complex [25],
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mobile health care applications [26], “Selvester QRS scoring” sys-
tem [27], ischemia detection [28], ECG-based subject identification
system [29] and biometric recognition based on fusion of ECG and
EEG signals [30,31].

Switching state space models are defined as the combination
of HMMs and state space models [32]. When the model is lin-
ear and additive Gaussian noise exists, the switching state space
models are known as “Switching Kalman Filter” (SKF) [33,34]. In
the SKF, at each time instance, the states are estimated by several
Kalman filters (KFs). Furthermore, a hidden discrete state variable
called switch is considered whose status changes over the time ac-
cording to a Markov model. The switch indicates the KF which es-
timates the states better than others.

SKF is used for several applications such as figure tracking [35],
acoustic segmentation [36], contour tracking in clutter [37], model-
ing and detecting motor cortical activity [38], prediction and track-
ing an adaptive meteorological sensing network [39], tracking and
event detection at traffic intersections [40], ECG ventricular beat
classification [41] and finally for apnea bradycardia detection from
ECG signals [42].

Although the methods based on dynamic models (EKF) [24] and
sequential methods (HMM) [14] have been used for ECG FP extrac-
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tion, the methods based on SKF (which is combination of KF and
HMM methods) have not been used for this application yet. The
goal of this paper is showing the ability of SKF-based methods for
ECG FP extraction.

In [21-24], methods based on EKF have been proposed. The
main limitation of such methods is their sensitivity to the initial
location of the Gaussian functions as well as initial parameters of
EKF, that must be defined by the user. Conversely, one of the ad-
vantages of the proposed SKF model is that it is not sensitive to
the initial location of Gaussian functions and initial parameters of
SKF.

According to McSharry’s model [43], ECG waves (P-wave, QRS
complex and T-wave) are modeled with Gaussian functions. Base-
lines and segments between ECG waves are modeled with first
order auto regressive (AR) models. In this SKF approach, a dis-
crete switch affects only the observation equations and switches
between 7 different values related to the 3 waves and the 4 base-
line segments.

The performance of the proposed method is compared
with previously published methods, including Wavelet [17],
PCGS [15] and EKF-based method (EKF17) [22]. We also have a
comparison with our previously proposed methods (linear and
nonlinear EKF25 [23,24]). Validation and comparison are done over
Physionet QT database [44,45].

The paper is organized as follows: ECG dynamical model and
details of SKF approach for ECG FP extraction are described in
Section 2. Section 3 presents the experimental results, and finally
Section 4 concludes the paper.

2. Methods

In this section, we first present the ECG model we used and
then we fully describe the proposed SKF method.

2.1. ECG Kalman filtering framework

McSharry et al. [43] have proposed a synthetic ECG gen-
erator which is based on a nonlinear dynamic model. Sameni
et al. [46] transformed it into polar coordinates from Cartesian co-
ordinates and proposed an EKF-based framework which has two
state variables and two corresponding observations. The discrete
state-equations of this model are as follows:

Q1 = (P + @yd) mod(2m)

; AB2 1
Zip1 = —ZS SO ABy exp <— ’k) + 2z + g (M
i

bi Zbi

where k denotes the discrete time, ¢, is the phase of ECG and
wy, is the beat-to-beat angular frequency of the RR interval. In this
model, z; is a state variable which is the sum of 5 Gaussian func-
tions (ie{P, Q R, S, T}) and represents estimated amplitude of ECG.
Each Gaussian function is defined with three parameters: o, by,
and 0, which correspond to the amplitude, width and location
of the Gaussian functions and A6y, = (¢ — 6y) mod (27 ); § is the
sampling period and 7, models the inaccuracies of the dynamic
model.

2.2. Proposed dynamic model

For an ECG beat, we can define seven segments: By, P, PQ (By),
QRS, ST (B3), T and B4 which are shown in Fig. 1. In the proposed
model, we consider separate states for P-wave, QRS complex and
T-wave which are modeled with Gaussian functions. We also as-
sign a state defined with a first order AR model to each baseline
(B1, By, B3 and By). Similar to previous EKF-based models, we also
consider the phase of ECG as a state. Hence, a model with 8 states
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Fig. 1. Segments of a single ECG beat.

is generated. In fact, although segments B; and B4 are almost sim-
ilar, since we find the fiducial points for each beat separately, we
consider two separate segments By and By. Discrete state and ob-
servation equations of this model are defined in (2) and (3), re-
spectively. We use “C” to denote the QRS complex. In (2), for sim-
plicity we consider that the coefficients of AR models are equal to
one (ag, = dg, = dg, = ag, = 1) but in general, other values smaller
and very close to 1 can be examined.

k1 = (P + @y d) mod(2m)

By k1 = ap, By + 13,

Sotp A2
Peyr=— ;ﬁk X Abp exp <2bzpk + B+ np,
Pk Pk
By ki1 = ap,Bak + 13,
o, AG? 2
Go=— ), 8 2’;2 £ ABy exp (— 2b21k> + G + 1, )
ic{ors) ik ik

B3 k41 = ap, B3k + 13,
2

0 AGT,/C
Abrpexp | — w2 )T Ty + 117,
Tk

Sog gy
>
b7y

By k41 = a,Bay + 1s,,

Tk+1 =-

q)k =@k +Vik

(3)
Zy =By + P4 Bog + G+ By o + Ti + By + Ve

In (2), the first state is the phase of the ECG. States 3, 5 and
7 are distinct ECG waveforms. The ECG baselines are considered
as the 2nd, 4th, 6th and 8th state variables. The system state and
process noise vectors are defined as:

X = [k B1.s» P Baie» Gies B3 s Tie» Bae]”
wy = [a,, by, eik’ Des njk]T @
ic{P.QRST), je(BiP.B,CBsT Ba).

In (3), the first observation is a linearly approximated phase of
ECG beat, and z; is the recorded ECG which can be considered as
the sum of By i, Py, By i, Gk B3 i, Ty and By i states in the model.
Observation and measurement noise vectors are defined, respec-
tively, as: y, = [®y, z]" and vy = vy, vyl]".
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2.3. SKF-based ECG model

In our proposed SKF, we assume that the switch only affects the
observation equation. We then denote a mode as a specific obser-
vation equation and the switch s is a discrete state which changes
between 7 modes, j=1,2,...,7. We assume to have a first or-
der Markov chain whose matrix transition denotes as Z where
zjj = P(sy = jlsy_y =1). The Markov chain has left-to-right struc-
ture i.e. z;#0 if and only if j=ior j=i4+1or (j=7 and i=1).
Since the model which is defined in (2) is nonlinear, in order to
use a Kalman filter for this system, it is necessary to derive a lin-
ear approximation of it near desired reference points (&, w;,) and
(% . ). This approximation will lead to the following linear esti-
mate:

Xp1 = fXe Wi, k) = f Ry, Wy, k) + A(X — R,) + Dy (wy, — W)

Y, = 8Xp, Vg, k) ~ 8(Ry, U k) + Hie (X — X)) + G (g — )
(5)
where
A & Wy k) 0 f (X Wy, k)
k= T&IF&««MF@M k= T'&F&p%F@k
H — Bg(;ck,yk,k)l Gl — ag(xk.yk,k)|
k= 0x, 4=% Y=t kT v, X =Ry U=
(6)

The state and observation equations of the proposed SKF can be
written as:

Xpp1 = AkKk + Dkwk

Yo =H %+ G 7
where HY and y(j) are the observation matrix and observation
noise of the jth mode, respectively. Elements of A, and D, matri-
ces are defined in (A.1) and (A.2), respectively, in Appendix A. Here,
the matrices Ay, Dy and Q, = Cov(w;,) are not changed for different
modes. The dimension of H,Ej) is 2 x 8 and its nonzero elements are
defined in (8):

H’1,1) =1, j=1.2....7

Wy i ; ®)
HY@j+1) =1, j=1.2,...7

This means that the observation equation has linear dynamics at
each time instant but it is time variant and switches among sev-
eral linear equations over the time. v(“ [V1g, Vo ]T is the obser-

vation noise vector. The noise covariance matrix Rl(j) = Cov(y,((”) is
defined from the observations of the jth mode. Matrix G is con-
stant for the different values of the switch: G, = I, (identity matrix
of size 2), Gt = v and GRYGT =RV

2.4. Procedure of SKF-based FP extraction

At each time instant k, the probability of each mode is calcu-
lated as: K = P(s, = jly,, ), je{1,2,....7}. If K has the max-
imum value at time k, the observation at time k is likely gen-
erated by jth mode. Monitoring the value of the parameter K,
je{1,2,...,7} for each mode allows us to choose the optimal
mode. Therefore in this work, we perform SKF and monitor Kli.

We use 2-fold cross validation [47] for each record (the records
which are used in this paper will be explained in Section 2.5). Ini-
tial values for xi, Pi. Qo, Hé”, R(()]), Ki and Z, (ij=1.2...7) are
found from train data in the Initialization step. x; is the initial es-
timation of state and Pé is its covariance matrix. Qo,Héj),R(()j) and

K(") are initial values for Qk,H,Ej),Rl(f) and K,l;, respectively. Finally,

Zy is the initial value of matrix Z where z;; = P(sy = jlsg_1 =1). In
[41,48], the estimation of the covariance matrix is done by per-
forming a random search on the training data in order to optimize
the covariance matrix parameters. In this work, for defining the
initial location of the Gaussians, we follow the same procedure of
Sameni et al. [46]. we choose manually the initial location of the
Gaussians and then doing a curve fitting. For estimation of the co-
variance matrices, we follow the same procedure as [46].

Here, since the matrices Ay, D, and Q, are not changed for dif-
ferent modes, the training step includes only the initialization step
and no parameter is trained in this step. After that we perform in-
ference procedure (in one iteration) as shown in Algorithm 1, be-
low. Functions filter, StatesProbability and Collapse and their param-
eters are defined in Appendix B.

Algorithm 1 SKF: Inference
Inputs: x, Pi, Qo, HY, RY, Ki and Zo, i, j=1,2,--.7.
Outputs: K]

fork=1,2,---,T do
Compute A, and D from (A.1) and (A.2) in Appendix A.
fori,j=1,2,---,7 do
[x]. P, L”] = fllter(x Pl AwDy. Q. HY.RY)
K” (1 g”] _StatesProbablllty(L”,zu,K,'{_l)

[xi,P,J] _Collapse(x;j,P,? KJ 7y
end for
8: end for

9: Applying a threshold on KI{

N2 v oWy

In the function filter, x, _E{x,(|yl 1> Sk = Js Sk 1 =1} is the
prior estimate of the state vectpr in the kth stage, using the past
observations yo to y, | and x! =E{xly, .Sk = J.s_1 =i} is the
posterior estimate of this state vector after adding the kth obser-
vations yj. P,/ and P/ are defined in the same manner to be the
prior and posterior estimates of the covariance matrices, in the
kth stage, before and after using the kth observation, respectively.
L” P, 1Y, 1s Sk = J. k-1 =) is the likelihood of observing the
kth observation V-

The function StatesProbability, computes the probabilistic pa-
rameters K = P(s; = jly, ) 8 =P(s_1 =ily,,. s =J) and K =
P(sg1 =15 = jly,.,) =Klg).

Finally, the function Collapse approximates mixture of Gaussians
as a unique Gaussian by moment matching. The mean vector and
covariance matrix of the unique Gaussian are the same as that
of the mixture and are computed as: g{( :E{§k|zl,k,sk =j} and

P,f = Cov{xy|y,.,» Sk = j} from mixture model using an approxima-

tion of p(gkbl]:k,sk =j) :N(gj,Pl{). More information about SKF
functions can be found in [38,42].

The procedure of finding K,i is done for each ECG beat, sepa-
rately. Since each ECG beat starts with B; segment, we assume that
K&:landKé:O,i:Z ..... 7.

For each time instant k, K,{ has seven values according to the
values which the switch can obtain. Since switch s has a left-to-
right HMM model, we find the optimum mode between two con-
secutive modes by:

modeoy = argmax K}, j={kk.kk+1}, kke{1,2,....6}  (9)
Jj

Where kk is the current state. After finding the “modeg,” values, a
path is estimated from these values. The estimated path has seven
levels, each one associated to one segment. Levels 1-7 represent
the By, P, By, QRS, B3, T and B4 segments, respectively, (like Fig. 3).
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The proposal to find the onset and offset of waves from the esti-
mated path is as follows:

e Py,: the point in which the path transits from levels 1 to 2
* Py the point in which the path transits from levels 2 to 3
e QRSyn: the point in which the path transits from levels 3 to 4
* QRSyy: the point in which the path transits from levels 4 to 5
o Ton: the point in which the path transits from levels 5 to 6
o T, the point in which the path transits from levels 6 to 7

Since the peaks can be positive or negative, peak position of
waves (Ppegks Rpeaks Tpeak) are defined as the maximum of absolute
value of signal between onset and offset.

2.5. Data and evaluation metrics

To evaluate the performance of the proposed method in ex-
tracting ECG fiducial points, we need ECG recordings annotated
by physicians. Thus, we use records of Arrhythmia, Normal Sinus
Rhythm, ST Change and Supraventricular databases which are an-
notated in the Physionet QT database (32 records) [44,45]. The
records are sampled at 250 Hz (4 ms between 2 successive sam-
ples) and each of them has 30-50 annotated beats. Totally we
use 975 annotated beats for evaluation of the performance of the
methods.

We use 2-fold cross validation for each record and the initial
parameters of SKF model are found from train data.

For quantitative evaluation of a FP extraction method, we calcu-
late the estimation error defined as time differences between es-
timated points by proposed method and cardiologist annotations
(considered as ground truth). Quantitative results are reported us-
ing common metrics: mean (m), standard deviation (sd) and root
mean square error (RMSE), defined as follows:

N
% 3 (e)? = /(m? + 5d2) (10)
i=1

where e; = y; —y; is denoted as the ith element of the estimation
error vector and N is the length of error vector. y; and y; are the ith
cardiologist annotation and estimated point, respectively. m, sd and
RMSE are given in ms. Since RMSE considers mean and standard
deviation of error, it is a more relevant parameter for comparing
methods.

RMSE = vMSE =

3. Results

Fig. 2 shows how the estimated path is obtained from compar-
ing the values of K,ﬁ parameter. In this figure, the upper subfigure
shows the calculated K,ﬂ, j=1,...,7 probabilities for one beat. We
can see that for example K,} has high value on the segment which
is related to B; segment and has low (almost zero) value in other
segments and so on. By comparing the two consecutive K,ﬂ values
by (9), we can obtain the modegp: and the estimated path which is
plotted in lower subfigure in Fig. 2.

Fig. 3 shows the estimated path by the SKF for a small segment
of the record 231 of the QT database. The colorful vertical lines
show the original location of FPs which are annotated by a physi-
cian and the multilevel path is estimated by the proposed SKF. This
figure is an illustrative example of what the estimated path looks
like and clarify how the onset and offset of waves can be found
from the transition of one level to upper level in a multi-level es-
timated path.

Here, we first present the quantitative results of proposed SKF
for some records with different morphologies. After that, we com-
pare the estimation error of SKF and other methods.

Normalized ECG and probabilities

Normalized ECG
o N
}L‘

2 4

50 100 150 200 250
Sample

Fig. 2. The k,{ values and estimated path by SKF for record Sel231.
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Fig. 3. Original labels and estimated path by SKF for record Sel231.

Fig. 4 shows the original and estimated FPs for sel41 of the QT
database. In this figure, the estimated onset, peak and offset of P-
and T-waves are denoted by stars and original labels of physician
are denoted by vertical lines. This record is a sudden death record
and has negative R-peak and broad P- and T-waves. And also the
P-wave of one beat starts suddenly after ending the T-wave of pre-
vious beat. We can see that for this record, the proposed SKF can
estimate the fiducial points accurately.

Fig. 5 shows the original and estimated FPs for sel808 of the
QT database. This record is a supra-ventricular record and has nor-
mal P-wave and inverted T-wave. We can see that SKF has good
performance for this record.

Fig. 6 shows the original and estimated FPs for Sel301 of the
QT database. This record is a ST-change record and has bi-phasic T-
wave with negative and positive peaks. The physician considers the
positive peak as the annotated peak. We can see that SKF estimates
the peak and offset of T-waves accurately.

Finally, Fig. 7 shows the original and estimated FPs for Sel233 of
the QT database. This record is an arrhythmia record and has neg-
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Fig. 4. Original and estimated onset, peak and offset of P- and T-waves by SKF for
record Sel41.
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Fig. 5. Original and estimated onset, peak and offset of P- and T-waves by SKF for
record Sel808.

ative T-wave. We can see that the proposed SKF has good results
for the peak and offset of T-waves.

The quantitative results of different methods for ECG FP extrac-
tion for 32 records of QT database are compared in Tables 1 and
2. In Table 1, we compare the proposed SKF method with other
methods of the literature: Wavelet [17], PCGS [15] and EKF-based
method (EKF17) [22]. In Table 2, we compare SKF with our previ-
ously proposed methods based on EKF: linear and nonlinear EKF25
methods proposed in [23]| and [24]. Most of the records of QT
database do not have reference label for T,,. Our proposed method
can estimate the location of T,; but we cannot report the results
of estimation error for T,, due to lack of reference labels.

According to the results of Table 1, the mean errors of the SKF
method for all FPs except Po, are smaller than or around two sam-
ples (8 ms). The standard deviations are around four to five sam-
ples for the onset and offset of waves and around one sample for
the peak of waves.

Normalized Amplitude

-

o

‘/\f\J ) \

2+ -
2 25 3 3.5 4 4.5
time (sec)

)

Fig. 6. Original and estimated peak and offset of T-waves by SKF for record Sel301.
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Fig. 7. Original and estimated peak and offset of T-waves by SKF for record Sel233.

In Table 1, the best results of RMSE values among four rows are
highlighted as bold. We observe that the RMSE values of the SKF
method for all FPs except Py are less than other methods, espe-
cially for Ty And also the estimation error by SKF for Py is less
than estimation error achieved by PCGS and EKF17.

The mean and standard deviation of estimation error across all
FPs are estimated for SKF, Wavelet, PCGS and EKF17 methods as
2.2+13.7, 1.9+£26.2, 5.5+38 and 6+36.2 ms, respectively. RMSE
values across all FPs are estimated for above-mentioned methods
as 14, 23, 35 and 37 ms, respectively. We observe that the standard
deviation and RMSE values for the SKF are smaller than the other
methods: it means that the method presented in this paper can
find FPs more accurately than other existing methods.

We also compared the proposed SKF method with our previ-
ously proposed methods (linear and nonlinear EKF25 methods) in
Table 2. The results show that for all FPs except Pyp, Pogy and QRS
SKF has better results that EKF25 methods.
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Table 1

Mean + standard deviation (first line) and RMSE (second line) of error in ms between estimated FPs and manual annotations for signals

of the QT database (fs=250 Hz), (N.A.: not available).

Method Pon Ppeak ngf QRSon Rpeak QRSuff Tpeak Toff

SKF 234+15.2 -0.1+£1.5 —6.4+20 6.6 +10.2 0.01+0.1 —57+8.5 -0.01+0.4 0.6+10.8
27.8 15 21 12 0.1 103 04 108

Wavelet [17] -23+316 0.7+25 2.6+15.2 124+13.6 14+3.6 19+13.8 7.5+275 73+£322
317 25 154 184 3.8 13.9 285 33

PCGS [15] -30+294 52+83 211+155 N.A N.A N.A 2.6+29.7 275+44
42 9.8 26.2 N.A N.A N.A 29.8 51.8

EKF17 [22] —11+£28.7 9+19.2 2744235 —24.5+39.2 45+64 22.2+40.6 —46+34 24.8+44.5
30.7 21.2 36.1 46.2 7.8 46.2 343 51

Table 2

Mean =+ standard deviation (first line) and RMSE (second line) of error in ms between estimated FPs and manual annotations for signals
of the QT database (fs=250 Hz), Methods: SKF, Linear EKF25 (L. EKF25) and Nonlinear EKF25 (N. EKF25).

Method Pon P peak P off QRSon Rpeak QRsoff Tpeak Toff

SKF 2344152 -0.1+15 —6.4+20 6.6+10.2 0.01+0.1 —57+85 —-0.01+£04 0.6+10.8
27.8 15 21 12 0.1 10.3 0.4 108

L. EKF25 [23] 09+14.7 4+109 -0.1+11.7 0.55+12.3 1.5+2.7 —25+7 —-0.6+9.7 03+14.7
148 11.6 1.7 12.3 31 73 9.7 14.7

N. EKF25 [24] -19+26.7 34+15 -1.6+134 1+12.7 12+53 -1.7+7 -1+838 -04+115
26.8 154 13.5 12.7 5.5 7.2 8.8 11.5

The simulations were done using a system with Core i3,
2.53GHz CPU. The run-time of the SKF method for one second
record takes about 3 s.

4. Discussion and conclusions

In this paper, a novel method based on SKF for ECG fiducial
point extraction is proposed. Experiments carried out on ECG sig-
nals from the QT database show that the SKF performance is sim-
ilar or better than the state of the art ECG delineators such as
EKF17, PCGS and Wavelet. For most of FPs, SKF outperforms linear
and nonlinear EKF25 methods.

The main contribution of this paper is proposing a SKF model
for ECG FP extraction, which for each ECG wave or segment, a sep-
arate state is considered. ECG waves are modeled as a sum of 5
Gaussian functions and ECG baselines are modeled with a first or-
der AR model. The switch only affects the observations. We used
2-fold cross validation and the initial parameters are found from
train data. In the test step, the probability of K,i =P(sp = jlyq.x) is
compared among all modes and a path is estimated, which shows
the relation of each part of the ECG signal to the mode with the
maximum probability. FPs are directly found from the obtained
path.

EKF-based approaches have been previously used for ECG FP
extraction [21-24|. The main limitation of such methods is their
sensitivity to the initial location of the Gaussian functions as well
as initial parameters of EKF, that must be defined by the user.
HMM-based approaches have also been previously proposed for
ECG FP extraction [10-13]. In these methods, defining a suitable
HMM structure, training step and finding the HMM parameters are
very critical and methods are sensitive to these points.

The advantages of the proposed SKF model are: (i) it is sensi-
tive neither to the initial location of the Gaussian functions nor to
the initial parameters of SKF, (ii) it does not require severe training
step.

The main goal of this paper, is to show the ability of SKF-based
methods for ECG FP extraction. The complexity analysis and adapt-
ing the algorithm for real-time application are not in the scope of
the paper and can be considered as future works.
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Appendix A. EKF matrices derivations

In order to set up an EKF model based on the nonlinear syn-
thetic model of (2), it is necessary to have a linearized version
of the model. Consequently, the state-equation of (2) requires lin-
earization using (5) and (6). The following equations represent the
linearized model with respect to the state variables (non-zero ele-
ments of matrix A):

A(1,1) = Ar(2,2) = A (3, 3) = Ak(4,4) = Ac(5,5) = A(6,6)
— A7, 7) =1

AG? AG?
A3,1) = 8 Ap Wk |:1 _ P,k] exp (_ 2b2P,k>

Pk Pk Pk
Ak Wy A A6
A(5,1) = — 5§ |:1— klexp | — =
PR L %
ar Wy A, A6F,
A(7,1) = -6 —- |:1 - = lexp | — :
b b 2b7

(A1)
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Similarly, the linearization of (2) with respect to the process noise
components yields (the non-zero elements of matrix D;):

D, (1,16) = 8, D (2, 17) = Dy(4,19) = D, (6,21) = D;(8,23) = 1
Dy (3, 18) = D (5,20) = Dy(7,22) = 1

o= 225 (2)
Dy(3,6) =24 ap’kczgkAep'k (1 - i’f:) exp (%)
Wy AGy,

Dy(5,2:4) =8 ex sy ie{Q,R S}
R A T

. . AO2 —AG2
D(5,7:9) = 23MA9"<(1_—"<> exp ( lk>, ic{Q.R.S)

b, )P\
. ik Wy A AN
Dy(5,12:14) =6 ;}lzk ( —Tzkl exp lek“ , 1e{Q,R S}
N AB2
Dy(5.16) =— Y (Sa”‘?e’k exp (— 2”‘)
ic{Q.R.S} bik 2bik
@i ABr i —AOF,
Dy(7,5) = -6 = exp ( .
b% 2b2
ar ki ABr A6, ~A6Z,
D (7,10) = 28 - , (1 __=r Tk
b, w, )P\ 2,
AB? — A2
Ot (Wi T.k T.k
D (7, 15)=5~—(1 g )exp <—)
b% b% 2b2
ar Abry A6F,
Dy(7,16) = -6 ———— exp (— :
b « 2b%

(A.2)
Appendix B. Functions of switching Kalman filter

L [x). ). L]] = filter(xj_,. P ;. Ay Dj. Qk’.H’il)’ R}(D) |
In this function at each time k, first a priori estimate and its co-

variance matrix (x," and P, ) are estimated from the previous

time k — 1. Then, by using the estimate g,:ij and observation y,
the estimate is updated and the posterior estimate and its co-
variance (g}(f and P,Z] ) are computed. In this function, e is the

innovation at time k. The likelihood L;{j is the probability of the
observation y; and can be calculated as a by-product of Kalman
filter. Finally, bj, is the Kalman gain matrix.

X =AX,_,

P = APl AT + Dy QD]

e =y —HY x.V

L = N'(e; 0, HOPTHD" 4 RYY) (B.1)
by = PIHD" [HOPIHOT 4 RO]D

PJ = [I-bHP 1P Y

%! = 5+ byl - BV

2. [KE, Kl{, kJ] = StatesProbability(L;j,z,-]-, Ki )

This function calculates the parameter I(,{ for each mode j at
time k.

ij=1,2,....7

ij i
Ly zij K,

Xl zij Ky
K =3 Ki (B2)
i
ij
gi= e
K,
3. [x}, P[] = Collapse(x, P,/ K}, g])

This function approximates mixture of Gaussians as one Gaus-
sian by moment matching.

J_ ij oii
X =) X8,
i

Pl =gl [P+ (x] —xD)(x] —x)"]

(B.3)
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