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Abstract

In this paper we propose an efficient method for denoising and extracting
fiducial point (FP) of ECG signals. The method is based on a nonlinear
dynamic model which uses Gaussian functions to model ECG waveforms. For
estimating the model parameters, we use an extended Kalman filter (EKF).
In this framework called EKF25, all the parameters of Gaussian functions
as well as the ECG waveforms (P-wave, QRS complex and T-wave) in the
ECG dynamical model, are considered as state variables. In this paper, the
dynamic time warping method is used to estimate the nonlinear ECG phase
observation. We compare this new approach with linear phase observation
models. Using linear and nonlinear EKF25 for ECG denoising and nonlinear
EKF25 for fiducial point extraction and ECG interval analysis are the main
contributions of this paper. Performance comparison with other EKF-based
techniques shows that the proposed method results in higher output SNR
with an average SNR improvement of 12 dB for an input SNR of —8 dB. To
evaluate the FP extraction performance, we compare the proposed method with
a method based on partially collapsed Gibbs sampler and an established EKF-
based method. The mean absolute error and the root mean square error of all
FPs, across all databases are 14 ms and 22 ms, respectively, for our proposed
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method, with an advantage when using a nonlinear phase observation. These
errors are significantly smaller than errors obtained with other methods. For
ECG interval analysis, with an absolute mean error and a root mean square
error of about 22 ms and 29 ms, the proposed method achieves better accuracy
and smaller variability with respect to other methods.

Keywords: electrocardiogram (ECG), extended Kalman filter (EKF), fiducial
point extraction, denoising, dynamic time warping (DTW)

(Some figures may appear in colour only in the online journal)

1. Introduction

The electrocardiogram (ECG) serves as the most important non-invasive diagnostic tool for
cardiologists. Fiducial point (FP) extraction of ECG signal refers to identifying the location of
the peak as well as the onset and offset of the P-wave, QRS complex and T-wave which convey
clinically useful information.

Up to now, many methods have been used to detect the QRS complex (Kohler ez al 2002).
These methods are based on derivative-based algorithms (Holsinger et al 1971), filtering
approaches (digital filters (Yu er al 1985), adaptive filters (Soria et al 1998)), mathematical
transformations (wavelet (Li et al 1995, Martinez et al 2004, Dumont et al 2010), filter banks
(Afonso et al 1999), phasor transform (Martinez et al 2010)), classification methods (neural
network approaches (Hu et al 1993), support vector machine (SVM) (Mehta and Lingayat
2008), fuzzy C-means algorithm (Mehta ef al 2009)), hidden Markov models (HMM) (Coast
et al 1990, Hughes et al 2004, Andreao et al 2006, Andreao and Boudy 2006, Hughes 2006),
automated method (Christov and Simova 2007) and mathematical morphology methods (Sun
et al 2005). Adaptive filters, wavelet transform, SVM, mathematical morphology methods,
HMM and partially collapsed Gibbs sampler (PCGS) (Lin et al 2010, 2011a) have also been
used for P- and T-wave delineation.

However, under commonly met conditions, the ECG signal may be contaminated by the
recording instrument, the bioelectric activity of the tissues not belonging to the area of diagnos-
tic interest and motion artifact due to movement of the patient or the electrode (Ardhapurkar
et al 2012). Such contamination may alter clinically important information of the signal,
therefore ECG denoising is vital.

ECG denoising and fiducial point extraction have been used in many ECG applications.
For example, Maheshwari ef al (2013) proposed an automated algorithm for online detection
of the fragmented QRS complex and identification of its various morphologies. In this appli-
cation, ECG denoising and feature extraction are essential preprocessing steps. Mazomenos
et al (2013) proposed a low-complexity ECG feature extraction algorithm for mobile health-
care applications. This method requires the initial estimation of the QRS complex, P- and
T-waves, as well as their onset and offset. Bono et al (2014) developed an automated updated
‘Selvester QRS scoring’ system, which requires the onset and offset of the P-wave and QRS
complex as the input to their model.

For that matter, a nonlinear dynamical model for generating synthetic ECG signals has been
developed by McSharry et al (2003). Prior work from our group has extended and modified the
underlying model of the Kalman filter (process equations), as well as the corresponding series
of ECG and phase measurements observed over time (observations). This model, parameters
of which are estimated by an extended Kalman filter (EKF), has been used in the following
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applications: ECG denoising (Sameni et al 2007, 2008, Sayadi and Shamsollahi 2008, Sayadi
et al 2010b, Akhbari et al 2012), ECG fiducial point extraction (Sayadi and Shamsollahi 2009)
and premature ventricular contraction (PVC) detection (Sayadi e al 2010a).

Since these EKF-based methods assume linear phase observation, when abnormal wave-
forms appear intermittently in some ECG cycles, they are unable to simultaneously filter the
normal and abnormal ECG segments.

In this paper, we propose a novel efficient method for ECG denoising and FP extraction
using nonlinear phase observation. In this framework called EKF25, all the parameters of
Gaussian functions as well as the ECG waveforms (P-wave, QRS complex and T-wave) in
the ECG dynamical model, are considered as state variables. To validate our method, we use
signals from the MIT-BIH arrhythmia database (Moody and Mark 1980), the Physionet QT
database (Laguna 1997, Laguna et al 1997) and a swine ECG database (Sayadi et al 2014).

Limited parts of this paper have been published in two international conferences (Akhbari
etal2013a,2013b). This paper contains significant new contributions, specifically with regards
to the methods and results based on nonlinear phase, and experimental results extended to 3
databases. We have already proposed the EKF25 with two observations (Akhbari ef al 2013a)
and four observations (Akhbari et al 2013b). In prior studies we considered a linear phase
observation for EKF models and used them for FP extraction. In this paper, we explain the
EKF25 models and systematically derive all EKF equations. Therefore, the original contribu-
tions of this paper include ECG denoising based on linear and nonlinear EKF25 models as
well as ECG FP extraction and interval analysis based on nonlinear EKF25, described in sec-
tions 3.2, 4.1,5.1, 5.2 and 5.3.

The paper is organized as follows. Related work are described in section 2, in section 3 we
explain our proposed method, and in section 4 we discuss three applications (ECG denoising,
FP extraction and interval analysis). Section 5 presents the experimental results, and finally
section 6 concludes the paper.

2. Related work

2.1. ECG Kalman fittering framework

McSharry et al (2003) have proposed a synthetic ECG generator, which is based on a non-
linear dynamic model. Sameni et al (2007) transformed it into the polar coordinates from
Cartesian coordinates and proposed an EKF-based framework (called ‘EKF2’) which has two
state variables and two corresponding observations. The discrete state-equations of this model
are as follows:

Gri1 = (¢ + wid) mod(2m)

; Ab; 1
ZHI:—ZI,(SO[;;)"AHikexp(— szk]+zk+77k M

ik ik

where ¢, is the phase of ECG and wy is the beat-to-beat angular frequency of the RR interval.
In this model z; is a state variable which is a sum of 5 Gaussian functions (i € {P, Q,R, S, T}).
Each Gaussian function is defined with three main parameters: ay, bj; and 6;, which correspond
to the amplitude, width and location of the Gaussian functions and Ay = (¢, — 0x) mod(27);
0 is the sampling period, 7, is a random additive noise that models the inaccuracies of the
dynamic model. System state and process noise vectors are defined as:
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xi = [ zul”

Wi = [Qpy ooy Q1 Dpys oo, b1, Opys - O wi, i IT 2

In this model, the noisy recording, sy, (see (3)) refers to the ECG observation (second observa-
tion) of the EKF, while the phase (first observation) is denoted as ®. Then, by definition, the
R-wave peak is always assumed to be located at ¢, = 0 and the ECG content lying between
two consecutive R-wave peaks is assigned a linear phase between 0 and 27 (or —7 and 7).
By detecting the R-wave peaks, the linearly approximated phase is obtained and considered
as the phase observation, ®; (Sameni er al 2007). Therefore, the observation equations are as
follows:

Sk = 2k + Var

where v, = [vix, var]” is the observation noise vector.

Sayadi et al extended the EKF2 framework and added the 3 parameters of each of the 5
Gaussian functions in (1), as states to EKF2, and called this extended model ‘EKF17°. This
approach was successfully used for ECG denoising, compression (Sayadi and Shamsollahi
2008) and beat segmentation of normal ECG signals (Sayadi and Shamsollahi 2009). The
system state and process noise vectors of this model are defined as:

— T
Xk = [@k?zk’ aPk? "'7aTk, pr "'7ka’ QPH "'7077(]

T
LVk = [wkv nk’ ul,k7 ey ulS,k]

“)

Sayadi et al also described a Gaussian wave-based state space model whose characteristic
waveforms, i.e. P-wave, QRS complex and T-wave are considered as state variables. This
model, with 4 states, was called ‘EKF4’ and was used for ECG denoising (Sayadi er al 2010b)
and PVC detection (Sayadi et al 2010a).

To account for heart rate variability, Akhbari et al (2012) introduced a first-order auto-
regressive (AR) model for angular velocity of ECG (wy), in the dynamical state-space model,
leading to an EKF model with 3 state equations, denoted EKF3, used for ECG denoising.

2.2. Partially collapsed Gibbs sampler method (PCGS)

Lin et al (2010) introduced a novel hierarchical Bayesian model that simultaneously esti-
mates the P- and T-wave delineations. This model takes into account a prior distribution of the
unknown parameters (such as the wave locations and amplitude, and waveform coefficients).
These prior distributions are combined with the likelihood of the observed data to provide
the posterior distribution of the unknown parameters. The posterior distribution depends on
hyper-parameters that can be fixed a priori or estimated from the observed data (Lin et al
2010). This method is based on a partially collapsed Gibbs sampler (PCGS) which can esti-
mate the onset, peak position and offset of P- and T-waves.

3. Proposed methods

3.1. EKF25 approach with linear phase observation

Using the EKF4 and EKF17 methods and assuming small changes of the P-wave, QRS com-
plex and T-wave morphology during consecutive cardiac cycles, we introduce a first-order AR
model for each of the Gaussian parameters describing an ECG waveform, and also consider
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three separate states for ECG waveforms (P-wave, QRS complex and T-wave). Discrete state
and observation equations of this model (EKF25 with two observations) are defined in (5) and
(6), respectively. Here we use ‘C’ to denote the QRS complex.

(01 = (p + wid) mod(2m)
Qirw, At‘),-z
Poi=— Y 6N exp[— Zk] + Pc+1np,
ic(P.Py) Dk 2bj,
QW NG
Ck+1 = — Z 1) k2 kAH,-kexp — 2k + G+ Ne,
ic(o.RSy Dk 2bj
3 ©)
QW N
Tii=— Y. 6 kzkAH,-kexp[— 2k]+Tk+77Tk
ic(nny  Dik 2bj;
Qi1 = Qg+ Ujpj={1,---,7}
bijs1="bix+ujrj=1{8, -, 14}
Oiks1 = O + tj e, j = {15,---,21}
ie {P]7P2’ Q’R’S’ T’ B}
=P+ G+ T +vu

In (5), the first state is the phase of the ECG. The second, third and fourth ones are distinct
ECG waveforms (P-wave, QRS complex and T-wave) which are separately considered as
states. The parameters of the Gaussian functions are considered as the 5th to 25th state vari-
ables with first order AR dynamics but without corresponding observations. The system state
and process noise vectors are defined as:

— T
Xk = [90](, Pks Cks T}{a aP],ks L) bP[,k, [ ePl,k, (RN eTz,k]

Wi = [Wks Nps N M Wiks -+ U1 )" (7

In (6), the first observation is the linearly approximated phase of ECG, and the ECG obser-
vation (zz) is the sum of P;, Cy and T} states. Taking the sum of the estimated states provides
an enhanced estimation of the overall cardiac beat. However, individual estimated ECG states
(P-wave, QRS complex and T-wave) may have rising and falling trends (drifts, which are com-
pensated by the summation) resulting from the inaccuracies in modeling dynamic baseline
changes with a unique observation z;, sum of Py, Cy and T} (for more information, the reader
can refer to Akhbari et al (2013b) specially figures 1 and 4). Observation and measurement

noise vectors are defined respectively as: y = [®, zx]T and vy = [Vig, vorl”.

To control the above mentioned rising and falling trends, we modify a previously described
model, in which we consider four observations and call it ‘EKF25-40bs’. The 25 discrete state
equations of this model are the same as (5) and its 4 observation equations are:

D = ¢ +vix
PPy = Py + vy )
CC = G+ v
TT, = T + va
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Figure 1. ECG phase and windows for P-wave, QRS complex and T-wave.

In (8), the first equation corresponds to the phase observation and the others corre-
spond to the P-wave, QRS complex and T-wave, respectively. In this case, the observation
and measurement noise vectors are defined respectively as: y, = [®, PPy, CC, TT]" and
Vi = ik, vaks vk vai]”

Thereafter, we determine three windows to segment the original ECG signal, and obtain
the PPy, CCy and TT; observations. Here the windows are defined as the difference between
two sigmoid functions and have tunable rising and falling edges. Figure 1 shows these win-
dows for the P-wave, QRS complex and T-wave. In general, the beginning and end of these
windows are defined such that the P-wave, QRS complex and T-wave correspond to ECG
phase in interval [, a], [a, b] and [b, 7], respectively. Following the polargram partitioning,
previously described in Sayadi et al (2010a), for normal beats we can assume that a = —7/6
and b = 7/6. For signals with premature or delayed waves, the value of a and b parameters
changes moderately and can be set as a fixed value, as: —0.47 < a < — w/6 and 7/6 < b < 0.4m.
The values of ‘a’ and ‘b’ are defined experimentally from the first beat of each record. These
windows are defined in (9) and their shape is controlled with ~, set here to v = 30 (this value
is determined experimentally and is fixed for all beats). Observations PP;, CCy and TT} in (8)
are calculated by multiplying the original (observed) ECG signal by the windows defined in
(9). Figure 2 shows the original ECG and the observations PPy, CCy and TT}, for a typical ECG
signal. In fact, PPy, CC; and TT} are exactly overlapped on original ECG but here for better
vision, we plot them with an offset.

1 1
(Pwh = 7 Fexp @M [ 4 exp 1@ @)
1 1
(Cwh = 1 +exp @@ ] exp 1@ ®)
1 1
(Twy = ®

1 +exp 7 @@ | 4 exp @)
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Figure 2. Original ECG and the observations PPy, CC; and TT; for a typical ECG
signal.

Finally, to estimate the initial values for the state vector, the covariance matrix of each
process and the measurement noise, we use the same procedure described by Sameni et al
(2007) and Sayadi and Shamsollahi (2008) for the initialization of the modified EKF structure.
Process and measurement noise vectors are assumed to be independent. It should be noted that
the algorithm is sensitive to the choice of these initial values. A robust selection strategy for
the initial values of the two Gaussian functions describing the P and T waveforms would be
to insure the final representation (P, + P, and 7] + T5) can accurately model the asymmetric P
and T waveforms.

3.2. EKF25 approach with nonlinear phase observation

In prior works, the linearly approximated phase has been considered as a phase observation
and this assumption is the same as having constant angular velocity (wy) during each beat,
whereas in (1) and (5) and most of the previous studies, wy is considered as a process noise
in EKF models. In other studies (Akhbari ef al (2012) and Lin et al (2011b)) a first-order AR
model is introduced for wy and is considered as a state of the model.

However, the linear phase observation is not accurate, especially for signals with major
RR-interval deviations or signals with frequent abnormal beats that appear intermittently in
the ECG. For constructing a more accurate approximation of the ECG phase observation,
Niknazar et al (2012) used the dynamic time warping (DTW) method. The DTW method
measures the similarity between two sequences, which may vary in time or speed, to obtain
an optimal match between two given sequences with certain restrictions (Li and Clifford
2012, Myers and Rabiner 1981). For example, Zifan ef al (2006) used the piecewise deriva-
tive dynamic time warping (PDDTW) method for automated ECG segmentation, while
Raghavendra et al (2011) used DTW for arrhythmia detection in e-Healthcare systems.

The DTW distance between two sequences is computed as follows (Raghavendra
et al 2011). Let the two sequences be represented as X = (x, %, -+, x,;) of length m, and
Y = (y, ¥, -+, y,) of length n. The DTW distance D(X, Y) between X and Y'is defined as D(X, )
= f(m, n), where:
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J@)) =l — yll+min{ fG.j — D.f( — 1.j).f(i — L.j — 1)}

with £(0,0) = 0,f(i,0) = f(0,j) = ocofori=1,2,---,m, j=1,2,---,n.

The notation ||x; — ;|| represents Euclidean distance between two numerical values.

In this paper we propose using the DTW method to obtain a nonlinear phase observation
of the ECG, which will be later used in the previously developed EKF2 and EKF25 models.
The proposed DTW ensures that in the EKF2 and EKF25 models described by equations (3),
(6) and (8), P4 has a nonlinear phase observation.

In our application, first a reference ECG beat is selected and a linear phase is assigned to
it, then the current ECG beat and the reference ECG beat are nonlinearly warped to optimize
their similarity of their nonlinear variations and an optimal curve is obtained. Finally, the non-
linear phase observation of the current ECG beat is obtained by aligning its linear phase on the
linear phase of the reference ECG beat, according to the optimal curve. It is worth to mention
that in DTW, the reference beat can be a typical or the average ECG beat. In both linear and
nonlinear EKF models, the state and observation equations (1), (3), (5), (6) and (8) are the
same and the only difference is that in nonlinear EKF, the nonlinear phase which is obtained
by DTW is used as a phase observation (®) in (3), (6) and (8). Figure 3 shows the ECG signal
with two PVCs and its defined linear and nonlinear phase observations.

4. Applications

We sought to validate the proposed methods in three following applications: (i) ECG denois-
ing, (i) ECG fiducial point extraction, and (iii) ECG interval analysis. Table 1 shows the
methods which are compared for each application.

4.1. ECG denoising

Sameni et al (2007) used the EKF2 method (discussed in section 2.1) for ECG denoising
assuming a linear phase observation for the ECG. Given the superiority of EKF2 for ECG
denoising in comparison with other benchmark methods (Sameni et al 2007), we will compare
our proposed method only with EKF2. As described above, we first obtain a nonlinear phase
observation for the ECG signal using the DTW technique, and then use the EKF2 method
(equations (1) and (3)), the EKF25 method with 2 observations (equations (5) and (6)) and the
EKF25 method with 4 observations (equations (5) and (8)) for ECG denoising. In section 5.1,
we will compare the results of these three models. In EKF2, the second estimated state (Z)
and in EKF25, the summation of second, third and fourth estimated states (f’k + é’k + Tk) are
considered as the denoised ECG.

4.2. ECG fiducial point extraction

For ECG FP extraction, we only use the EKF25 structure with four observations, because this
model has no rising and falling trends, as previously discussed. Results of this application are
presented in section 5.2. Figure 4 shows the blockdiagram of our proposed approach for find-
ing the peak, onset and offset of ECG waveforms.

As presented above, we use the McSharry model which assumes that each ECG beat is a
combination of N Gaussian functions (here N = 7) and each Gaussian function is defined by
3 parameters «;, b; and 6; (amplitude, width and location, respectively). First, all states of the
model are estimated by EKF25; then we use the estimated Gaussian parameters (the Sth to
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Figure 3. ECG signal and linear (top) and nonlinear (bottom) phase observation.

Table 1. The methods compared in different applications.

Applications
ECG ECG FP ECG interval
Methods denoising extraction analysis
Linear and nonlinear EKF2 YES NO NO
Linear and nonlinear EKF25-20bs YES NO NO
Linear and nonlinear EKF25-40bs YES YES YES
EKF17 NO YES YES
PCGS NO YES YES
7
E%@ EKF25
ECG (Pw), PPy P(a) Peak £ G, T o
ignal ructure - Detection g oints
e s L QO P 50,0,
(81) (CW/)?F . With four —L(E) Eq. (1) Eq. (12)
©%)—— lObservationg
% T, a R(0),B(9) E
(T Eq. (5) > Eq. d- | Onset & Offset
b 0(0),R(0),S5(0) vy 5
ECG and (8) - (10) and | poings
Phase Phase 0. 7,(0),T,(09) s
Calculation

Figure 4. Blockdiagram of proposed EKF25 approach for FP extraction.

25th state variables) and construct the Py(6), P»(0), Q(0), R(8), S(), T,(#) and T>(#) Gaussian

functions as:

)
i(0) = q;exp —@ ,

i€{P,P,0Q,RS, T, T2} (10)

In figure 4, P(6), C(#) and T(0) are the second, third and fourth estimated states by EKF25,
respectively and the Py(0), P»(0), Q(0), R(9), S(0), Ti(d) and T,(0) functions are constructed
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from the estimated Gaussian parameters using (10). The proposed method for finding the peak
position of ECG waveforms, consists of 3 steps:

(i) Based on the estimated ECG waveforms (P(0), C(6) and T(0)), find the location of the
maximum absolute value of these waveforms by equation (11); these points are called Pp,
Cp and Tp and are the preliminary estimations of the final peaks of the ECG waveforms.

Pp = argmax |P(0)|
0

Cp = argmax|C(0)|
0

Tp = argmax|T(0)| (11)
0

(i1)) Compute Pi(0) + P»(0), Q(0) + R(0) + S(0) and T(0) + T>(0) functions and find the loca-
tion of the maximum absolute value of these functions by equation (12). These points
are called ©p, O and Ot and are the second candidate group for final peaks of the ECG
waveforms.

Op = argmax|Py(0) + P»(0)|
)

Or = argmax |Q(0) + R(0) + S(0)|
0

Ot = argmax|Ti(0) + T>(0)| (12)
0

(iii) Use the decision rule (13), for computing the final peaks of ECG waveforms (Beak, Rpeak
and Tpex), where s; is the observed (original) ECG signal. In (13), one compares the
results obtained by (11) and (12) and chooses the maximum, as the final peak candidate.

Byeak = argmax(|sy(Op)|, [sx(Pp)|)

Op,Pp

Rpeak = argmax(|sk(@R)|v |Sk(CP)|)
Or,Cp

Theax = argmax(|sg(O1)|, |s(Tp)|) (13)
or,Tp

It is worth to mention that the peak of R-wave is considered as the peak of QRS complex
and for all waves, maximum absolute amplitude is considered as the peak of waves to find the
positive or negative peaks.

For the onset and offset points, if we model each of the P- and T-waves by one Gaussian
function, we can assume that when any of the Gaussian functions representing P- or T-waves
in the dynamical model extends beyond 3 times its standard deviation, it reflects the onset or
offset points, as described in Sayadi and Shamsollahi (2009).

In this paper, we model each of the P and T waves with two Gaussian functions. Of course,
Py(0) + P,(#) and Ti(0) + T»(0) are no longer Gaussian functions and we cannot use the
3-standard deviation threshold. Thus, we propose another method for finding the onset and
offset of these waveforms. We introduce a suitable confidence bound (¢) for the termination
of the constructed Py(6) + P>(0), Q(0), S(0) and T;(0) + T>(#) Gaussian functions, to determine
the onset and offset of the corresponding waveform.

The onset and offset of the QRS complex as well as P- and T-waves are determined by (14)
and (15). First, we compute analytically the whole area under each constructed Gaussian func-
tion (with trapezoidal numerical integration):
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= [ PO + PO @0
Ag= [ 0@ do
As= [ 1s@) a0
Ar = [ 170) + T:0)] o (14
Then, we numerically determine:
Poﬂ
Pal [ IPU®) + Po(0)] 46 = € 4p

Py fP IPL(0) + Py(0)| d6 = € Ap

’ QRSon
QRSw| [ 10(0)] b = ¢ Aq
QRSor| [ |5(6)] do = ¢ As

QRS

7;]“
Tonl [ |Ti(0) + T>(0)| dO = ¢ Ar
Toff|fT__ |Ti(0) + Tx(0)| dO = € Ar (15)

Since the constructed Py(6) 4+ P»(0) and Ti(f) + T>(#) are not exactly Gaussian functions,
we consider the total area under the constructed Py(0) + P>(0) and T,(6) + T>(0), between the
waveform onset and offset is 99% of the total area under the whole constructed waveform.
That means:

Fose
f |P(0) + Px(0)] 6 = 0.99 Ap

o1

f "1i0) + T5(0)| 46 = 0.99 Ay (16)

on

where, Ap and At are the total area under curve for the P- and T-waves, respectively. So the
€ value in (15) can be defined as: ¢ = (1 — 0.99)/2 = 0.005 for all waveforms. We consider a
unique ¢ value to find waveform onset and offset of all signals.

4.3. ECG interval analysis

Having estimated the FPs, we sought to assess the performance of the proposed methods in
measuring ECG intervals. As the PCGS method only estimates the peak, onset and offset of
P- and T-waves, we only present the ECG intervals which are defined by FPs of P- and
T-waves: TPy = Tpeak - Ppeak, Fyur = Pyt — Fon and Ty = Tofr — Ton.

4.4. Data and evaluation metrics

4.4.1. Database for ECG denoising. We use the MIT-BIH arrhythmia database (DB 1) (Moody
and Mark 1980) and MIT-BIH noise stress test database (DB2) (Moody et al 1984). Records
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of DB1 and DB2 were sampled at 360 Hz. In brief for showing the denoising performance,
we use the following records:

e Record 119 of DB1 which has PVC beats

e Records 111, 113, 115, 116, 117, 121, 122, 123, 124 and 231 from DB1 which we will
use for providing noisy records by adding Gaussian (white) noise to the original signal

e Records 118e06 and 118e12 from DB2

4.4.2. Database for ECG fiducial point extraction and interval analysis. We use the Phys-
ionet QT database (Laguna 1997, Laguna et al 1997), and a swine ECG database (DB3)
(Sayadi et al 2014) that include ECG signal annotations by physicians. QT database con-
tains the annotated ECG records of different databases. Here we use the annotated records
of normal sinus rhythm (DB4) and arrhythmia database (DB5) in the QT database. Records
of the swine ECG database (DB3) were sampled at 1000 Hz. Records of DB4 and DBS5 were
originally sampled at 250 Hz and then, resampled to 1000 Hz to obtain a unified temporal
resolution across databases. In brief, we use the following records for ECG FP extraction and
interval analysis:

e Records Ischemia01l, Ischemia02, Ischemia05, Ischemia09, IschemialO and Ischemia 12
(total 1100 beats) of the Swine database (DB3).

e Records Sel16539, Sel16786, Sel16795 and Sel17453 (total 108 beats) of DB4.

e Records Sell00, Sel103, Sell16, Sell17, Sel123, Sel230 and Sel231 (total 197 beats) of
DBS.

4.4.3. Evaluation metrics. For quantitative evaluation of a FP extraction method, we calcu-
late estimation error defined as time differences between cardiologist annotations and results
of the method. Quantitative results are reported using common metrics: mean (m), standard
deviation (s) and root mean square error (RMSE), defined as:

N
RMSE = MSE — %z(e,az = JoP+ ) (17)
j=1

where ¢; = . — y; is denoted as the jth element of estimation error vector and N is the length of
error vector (number of annotations). y; and y; are the jth cardiologist annotation and estimated
point, respectively. m, s and RMSE are given in ms. Since the RMSE considers both mean and
standard deviation of error, it is a more relevant parameter for comparing the methods.

5. Results

5.1. Results for ECG denoising

5.1.1. Results for noisy records with additive white noise. By adding Gaussian (white) noise
to the original signal with various SNR values, we obtain a noisy signal which we will use to
evaluate the efficacy of denoising by the EKF models. Figure 5 shows the denoising results
on a part of record 119 of the MIT-BIH arrhythmia database. In this figure we present typical
realizations of the original, noisy and estimated (denoised) ECG signals using each method.
The subtraction of the original from the estimated ECG signal (error) by each method is also
presented on figure 5, right (note the change of scale). One can observe that both EKF25
models with nonlinear phase exhibit smaller error than the other methods. We find that the
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Figure 5. Left, from top to bottom: Original tracing of record 119 of the MIT-BIH
arrhythmia database and estimated ECG signal by (i) linear and nonlinear EKF2, (ii)
linear and nonlinear EKF25 with four observations, (iii) linear and nonlinear EKF25
with two observations. Right, from top to bottom: Noisy ECG (input SNR —4 dB),
subtraction of the original from the estimated ECG signal by linear and nonlinear
EKF2, linear and nonlinear EKF25 with four observations, linear and nonlinear EKF25
with two observations.

nonlinear EKF25 with four observations provides the best result and for input SNR —4 dB,
we obtained 11.8 dB of SNR improvement defined as:

5 ) — X0 1o
where, x denotes the original ECG, x, is the denoised signal and x,, represents the noisy ECG.

To quantitatively evaluate the performance of the proposed algorithms, we calculate the
SNR improvement with respect to the input SNR, using (18).

To ensure the consistency of the results, the whole procedure was repeated 20 times over
the 18 seconds of record no.119, each time using a different set of random white additive
noise, as the input. The resulting SNR was averaged across all input SNR values. For a quanti-
tative comparison, in figure 6 we plot the mean and standard deviation (SD) of SNR improve-
ment versus different input SNRs for record no. 119.

We also perform the same simulations for 60 s of 10 records (records no. 111, 113, 115,
116, 117, 121, 122, 123, 124 and 231), of the MIT-BIH arrhythmia database. The mean and
standard deviation of the SNR improvement versus different input SNRs are plotted in figure 7.

In figures 6 and 7, one observes that among all algorithms, (i) the SNR improvement is
higher for low input SNR, (ii) the nonlinear EKF25 models perform better than the linear
EKF25 models, and (iii) both EKF25-20bs and EKF25-40bs models provide higher SNR
improvement compared to EKF2. It is worth to mention that figure 6 shows the performance
of proposed methods for ECG denoising of record 119 which has normal and PVC beats. This
figure demonstrates the improvement gained using the non-linear approach. For MIT-BIH
arrhythmia database, improvements of the nonlinear approach (figure 7) are weak, due to the
fact that we did not have large RR variations.

N 2
SNRimproved[dB] = SNR o, — SNR;, = IOIOg[M)
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Figure 6. (a) Mean and (b) SD of the SNR improvement versus input SNR for record

no. 119 of MIT-BIH arrhythmia database.
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Figure 7. (a) Mean and (b) SD of the SNR improvement versus input SNR for 10

records of MIT-BIH arrhythmia database.

We use a paired right-sided Wilcoxon signed rank test (McDonald 2014) to statistically
compare all methods, pair by pair. This test shows that EKF25, linear or nonlinear, with 2 or
4 observations, is significantly better than EKF2, linear or nonlinear, with a P-value less than

0.0001.

5.1.2. Results for noisy records with real noise. Records 118¢06 and 118e12 from MIT-BIH
noise stress test database (DB2) have been contaminated with real electromyogram (EMG)
noise and motion artifact. The noisy ECG signal as well as the denoised one using the lin-
ear EKF25-20bs and EKF25-40bs models are shown in figure 8. The signal to noise ratio
(SNR) of records 118e06 and 118e12 are 6 and 12 dB, respectively. One observes that the
denoised signals are free from EMG noise and motion artifact. Since we do not have the origi-
nal (clean) ECG for these records, so we just show the qualitative results and can not calculate
the improved SNR for them. In this figure, our aim is to show the ability of EKF25 models in
denoising noisy records with real noise, not comparing the methods.
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Figure 8. Noisy ECG and denoised ECG signal using the linear EKF25 methods with
two and four observations: (a) record 118e06 and (b) record 118e12.

5.2. Results for ECG fiducial point extraction

For ECG FP extraction we only use linear and nonlinear EKF25 with four observations and
only compare them with PCGS (presented in section 2.2) and EKF17 (presented in sec-
tion 2.1), since the results of PCGS and EKF17 for FP extraction are superior than other
benchmark methods (Sayadi and Shamsollahi 2009, Lin et al 2010).

5.2.1. An example of applying proposed methods. Figure 9 shows the absolute estima-
tion errors of the linear and nonlinear EKF25 for the peak, onset and offset of the P-wave
(figure 9(b)), of the QRS complex (figure 9(c)) and of the T-wave (figure 9(d)) of a normal
ECG signal (Sel16539). Although this record is a normal ECG signal, it exhibits a very large
RR interval variation (as shown in figure 9(a)). Therefore, it is not suitable to consider a linear
phase observation. We notice that the nonlinear EKF25 provides more accurate FP than the
linear EKF25, except for QRS,,. We observe that for FPs such as Byeax, QRSo, Tpeak and Togr,
the linear EKF25 approach is sensitive to the RR interval: for large RR interval variations,
its estimation error is high, whereas when using the nonlinear EKF25, the estimation error is
reduced.

5.2.2. Performance evaluation for each FP in each database. The mean, standard deviation
and RMSE of estimation errors of all methods for all databases are presented in tables 2 and 3.
RMSE values are presented in parentheses and the best result among all methods are denoted
as bold in these tables. In these tables, the algebraic error is calculated. A negative error indi-
cates that the position of the estimated FP occurs before the physician annotation, whereas
positive error indicates a late estimation.

Figures 10 and 11 show the distribution of the estimation error of different methods for the
onset and offset of P- and T- waves for different databases, respectively. Data are presented
as median (horizontal solid line), 25th to 75th percentiles (box) and 10th to 90th percentiles
(error bars).

According to tables 2 and 3 and figures 10 and 11, we observe that for the swine database
(DB3) for all FPs except Py, Byeak and Tpeqx, at least one of the EKF25 models achieves smaller
errors than PCGS and EKF17. In addition, for Py, QRS,, and i, the nonlinear EKF25 pro-
vides better results than the linear EKF25.
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Figure 9. Original ECG and its RR interval (a) and the absolute error of P-wave (b),
QRS complex (c), and T-wave (d) detection for sel16539 for linear and nonlinear
EKF25 with 4 observations. In panels (b)—(d), the absolute errors are shown from top to
bottom for the onset, peak and offset, respectively.

Estimation of all FPs except 1o, and Tpeqx, using the DB4 database indicates that at least
one of the EKF25 models achieves smaller errors than PCGS. Moreover, we can remark that
for all FPs except QRS,, and Rpeax, the nonlinear EKF25 leads to better performance than the
linear EKF25. For all FPs at least one of the EKF25 models achieves smaller errors compared
to EKF17.

Estimation of all FPs, using the DB5 database indicates that at least one of the EKF25
models exhibits smaller errors than PCGS and EKF17. In addition, for Byeak, QRS,, and Togy,
the nonlinear EKF25 appears to be an improved method compared to the linear EKF25.

5.2.3. Performance evaluation for all FPs in each database. In table 4, we present the mean,
standard deviation and RMSE of the absolute error among all FPs in each database. Also, the
last row of this table presents the absolute error of all FPs, across all databases. In this table,
we use the absolute error definition to prevent canceling out the positive and negative error
values of different FPs and different databases.

We use the Wilcoxon rank-sum test with Bonferroni correction (Mann and Whitney 1947)
to statistically compare all method pairs (linear EKF25, nonlinear EKF25, EKF17 and PCGS).
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Table 3. Mean, standard deviation and RMSE of errors (ms) between estimated peak

of waves and manual annotations for different databases.

m =+ s (RMSE) ms
Data Method Poeak Rpeax Tpeak
DB3 L.EKF25 05+56(5.62) 0.6+1.4 (1.5 —-124+5@6.2)
N.L.EKF25 1.2+ 8 (8.1) 0.4+2.6(2.6) —0.6+5.6(5.7)
EKF17 334+4(5.2) 1.3£1.5(2) —4+9(09.9)
PCGS 2.6+6.6(7.1) N.A —1+44.2)
DB4 L.EKF25 4+27(27.3) —03+1(1.04) 15+30(33.5)
N.L.EKF25 9+8(12.1) —-0.6+1(1.2) -2+ 18 (18.2)
EKF17 4+ 28 (28.3) 0.7+2.6 2.7 12 4+41 (42.7)
PCGS 12+18(221.6) NA 14+ 8 (16.2)
DB5 L.EKF25 10+ 15 (18) 0.2+2(2.01) 104+ 17 (19.7)
N.L.EKF25 9+ 13 (15.8) 1+3(3.2) 11 +£22(24.6)
EKF17 10£16 (18.9) —0.54+909.01) 9+27(28.5)
PCGS 18 £32 (36.7) N.A 21 +32(38.3)
80 100
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Figure 10. The distribution of estimation error of different methods for B, (left) and
Py (right) for different databases.

Pairwise comparisons showed a statistically significant difference between any two methods
(P-value < 0.0001).

In table 4, we observe that for all three databases and also for aggregate results across all
databases, the mean, standard deviation and RMSE of the error for both EKF25 models are
smaller than EKF17 and PCGS. In addition, for all databases, the nonlinear EKF25 exhibits
similar or superior results than the linear EKF25.

It is worth mentioning that the swine database (DB3) includes ECG signals acquired during
acute myocardial infarction, and that exhibit significant morphological changes (such as ST
elevation and QT prolongation) compared to the control signals. Then, we observe that for this
database the mean error of the proposed models is smaller than the other methods. The DB4
database includes signals with significant RR interval variability. Then, the proposed methods
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Figure 11. The distribution of estimation error of different methods for T, (left) and
Tose (right) for different databases.

Table 4. Mean, standard deviation and RMSE of absolute error across all FPs for
different databases.

m =+ s (RMSE) ms
Data L.EKF25 N.L.EKF25 EKF17 PCGS
DB3 12+ 15 (19.2) 123 £ 15 (19.4) 14.7+£19.4 (24.4) 12.8+15.6 (20.2)
DB4 21.24+25(32.8) 18+£18.1(25.5) 32 £43(53.6) 28 £24 (36.9)
DB5 204+23.7 (31) 20.34+£23.3(30.9) 28+38(47.2) 26 35 (43.6)
All 13.78 £ 17.7(22.4) 13.76 £17 (21.9) 17.7+25.8 (31.3) 15.6 £20.5(25.7)

and especially the nonlinear EKF25 exhibits smaller error than the other ones. Finally, in the
DBS5 database (which also includes signals with different morphological abnormalities), the
proposed methods can detect FPs more accurately than previously described methods.

To assess the degree of agreement between each of the automated methods and the manual
annotations, we used the Bland—Altman approach (Bland and Altman 2010) to estimate the
mean difference and the standard deviation of the difference among all FPs, across all databases.
The mean difference and the limits of agreement (defined as twice the standard deviation of
differences) were estimated for linear EKF25, nonlinear EKF25, EKF17, and PCGS methods
as —0.44 +44.8, —0.03 £ 43.6,4.6 £ 62 and 7.6 = 49.2 ms, respectively. The mean differences
as well as the margins of agreement for EKF25 annotations are smaller than other methods: it
means that they can find fiducial points more accurately than previously described methods.

5.3. ECG interval analysis

We calculate the mean, standard deviation and RMSE of the estimation errors obtained using
all methods in estimating the ECG intervals. These results are presented in table 5. Since,
in the DB5 database, the physician annotations of the T, are not available, the results for 7, in
table 2 and Ty, in table 5, are presented as N.A.(non available). Figure 12 shows the distribu-
tion of estimation error obtained by each method for Py, TPy and Ty, for different databases.
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Table 5. Mean, standard deviation and RMSE of errors (ms) between estimated ECG
intervals and manual annotations and differences among all intervals for different

databases.
m =+ s (RMSE) ms
Data  Method P duration TP interval T duration All Intervals
DB3  L.EKF25 —4£25(25.3) —1.8+74(7.6) —21+4+30(36.6) 20+ 17.6 (26.6)
N.L.EKF25 —23+28(28.1) —-2+9.5(09.7) —21+31(37.5) 21+18.3(27.8)
EKF17 6+35(35.5) —7.5+11.2(13.5) —9+4041) 24.4+21.5(32.5)
PCGS 9+19(21) —4+75(8.5) —35+33@48) 20.5+23(30.8)
DB4 L.EKF25 32+40(51.3) 114+50(51.2) —16+43 (46) 35+38(51.7)
N.L.EKF25 18 4+ 34 (38.5) —11+19(22) —24 429 (37.6) 25423 (34)
EKF17 44 1+ 33 (55) 8159 (59.5) —184+39(43) 40436 (53.8)
PCGS 76 +43 (87.3) 3419 (19.3) 3+32(32.2) 39 +40 (55.8)
DB5 L.EKF25 —9+30@31.3) 0.6+26(26) N.A 22 +19(29.1)
N.L.EKF25 —4 434 (34.3) 3429(29.2) NA 25 4+20.5 (32.3)
EKF17 21 +55(59) —1436(36) N.A 34,7 +34.8 (49.2)
PCGS 31+ 38 (49) 4445 (45) NA 32 434 (46.7)
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Figure 12. The distribution of estimation error of different methods for P-wave duration
(top), TP interval (middle) and T-wave duration (bottom) for different databases.
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Based on columns 3-5 of table 5 (results for Py, TPy and Ty,,) and figure 12, we observe
that for the swine database (DB3), (i) estimation of the TP, and Ty, using both EKF25 mod-
els exhibit smaller errors than PCGS, (ii) across all intervals, EKF25 models exhibit smaller
errors compared to EKF17. In the DB4 database, estimation of the Py, using the EKF25 mod-
els exhibit smaller errors than the PCGS. It must also be noted that for all intervals, the nonlin-
ear EKF25 achieves better performance than the linear EKF25 and also for By, and 7Py, the
EKF25 models exhibit smaller errors compared to the EKF17. In the DBS5 database estimation
of all intervals, using both EKF25 models exhibit smaller errors than PCGS and EKF17.

In the last column of table 5, we present the mean, standard deviation and RMSE of abso-
lute error among all intervals in each database.
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The mean and standard deviation of absolute error of all intervals, across all databases are
estimated for linear EKF25, nonlinear EKF25, EKF17 and PCGS methods as 21.3 4 20.5,
21.8 +19,26.6 £ 25 and 23 £ 26.7 ms, respectively and RMSE values are estimated for above-
mentioned methods as 29.6, 28.9, 36.5 and 35.3 ms, respectively. We observe that the mean,
standard deviation and RMSE of the absolute error of the EKF25 models are smaller than
those of other mentioned methods. Finally, in the DB4 database, the nonlinear EKF25 exhibits
much smaller error than the other methods.

We use the Wilcoxon rank-sum test with Bonferroni correction to statistically compare all
method pairs (linear EKF25, nonlinear EKF25, EKF17 and PCGS). We observe that all meth-
ods are statistically different from each other (p-value < 0.0001).

6. Discussion and conclusions

In this paper, we propose a method for ECG denoising and fiducial point extraction. The
method is based on a nonlinear dynamic model which assumes that each ECG beat is a combi-
nation of 7 Gaussian functions with 3 adjustable parameters (amplitude, width and location).
By introducing a first-order AR model for each of the 21 dynamic parameters of the Gaussian
functions and considering separate states for ECG waveforms (P-wave, QRS complex and
T-wave), a new dynamic model with 25 states is constructed, called ‘EKF25°. As this model is
nonlinear, an extended Kalman filter (EKF) is used to estimate the state variables. In EKF25
model, in order to form the observations, we considered two cases: a model with two observa-
tions and a model with four observations.

Overall, the advantages of the EKF25 model are: first, the ability to estimate the parameters
of Gaussian functions without having any corresponding observations that were used for FPs
estimation; second, the ability to estimate separate ECG waveforms, each of which represent-
ing a particular physiological state of the heart; third, the ability to find the P- or T-waves
of a signal including bi-phasic P- or T-waves, since we model each P and T waves with two
Gaussian functions.

In this paper, we used the DTW method in order to define a nonlinear phase observation for
our proposed model. Use of nonlinear phase observation is suitable for cardiac dysrhythmias
such as PVCs, where the nonperiodic abnormal morphology appears only occasionally, and
also is suitable for normal ECG signals with large RR-interval variability.

We presented three applications for our proposed model: ECG denoising, fiducial point
extraction and interval analysis. For ECG denoising, when applied to ECG signals with
frequent PVCs, our method showed a higher SNR improvement than EKF2 especially in lower
input SNRs and more importantly in the case of nonlinear phase observation. By applying the
nonlinear EKF25 with four observations, a SNR improvement of 12 dB was achieved for an
input SNR of —8 dB. We also evaluated the performance of the above mentioned models in
10 records of the MIT-BIH arrhythmia database and showed that EKF25 models outperform
the EKF2 model. We observed that EKF25 models can denoise the ECG signals contaminated
with EMG noise and motion artifact.

For ECG fiducial point extraction, we only used the EKF25 model with four observations.
We compared the linear and nonlinear EKF25 with PCGS and EKF17 models. Our results
showed that the EKF25 method could accurately detect all nine FPs (peak, onset and offset of
P-wave, QRS complex and T-wave).

The aggregate results across all databases, indicate that the mean, standard deviation and
RMSE of the absolute error for both EKF25 models are smaller than EKF17 and PCGS and
the nonlinear EKF25 exhibits better results than the linear EKF25. Both EKF25 models
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exhibit significantly improved results especially for signals preceding an arrhythmia, during
underlying ischemia or signals with large RR-interval variability.

For ECG interval analysis, the mean, standard deviation and RMSE of the absolute error of
the EKF25 models are smaller than previously described methods, and the nonlinear EKF25
exhibits similar or superior results than the linear EKF25. When applied to signals with large
RR interval variability (DB4 database), the nonlinear EKF25 exhibited much smaller error
than all other methods.

The run-time of the proposed method for a 6 s record takes about 1.5 s (using a Core i3, 2.53
GHz CPU), suggesting that this method may be used in real-time applications. Investigation
and comparison the computational complexity and time for all methods can be done in future
work.

The main aim of this study is to improve the detection capacity of previous Kalman filter-
ing frameworks. Advantage of FP estimation based on Kalman filter is that it does not require
many parameters to estimate, contrary to non-model-based methods. However, comparison
including such models is considering in future works.

Although there are several Bayesian filters such as the unscented Kalman filter (UKF),
in this work, we have chosen the EKF for its simplicity. The ability of UKF in fiducial point
extraction can be examined in the future.

The main limitation of the proposed method is its sensitivity to the initial location of the
Gaussian functions as well as initial parameters of EKF, that must be defined by the user.
Thus, future works include automatic estimation of these parameters.
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