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Abstract

Denoising is an important preprocessing stage in some ElectroEncephaloGraphy (EEG) applications. For this purpose, Blind Source Separation 
(BSS) methods, such as Independent Component Analysis (ICA) and Decorrelated and Colored Component Analysis (DCCA), are commonly 
used. Although ICA and DCCA-based methods are powerful tools to extract sources of interest, the procedure of eliminating the effect of sources 
of non-interest is usually manual. It should be noted that some methods for automatic selection of artifact sources after BSS methods exist, 
although they imply a training supervised step. On the other hand, in cases where there are some a priori information about the subspace of 
interest, semi-blind source separation methods can be used to denoise EEG signals. Among them the Generalized EigenValue Decomposition 
(GEVD) and Denoising Source Separation (DSS) are two well-known semi-blind frameworks that can be used with a priori information on the 
subspace of interest. In this paper, we compare the ICA and DCCA-based methods, namely CoM2 and SOBI, respectively, with GEVD and DSS 
in the application of extracting the epileptic activity from noisy interictal EEG data. To extract a priori information required by GEVD and DSS, 
we propose a series of preprocessing stages including spike peak detection, extraction of exact time support of spikes and clustering of spikes 
involved in each source of interest. The comparison of these four methods in terms of performance and numerical complexity shows that CoM2
give better performance for very low SNR values but require visual inspection to select the sources of interest. For higher SNR values, GEVD and 
DSS based approaches give similar results but with lower numerical complexity and without requiring a visual selection of the sources of interest.
© 2014 Published by Elsevier Masson SAS.
1. Introduction

In the process of recording brain activity, the signal of inter-
est is usually contaminated by different activities arising from 
various sources of noise and artifacts. Some of these artifacts 
are externally generated such as power line noise and instru-
mentation noise produced by inappropriate electrode connec-
tions. In addition to externally generated artifacts, there is noise 
that is generated by physiological sources, external to the brain, 
such as eye blinks, eye movements, muscle activity and heart 
pulse. Moreover, in some applications, part of the brain activity 

* Corresponding author.
E-mail address: sepideh.hajipour@gmail.com (S. Hajipour Sardouie).
http://dx.doi.org/10.1016/j.irbm.2014.10.002
1959-0318/© 2014 Published by Elsevier Masson SAS.
itself such as EEG background activity is considered as a noise 
that should be removed. Therefore, denoising is an important 
preprocessing stage in some EEG applications such as source 
localization or Brain Computer Interface (BCI).

In this paper, we focus on noise cancellation of epileptic 
interictal EEG data where the main assumption is that the sub-
space of interest has a spike-like morphology. The subspace of 
non-interest includes the background EEG signals and the inter-
nal noises such as muscle activity. Recently, different methods 
have been applied to denoise EEG interictal data. Blind Source 
Separation (BSS) and Independent Component Analysis (ICA) 
are useful tools in the EEG signal processing applications in-
cluding EEG denoising [1,2]. As mentioned in [3], only few 
ICA algorithms such as InfoMax [4] and FastICA [5] are used 
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nowadays to process biomedical signals. The authors in [3] ex-
amined fifteen ICA algorithms in terms of performance and 
computational complexity in the context of removal of muscle 
artifacts from interictal epileptiform activity. The results have 
shown that CoM2 [6] offers the best compromise between per-
formance and numerical complexity. In [7,8], in addition to ICA 
algorithms, some other denoising algorithms, such as Canonical 
Correlation Analysis (CCA) [9], Empirical Mode Decompo-
sition (EMD) [10] and Wavelet-based approach were studied 
for removal of the muscular artifacts from surface EEG sig-
nals recorded in epileptic patients. This study showed that CCA 
and ICA approaches outperform other methods in denoising 
of interictal signals with moderate noise levels. Although BSS 
methods are powerful tools to extract sources of interest, the 
procedure of eliminating the effect of sources of non-interest is 
usually manual. It should be noted that some methods for au-
tomatic selection of artifact sources after BSS methods exist, 
although they imply a training supervised step [11,12].

In addition to completely-blind source separation methods, 
semi-blind approaches can be used when there is a priori infor-
mation about the subspace of interest. The Generalized Eigen-
Value Decomposition (GEVD) and Denoising Source Separa-
tion (DSS) [13] are two well-known frameworks that can be 
used as denoising methods. In this paper, we use the GEVD-
based and DSS-based methods to denoise interictal EEG data 
and compare them with ICA and DCCA algorithms. Indeed, 
we want to test if a priori information on the spike-like sub-
space can be used in the denoising process. For EEG signals, 
it has been previously shown that different assumptions about 
sources of interest, such as spatial constraints [14], locations 
of known sources [15], shape and latency of the signal of in-
terest [16] and time support of spikes [17], can be considered 
in semi-blind or constrained source separation methods. In this 
paper, we use the timing information of the epileptic interictal 
sources (i.e. the time samples corresponding to each epileptic 
source) and propose a series of preprocessing stages to extract 
the useful information to be used in the GEVD and DSS frame-
works. These preprocessing stages consist of the detection and 
clustering of the epileptic spikes involved in each source of in-
terest. It should be mentioned that a GEVD-based method was 
previously proposed in [17] in order to determine epileptic re-
gions from epileptic intracerebral EEG signals. This method 
has a manual preprocessing stage to extract periods including 
interictal epileptiform discharges. On the contrary, in a GEVD-
based method used in this paper to denoise interictal EEG data, 
all the preprocessing stages to extract the time samples corre-
sponding to each epileptic source, including spike detection, 
extraction the exact time support of spikes and spike cluster-
ing, are fully automated. It should also be mentioned that both 
works have been done in parallel and independently. Some parts 
of our work were previously presented in [18].

Between the ICA and DCCA methods, we choose CoM2 [6]
and SOBI [19], respectively. The reason for selecting these al-
gorithms is that the CoM2 algorithm offers the best compromise 
between performance and numerical complexity as shown in [3]
and SOBI is one of the most common DCCA algorithms used 
in biomedical applications.
The rest of the paper is organized as follows. First the prob-
lem formulation is presented. After that, the four denoising 
methods are introduced. Since the CoM2 and SOBI algorithms 
have been extensively explained in the other articles, we pro-
vide a brief description of them. The proposed preprocessing 
stages for extracting a priori information on the epileptic sub-
space are explained in details and then the integration of this 
information into the GEVD and DSS based denoising methods 
is presented. The numerical complexity of the four denoising 
methods is also computed. In the next section, we compare the 
performance and numerical complexity of the four methods for 
denoising of both simulated and real interictal data. This section 
is followed by the conclusion.

In the following sections, bold uppercase letters (e.g. A) 
and bold lowercase letters (e.g. a) are used to denote matri-
ces and vectors, respectively. The superscripts � and T stand for 
the pseudoinverse and the transpose, respectively.

2. Problem formulation

In the context of recording the epileptic interictal EEG activ-
ity, the recorded signal can be considered as a combination of 
(i) the signal of interest arising from the epileptic brain regions 
and (ii) the signal of non-interest composed of different types 
of noise, background activity and artifacts. We model the EEG 
signal recorded from N electrodes as one realization {x[k]} of 
an N -dimensional random vector process {x̃[k]}. We can rep-
resent the observation process {x̃[k]} as follows:

x̃[k] = x̃(e)[k] + x̃(b)[k] + x̃(m)[k] + ν̃[k]
x̃[k] = A(e)s̃(e)[k] + A(b)s̃(b)[k] + A(m)s̃(m)[k] + ν̃[k] (1)

where {s̃(e)[k]}, {s̃(b)[k]}, {s̃(m)[k]} and {ṽ[k]} are the ran-
dom vector processes representing the activity of Pe epileptic 
sources, Pb background sources, Pm muscular sources and the 
N -dimensional instrument noise, respectively. The mixing ma-
trices A(e), A(b) and A(m) of size (N × Pe), (N × Pb) and 
(N ×Pm), model the transfer function from all possible sources 
of activity to scalp electrodes. All these mixing matrices can be 
combined in a global mixing matrix A of size (N × P) where 
P = Pe + Pb + Pm. Therefore, (1) can be rewritten as follows:

x̃[k] = As̃[k] + ν̃[k] (2)

where {s̃[k]} is the random vector process representing all 
sources.

As far as the statistical properties of vector random pro-
cesses {s̃(e)[k]}, {s̃(b)[k]}, {s̃(m)[k]} and {ν̃[k]} are concerned, 
we can assume that they are independent as they correspond 
to different physiological/physical phenomena. Nevertheless, 
such an assumption is not valid within each vector random pro-
cess regarding its components. In particular, some of epileptic 
activity sources may be statistically mutually dependent. We 
will then assume that, for every time index, the three vec-
tors s̃(e)[k], s̃(b)[k] and s̃(m)[k] can be factorized as s̃(e)[k] =
B(e)r̃(e)[k], s̃(b)[k] = B(b)r̃(b)[k] and s̃(m)[k] = B(m)r̃(m)[k], 
respectively, where r̃[k] = [r̃(e)[k]T, ̃r(b)[k]T, ̃r(m)[k]T]T is a 
P ′-dimensional vector of mutually independent random vari-
ables such that P ′ ≤ N and where B = [B(e)T

, B(b)T
, B(m)T]T
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is a (P ×P ′) matrix such that the product G = AB is a full col-
umn rank matrix. Eventually, the {ν̃[k]} vector random process 
can be assumed to be Gaussian as most of instrument noises [3].

The aim of the proposed statistical approaches, is to extract 
the signal of interest, {x(e)[k]}, which represents one realization 
of the epileptic vector random process {x̃(e)[k]}, from {x[k]}. 
Indeed, by computing from {x[k]} the corresponding realiza-
tion, {r(e)[k]}, of {r̃(e)[k]} and the corresponding mixing matrix 
G(e) = A(e) B(e), the N -dimensional signal {x(e)[k]} given by 
x(e)[k] = G(e)r(e)[k] will represent the denoised EEG data.

3. Methodology

3.1. The ICA and DCCA-based algorithms

The ICA and DCCA problems consist in retrieving unob-
served sources r̃[k] = [r̃1[k], . . . , ̃rP [k]]T from observed mix-
tures x̃[k] = [x̃1[k], . . . , x̃N [k]]T which can linearly be modeled 
as given by x̃[k] = Gr̃[k]. The fundamental assumption of ICA 
is that the unknown sources are statistically independent. The 
ICA problem can also be stated as finding the left inverse of 
the mixing matrix G. On the other hand, the DCCA meth-
ods use the assumption of spatial decorrelation and time color 
of the sources to extract them. There exist a lot of different 
ICA and DCCA algorithms used for different applications such 
as biomedical signal processing, communications, speech pro-
cessing, etc. In this paper, we use a well-known ICA method, 
namely CoM2. CoM2 relies on the maximization of a contrast 
function derived from Fourth-Order (FO) cumulants of the ob-
servations [6]. On the other hand, SOBI is a DCCA method that 
uses Second-Order (SO) cumulants to extract the sources [19]. 
By applying the ICA or DCCA-based algorithms on the obser-
vation signals, the estimate of the mixing matrix and P ′ sources 
including both sources of interest and non-interest are obtained. 
P ′

e components are visually selected as epileptic sources. Then, 
by using the estimate of the mixing matrix, the epileptic sub-
space corresponding to each epileptic source can be obtained. 
Note that for the ICA and DCCA-based methods as well as the 
GEVD and DSS ones the number of epileptic sources has to be 
known and it is assumed that it has been already estimated. Es-
timating the number of sources of interest is not in the scope of 
this paper. It is by itself a signal processing problem which was 
addressed in other researches [20,21].

3.2. The GEVD/DSS-based methods

In order to denoise interictal EEG signals, we show how the 
GEVD/DSS approach can be used through two main stages: 
(1) a preprocessing stage and (2) the subspace decomposition 
stage. In the preprocessing stage, some a priori knowledge 
about the occurrence times of spikes (spike time samples in-
volved in each epileptic source) are extracted. This information 
is used in the GEVD or DSS method to separate the epilep-
tic subspace from the noise subspace. Finally, the estimated 
denoised signal is achieved by reconstructing the observation 
signals only from estimated epileptic sources. The preprocess-
ing stage has three parts. We first detect the spike peak times. 
Then the exact time support of spikes is identified. After that, 
we cluster the extracted spikes into P ′

e groups corresponding to 
P ′

e epileptic interictal sources. In the rest of this section, these 
three stages are explained in detail and the GEVD and DSS-
based methods to denoise interictal data are then studied.

3.2.1. Spike detection
In the context of EEG signal processing, various methods 

have been proposed for spike detection [22–28]. These methods 
may use the information obtained from a single channel [22] or 
from several (multi-) channels [28,25]. They may also be cate-
gorized by the features they used: morphological features [28]
or time–frequency ones [22]. Most of the spike detection meth-
ods have an enhancement stage that generates an output signal 
in which the distinction between the spikes and the noise is in-
creased by some filtering methods such as Wavelet Transform 
[29,27], matched filters [30] or Kalman filter [31]. At this stage, 
the output signal is used in a decision procedure in order to 
extract the spike peak times. This decision procedure may be 
implemented by a simple thresholding algorithm [26] or may 
have a more complex structure [22].

In this paper, we use a three-stage multi-channel spike de-
tection method that is a generalized version of the previously 
proposed single-channel spike detection method [22,23]. This 
single-channel wavelet-based spike detection method consists 
of two stages (S1 and S2) that detect the candidates for spike 
peak times of each channel of observation (Fig. 1). In [23], it 
was shown that this wavelet-based algorithm has a better perfor-
mance than other spike detection algorithms. To generalize this 
method to multi-channel detection, we add a third stage (S3) 
in which a clustering algorithm combines the extracted infor-
mation from all channels to detect the spike peak times. Fig. 1
shows the three stages of the algorithm.

The detailed procedure of this three-stage multi-channel 
spike detection method can be described as follows. First, note 
that the signal of interest, the spikes in our application, are con-
taminated by piece-wise stationary signals, such as background 
EEG and measurement noise as well as by transient signals such 
as muscular artifacts. Therefore, this algorithm eliminates the 
signals of non-interest in two successive stages: the first stage 
(S1) separates transient signals (including the spikes) from the 
piece-wise stationary signals and the second stage (S2) tries to 
separate the spikes from muscular artifacts (rejection of false 
alarms). To this end, two measures T (n)

k and G(n)
k are calculated 

for each channel of observation {xn[k]} and for each time sam-
ple k. Then by using the appropriate thresholding processes, the 
candidates for spike peak times are obtained for each channel. 
The detailed procedure of these two stages is presented in [22,
23] and is also given in Appendix A.

Up to this point, we estimate the candidates for the spike 
peak times for each observation channel. Since there may be 
false detections and since the peak time might be misestimated 
by a few samples, a decision algorithm has to be performed at a 
stage S3 by using the information of all channels. We use a hier-
archical clustering method [32] to group all possible candidates 
for spike peaks of all channels. The hierarchical grouping starts 
by defining a number Ns of clusters equal to the total number 
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Fig. 1. The spike peak detection algorithm.
of candidates. In the first grouping step, the number of clusters 
is reduced to Ns − 1 by combining the two nearest spike peak 
times. In successive stages the newly formed groups are linked 
to other spikes or spike groups with the lowest distance (i.e. 
the distance between the centers of the clusters). In each step 
we save the center and the maximum intra-distance, i.e. the dis-
tance between the individuals in one group, for each cluster. 
This procedure is repeated until the maximum intra-distance of 
all clusters is less than a given threshold Thspike chosen as the 
length of a spike. After extracting all clusters, we select only 
the clusters for which the population is more than Neff (i.e. the 
minimum number of channels which are affected by one spike) 
and accordingly the centers of these clusters are the estimated 
peak times.

3.2.2. Extraction of the exact time support of the spikes
Only a few studies have worked on extracting the time sup-

port of a spike. In most applications, such as extracting the mor-
phological features, only the spike peak times and the distance 
between adjacent peaks are calculated. To extract the impor-
tant morphological points, the curvature features based on the 
second derivative are usually used. In this paper, we use a curva-
ture measure proposed in [33] to extract the time support of the 
spikes. First, in order to eliminate the ineffective channels, i.e. 
channels with little spike characteristics, we calculate a mea-
sure of spikiness based on the fourth standardized moment of 
each observation channel as follows:

Spikiness
({

x̃n[k]}) = 〈E[(x̃n[k] − E[x̃n[k]])4]〉
〈E[(x̃n[k] − E[x̃n[k]])2]〉2

(3)

where E[.] and 〈.〉 denote the mathematical expectation and 
temporal mean operators, respectively. We then eliminate the 
first Nue channels with minimum spikiness. The remaining 
channels are called “epileptic channels” in the following. Then 
we consider a symmetric window around each peak time (ex-
tracted in the previous step) and calculate the average value of 
the epileptic channels for all samples in the defined window. 
Then each signal is low pass filtered with a moving average fil-
ter of length Lma,1. Up to this point, for each spike we have a 
smooth signal around the spike peak time. To find the start and 
end samples of each spike, we define a curvature measure as 
follows:

Curvx[k] =
5∑

cos
(
θ

(k)
i

)
(4)
i=1
Fig. 2. The angle θi used in the curvature definition.

where θ(k)
i is the angle between two line segments that connect 

the points (k − i, x[k − i]) and (k + i, x[k + i]) to (k, x[k])
as shown in Fig. 2. Then we use Thθ as a threshold to define 
the start and end points of the spike. Since the data are noisy, 
we must ensure that the curvature of at least Nθ consecutive 
points are greater than Thθ . Thus, the start point of a spike is 
chosen as a first sample where its curvature and the curvature of 
the Nθ − 1 following samples are greater than Thθ . Similarly, 
the end point of a spike is chosen as a last sample where its 
curvature and the curvature of the Nθ − 1 previous samples are 
greater than Thθ .

3.2.3. Spike clustering
In this stage, the spikes extracted in the previous stages are 

clustered into P ′
e clusters corresponding to P ′

e epileptic sources. 
The morphological features of spikes (including the peak loca-
tion, the zero-crossing sample, slope and ...) originating from 
different epileptic sources are slightly different. These features 
may be used to cluster the spikes according to their correspond-
ing epileptic sources. In this paper, we use the ratio between 
the spike amplitudes on all electrodes at two main peak times. 
Since the location of epileptic sources in the brain has a direct 
impact on the spike amplitudes of different channels, this vector 
of features can effectively cluster the spikes. Since for the simu-
lated data of this paper we use biphasic spikes, we consider two 
peaks for each spike in this section. To extract this vector of 
features for each spike, we do the following procedure on each 
spike truncated at its extracted time support. These truncated 
spikes are represented by {x(�)[k�]} with 1 ≤ � ≤ Ns where Ns

is the number of spikes. So, we should first detect the occur-
rence time of two main peaks as shown in Fig. 3. Note that 
the spike peak times extracted in the first preprocessing stage 
may match one of these peaks, but in this stage we determine 
all of the peak times. To this end, for each spike, we calculate
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Fig. 3. The procedure of feature extraction from one spike: (a) the low-pass filtered signals of all channels, (b) extracting the zero-crossing sample of |x(�)|[k�], 
(c) extracting the occurrence time of two negative and positive peaks.
the moving average low pass filtered signal (with the filter of 
length Lma,2) of each channel as shown in Fig. 3(a). Then, 
we calculate the average of absolute values of amplitudes of 
all channels in each time sample, represented by {|x(�)|[k�]} as 
shown in Fig. 3(b). Then, the time of zero-crossing in approxi-
mately middle of the signal is determined. To find this point, the 
sample with minimum value in the middle third of the signal is 
extracted (k0) as shown in Fig. 3(b). After that, for {|x(�)|[k�]}, 
we consider two segments: one from the start point to k0 and 
the other one from k0 to end, and for each segment we find the 
point with maximum value as shown in Fig. 3(c). These two 
arguments of maximum, k(�)

p1 and k(�)
p2 , correspond to the occur-

rence time of the negative and positive peaks of the spike. Then 
we use the values of observations of different channels in the 
time samples k(�)

p1 and k(�)
p2 to generate a normalized vector of 

features for each spike as follows:

∀1 ≤ � ≤ Ns,

f [�] =
[

x[k(�)
p1 ]T

√∑N
n=1 xn[k(�)

p1 ]
,

x[k(�)
p2 ]T

√∑N
n=1 xn[k(�)

p2 ]

]T

(5)

Then by using the feature vectors of all spikes, f [�] for � ∈
{1, . . . , Ns}, and the Fuzzy C-Means (FCM) clustering algo-
rithm [34], the spikes are classified into P ′

e groups correspond-
ing to P ′

e epileptic sources. We represent the cluster containing 
all time samples corresponding to the p-th epileptic source by 
cluster(p) and the sets T (p)

1 and T (p)

2 are defined as follows:

T
(p)

1 = {
k : k ∈ cluster(p)

}
(6)

T
(p)

2 = {
k : k /∈ cluster(p)

}
(7)

3.2.4. The GEVD-based denoising algorithm
Let us assume that the vector random process {x̃[k]} can be 

approximately decomposed as a linear combination of decorre-
lated random processes, say as x̃[k] = Gr̃[k] where P ′

e compo-
nents of {r̃[k]} correspond to the components of {r̃(e)[k]}, i.e. 
they span the epileptic source subspace, and the other P ′ − P ′

e

components span the noise subspace. To extract these P ′
e epilep-

tic components as well as their corresponding columns in the 
Fig. 4. The GEVD framework: the procedure of extracting the epileptic sub-
space.

mixing matrix G, we use a GEVD-based subspace decompo-
sition algorithm. In this algorithm, we extract each epileptic 
component separately and then reconstruct the denoised ob-
servation signal corresponding to epileptic sources. The whole 
procedure to extract the epileptic subspace is shown in Fig. 4. 
For the epileptic source p ∈ {1, . . . , P ′

e} and for each time sam-
ple, we define two types of covariance matrices of the random 
vector {x̃[k]} as follows:

∀k1 ∈ T
(p)

1 ,

C
(p)
x [k1] = E

[(
x̃[k1] − E

[
x̃[k1]

])(
x̃[k1] − E

[
x̃[k1]

])T]
= GC

(p)
r [k1]GT (8)

∀k2 ∈ T
(p)

2 ,

C
(p)
x [k2] = E

[(
x̃[k2] − E

[
x̃[k2]

])(
x̃[k2] − E

[
x̃[k2]

])T]
= GC

(p)
r [k2]GT (9)

where the sets T (p)

1 and T (p)

2 are defined in (6) and (7) and 

the matrices C(p)
r [k1] and C(p)

r [k2] are the diagonal covariance 
matrices of the source vector {r̃[k]} at two time samples k1 ∈
T

(p)

1 and k2 ∈ T
(p)

2 , respectively.

To identify the p-th epileptic component {r(e)
p [k]}, we max-

imize the Rayleigh quotient defined as follows:
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Fig. 5. The DSS framework: this framework used to extract one epileptic source and its corresponding epileptic subspace.
J (p)(w) =
wT〈C(p)

x [k1]〉T (p)
1

w

wT〈C(p)
x [k2]〉T (p)

2
w

(10)

where 〈C(p)
x [kj ]〉T (p)

j

is the time average of the covariance ma-

trices C(p)
x [kj ] on the interval T (p)

j and w is the estimated 
separator. In practice and with ergodicity hypothesis, this av-
erage covariance matrix can be estimated from a realization 
{x[k]}

k∈T
(p)
j

of the vector random process {x̃[k]}
k∈T

(p)
j

as fol-

lows:

∀j ∈ {1,2},
〈
C

(p)
x [kj ]

〉
T

(p)
j

≈ 1

n(T
(p)
j )

∑
k∈T

(p)
j

({
x[k]} − 〈{

x[k]}〉
T

(p)
j

)

× ({
x[k]} − 〈{

x[k]}〉
T

(p)
j

)T (11)

where n(T
(p)
j ) represents the number of samples in the set T (p)

j

and 〈x[k]〉
T

(p)
j

= 1
n(T

(p)
j )

∑
k∈T

(p)
j

x[k]. Finding the argument of 

the maximum of (10) is equivalent to jointly diagonalize the 
matrices 〈C(p)

x [k1]〉T (p)
1

and 〈C(p)
x [k2]〉T (p)

2
. Consequently, the 

separator vector can be found by solving a problem of joint di-
agonalization by congruence. To this end, the GEVD of the pair 
of matrices 〈C(p)

x [k1]〉T (p)
1

and 〈C(p)
x [k2]〉T (p)

2
is solved in order 

to maximize (10). More particularly, the vector wp maximizing 
J (p) (10) is computing as the eigenvector associated with the 
largest eigenvalue of matrix 〈C(p)

x [k2]〉−1
T

(p)
2

〈C(p)
x [k1]〉T (p)

1
. An 

estimate of {r(e)
p [k]} is then given by {r̂ (e)

p [k]} where r̂ (e)
p [k] =

wT
px[k] for any time index k. Once the estimate {r̂ (e)

p [k]} of 

the P ′
e epileptic components {r(e)

p [k]} has been computed, the 
estimated denoised EEG signal {x̂(e)[k]} is achieved by re-
constructing the observation signals only from the estimated 
epileptic subspace as follows:

x̂(e)[k] = Ĝ
(e)

r̂(e)[k] (12)

where r̂(e)[k] = [r̂ (e)
1 [k], ..., ̂r(e)

P ′
e
[k]]T, Ĝ

(e) = X(R̂
(e)

)� and 

where X and R̂
(e)

are the (N × T ) and (P ′
e × T ) matrices 

standing for T samples of the N -dimensional signal {x[k]} and 
T samples of the P ′

e-dimensional reconstructed signal {r̂(e)[k]}, 
respectively, with the assumption that T ≥ N . Therefore, 
{x̂(e)[k]} contains essentially the contribution of the epileptic 
activity on the scalp electrodes.
3.2.5. The DSS-based denoising algorithm
The DSS [13] method is an almost recent framework which 

can be used to design new source separation algorithms. This 
framework can be optimized to generate a wide range of source 
separation algorithms, from completely to partially blind meth-
ods to solve specific problems. In this framework, the source 
separation algorithms are generated around the denoising meth-
ods, such that various kinds of prior knowledge are formulated 
in terms of denoising [13]. The DSS framework is based on the 
Expectation–Maximization (EM) algorithm [35].

In this paper, as mentioned before, we use the information 
extracted from the preprocessing stages of the algorithm to de-
sign an appropriate denoising method in the DSS framework. 
The model x̃[k] = Gr̃[k] + ν̃[k] for the observation is consid-
ered. The flowchart of the proposed DSS algorithm to extract 
one epileptic source is shown in Fig. 5. In this flowchart, {r̂p[k]}
and the vector wp represent the p-th extracted source and its 
corresponding separator, respectively.

As shown in Fig. 5, the first step of the algorithm is a whiten-
ing of the observations {x[k]}. The whitened signal {z[k]} is 
given by z[k] = Θ�x[k] where Θ is a square root of the co-
variance matrix of the noiseless observation vector process 
{x̃[k] − ν̃[k]}. By means of this whitening procedure, the matrix 
G is transformed into an orthogonal matrix W of size (P ′×P ′). 
The five consequent steps are the main steps of the DSS method 
which are repeated in an iterative procedure. First, by using a 
random initial value of separator vector wp of unit norm of size 
(P ′ × 1), a noisy estimate of the p-th source is calculated as 
follows:

∀k, r̂(e)
p [k] = wT

pz[k] (13)

The next step, called the denoising step, is the main stage of 
the algorithm. In this stage, by using the pre-obtained informa-
tion, the current estimated noisy source is modified or denoised. 
The general form of this stage is given by r̂ (e)+

p [k] = f (r̂
(e)
p [k]). 

In the DSS algorithm used in this paper, the denoised source 
{r̂ (e)+

p [k]} is produced from the noisy source {r̂ (e)
p [k]} as fol-

lows:

r̂ (e)+
p [k] =

{
r̂
(e)
p [k] if k ∈ T

(p)

1
0 otherwise

(14)

where T (p)

1 is the set containing the time samples corresponding 
to the p-th source as defined in (6).

In the third, fourth and fifth steps, by using the denoised 
source {r̂ (e)+

p [k]}, a new estimation of the separator vector is 
calculated and normalized as follows:
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Table 1
The numerical complexity of each step of the GEVD and DSS methods.

Multiplications Comparisons

Spike detection NT (MFw + 12) + 2(N − 1)Ns 2T log(T ) + NNs log(NNs) + 1
2 (N − 1)Ns(N(Ns + 1) − 3) + Ns

Extraction of the exact 
time support

N(2T + 2) + 44NsLw NsLw

Spike clustering N(Lma,2Ts + 2NsP
′
e

2
) 4

3 Ts

The GEVD algorithm 91
3 N3P ′

e + N2P ′
e(T + Ts + 1)

The DSS algorithm B + P ′
e(N

2T + NT + N) + ∑P ′
e

p=1 Itp(2NT + N)

Table 2
The numerical complexity of the denoising algorithms.

Numerical complexity

GEVD (P ′
e = 1) 91N3/3 + N2(T + TS + 1) + 44NsLw + N(14T + MFwT + 2 + 2Ns) − 2Ns

GEVD (P ′
e �= 1) 91N3P ′

e/3 + N2P ′
e(T + TS + 1) + 44NsLw + N(14T + MFwT + Lma,2Ts + 2 + 2Ns(1 + P ′

e
2
)) − 2Ns

DSS (P ′
e = 1) B + It1(2NT + N) + N(16T + MFwT + 4 + 2Ns) + 44NsLw − 2Ns

DSS (P ′
e �= 1) B + N2T P ′

e + ∑P ′
e

p=1 Itp(2NT + N) + 44NsLw − 2Ns + N(15T + MFwT + P ′
e(T + 1) + Lma,2Ts + 3 + 2Ns(1 + P ′

e
2
))

SOBI B + KT N2/2 + 4N3/3 + (K − 1)N3/2 + ItsP ′2[4P ′(K − 1) + 17(K − 1) + 4P ′ + 75]/2

CoM2 B + min(12Itcf4(P ′)P ′2 + 2ItcP ′3 + 3Tf4(P ′) + T P ′2,13ItcT P ′2/2) + ItcP ′2Q/2
w+
p =

T∑
k=1

z[k]r̂ (e)+
p [k] (15)

w(orth)
p = Π⊥w+

p (16)

w(new)
p = w

(orth)
p

‖w(orth)
p ‖

(17)

where Π⊥ is defined by:

Π⊥ = I − V
(
V TV

)−1
V T = I − V V T

with V = [w1, . . . ,wp−1] (18)

It is clear that the matrix Π⊥ represents the orthogonal pro-
jector onto the subspace orthogonal to the previously extracted 
sources, so by multiplying this matrix by w+

p , the effect of pre-
viously extracted sources is removed. By using this deflation 
step in the DSS framework, the convergence to previously ex-
tracted sources is prevented [13]. Then, the present estimated 
separator vector wp is passed to the first block and this proce-
dure continues until convergence. The outputs of the algorithm 
are wp and r̂ (e)

p [k] = wT
pz[k]. By using the same procedure, all 

epileptic sources are extracted. The estimated denoised EEG 
signal can then be achieved as follows:

∀k, x̂(e)[k] = Ĝ
(e)

r̂(e)[k] (19)

where Ĝ
(e) = ΘŴ

(e)
with Ŵ

(e) = [w1, ..., wP ′
e
].

3.3. Numerical complexity

In this section, we analyze the numerical complexity of the 
four algorithms which will be expressed in flops. A flop corre-
sponds to a multiplication followed by an addition, but in prac-
tice the number of multiplications is computed because they 
are more expensive than additions [36]. In this section, the to-
tal numerical complexity of the GEVD-based and DSS-based 
methods is computed and compared with the numerical com-
plexity of CoM2 [6] and SOBI [19]. Note that the results of this 
section will be used later in the section “Results” in order to 
compare the denoising algorithms.

The numerical complexity of each step of the GEVD-based 
and DSS-based methods is shown in Table 1. Table 2 shows 
the numerical complexity of the four denoising algorithms ex-
pressed in flops. In these tables, N , T and P ′

e are the number 
of channels, time samples and epileptic sources, respectively. 
M and Fw are the number of wavelet decompositions and the 
length of discrete mother wavelet in spike detection algorithm. 
Ns is the total number of spikes in all epileptic sources and 
Ts is the total number of samples in the spike durations. Lw is 
the length of window used in extracting the exact time support 
of the spikes. The length of the moving average filters used in 
Sections 3.2.2 and 3.2.3 is denoted by Lma,1 and Lma,2, respec-
tively. Itp is the number of iterations in the DSS algorithm to 
extract the p-th epileptic source. B = min{T N2/2 + 4N3/3 +
P ′NT, 2T N2} is the number of flops required to perform spa-
tial whitening. For CoM2, f4(P

′) = P ′(P ′ + 1)(P ′ + 2)(P ′ +
3)/24 is equal to the number of free entries in a fourth order cu-
mulant tensor of dimension P ′ enjoying all symmetries. Its and 
Itc are the number of sweeps required by a joint diagonalization 
process in SOBI and by contrast function optimization algo-
rithms (CoM2), respectively. K is the number of delay lags used 
in SOBI. Q is the complexity required to compute the roots of a 
real 4th degree polynomial by Ferrari’s technique (we may take 
Q ≈ 30 flops) [36,3].

Since the comparison is much simpler than multiplications, 
we consider only the number of multiplications for calculating 
the required flops. It should be noted that for the GEVD-based 
and DSS-based methods, we separately show the numerical 
complexities of two cases (1) P ′

e = 1 and (2) P ′
e �= 1, because 

for the case of P ′ = 1 the spike clustering stage is discarded.
e
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4. Results

4.1. Simulated data generation

The simulated EEG data are generated using a realistic 
model developed in our team [37,38]. We build a mesh of the 
cortical surface from a 3D MRI T1 image of a subject (Brain-
Visa, SHFJ, Orsay, France). This mesh is composed of 40 500 
triangles of mean surface 5 mm2. A current dipole is placed 
at the barycenter of each triangle and oriented orthogonally to 
the triangle surface, leading to a field of current dipoles. From 
this mesh, P distributed sources, called “patches”, generating 
interictal spikes, are defined. Each patch is composed of 100 
dipole sources to which we have assigned hyper-synchronous 
spike-like activities generated from a model of neuronal popula-
tions [37]. From this setup, and considering 32 electrodes in the 
cortical region, the forward problem is then solved using a re-
alistic head model made of three nested homogeneous volumes 
shaping the brain, the skull and the scalp (Boundary Element 
Method, ASA, ANT, Enschede, Netherlands). The epileptic ac-
tivity on the electrodes, namely the signal of interest, is then 
calculated by using the forward model and the epileptic patches. 
On the other hand the signal of non-interest, composed of mus-
cle activity, background EEG and instrument noise, is extracted 
from a real EEG data. Finally these real EEG data are added to 
the generated epileptic activity with a specified Signal-to-Noise 
Ratio (SNR) defined as follows:

SNR = 10 log10

( ∑T
k=1 ||x(e)[k]||2∑T

k=1 ||x(b)[k] + x(m)[k] + ν[k]||2
)

(20)

We considered three scenarios that can account for some of 
the interesting source configurations encountered in partial 
epilepsy. So, we ran three different tests: one with Pe = 1 and 
two with Pe = 2. For each test, we change the values of SNR 
in the range −15 dB to 5 dB. For each SNR, 50 trials of the 
simulated EEG are generated. In the first scenario, we consider 
one single patch localized in the superior temporal gyrus in the 
left hemisphere as shown in Fig. 6(a). In the second scenario, 
two patches are considered, the first patch is located in the su-
perior temporal gyrus and the second patch is in the inferior 
frontal gyrus as shown in Fig. 6(b). In this scenario, these two 
patches have uncorrelated dynamics. In the third scenario, we 
consider the same locations (Fig. 6(b)) for two epileptic patches 
but with correlated dynamics. For correlated dynamics, we in-
clude a short time delay between patch one and two to mimic 
propagation.

4.2. The denoising procedure and setting the parameters

The denoising procedure for the four methods has three 
steps: (1) extracting P ′ sources by using the observations, 
(2) choosing P ′

e sources of interest, say epileptic interictal 
sources, and eliminating sources of non-interest and (3) recon-
structing the observation signal by using only the sources of 
interest. It is clear that for the GEVD-based and DSS-based 
methods, the epileptic interictal sources are automatically ex-
tracted by these algorithms and there is no need for extra stages 
Fig. 6. The location of the epileptic sources in different scenarios: (a) scenario 1 
and (b) scenarios 2 and 3.

to choose the epileptic sources. But for CoM2 and SOBI, the 
epileptic sources should be selected from all extracted ones. To 
this end, we select visually P ′

e components as epileptic sources. 
Moreover, for CoM2 and SOBI, we first set the number of 
sources equal to the number of observation channels (P ′ = N ), 
but the simulations showed that for these algorithms for higher 
SNRs, considering fewer number of sources generates better 
results. As a result, for these algorithms, in each trial of each 
scenario, we generated the results by choosing the value of P ′
yielding the best result.

In order to optimize the performance of the GEVD and DSS 
methods, we set the value of the parameters Thspike, Nue, Lw , 
Nθ , Lma,1 and Lma,2 equal to 80, 17, 81, 7, 9 and 19, respec-
tively. The value of Neff was set to be 4 and 6 for the first 
scenario and the other scenarios, respectively. Thθ was set to be 
0.4curvx where curvx is the average of the curvature measure 
in the examined interval. Note that these values were estimated 
from a few trials of the simulated data and then we used these 
constant values dealing with all data.

4.3. Evaluation criteria

To compare the results of the denoising algorithms, we use 
four measures. The first two measures evaluate the performance 
of the denoised signals and the two other measures calculate 
their required flops and CPU time.

The first measure, called Error1, shows the error in separat-
ing the signal of interest, the epileptic interictal activity, from 
the signal of non-interest. The measure Error1 is given by:

Error1 =
∑N

n=1
∑T

k=1(x
(e)
n [k] − x̂

(e)
n [k])2

∑N
n=1

∑T
k=1(x

(e)
n [k])2

(21)

where {x(e)
n [k]} and {x̂(e)

n [k]} are the actual and estimated de-
noised EEG signals on the n-th channel, respectively.

The second measure, called Error2, shows the ability of the 
denoising algorithms to identify the epileptic subspaces corre-
sponding to different patches. Error2 is defined as follows:

Error2 = 1

P ′
e

P ′
e∑

p=1

(∑N
n=1

∑T
k=1(x

(e,p)
n [k] − x̂

(e,p)
n [k])2

∑N
n=1

∑T
k=1(x

(e,p)
n [k])2

)

(22)

where {x(e,p)
n [k]} and {x̂(e,p)

n [k]} are the actual and estimated 
denoised EEG signals reconstructed from the p-th epileptic 
component on the n-th channel, respectively. It is clear that, in 
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Fig. 7. An example of denoising procedure in the case of simulated data of scenario 1 generated from the activation of a single patch located in the superior temporal 
gyrus: (a) noise free simulated EEG with interictal spike-like activity, (b) noisy EEG after adding real muscle activity and background EEG for SNR = −15 dB, 
(c–f) EEG denoised by the GEVD-based, DSS-based, CoM2 and SOBI algorithms, respectively.

Fig. 8. Denoising results in the case of scenario 1: (a) Error1 as a function of SNR, (b) CPU time as a function of SNR, (c) flops as a function of SNR, (d) Error1
as a function of number of flops for SNR = −10 dB and (e) Error1 as a function of number of flops for SNR = 0 dB.
scenarios with only one patch, Error2 is equal to Error1. Since 
in scenarios with correlated activities, the activities of different 
patches cannot be separated, Error2 cannot be computed.

4.4. Results of the denoising methods for simulated data

Fig. 7 shows an example of simulated, noisy and denoised 
data of the first scenario with SNR = −15 dB. Electrode T3 
shows clear spike-like activity on original simulated data but 
this activity is completely hidden in the simulated noisy data. 
A visual analysis of denoised data shows that for this example 
the spike activity at T3 was well retrieved with all four algo-
rithms. The other channels were acceptably denoised by using 
all four algorithms.

Fig. 8 shows the results obtained with the first scenario 
by using the four denoising algorithms for different SNRs. 
These algorithms were compared in terms of Error1 as well 
as the CPU time and the required flops as functions of SNR. 
As illustrated in Figs. 8(a–c), the GEVD and DSS meth-
ods generated similar results in terms of Error1. Fig. 8(a) 
shows that all four algorithms generated almost similar re-
sults. More particularly, the GEVD and DSS methods gener-
ated lower Error1 than CoM2 and SOBI in most cases except 
for SNR = −15 dB, for which CoM2 gave better results. The 
main advantage of the GEVD and DSS methods is their low 
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Fig. 9. Denoising results in the case of scenario 2: (a) Error1 as a function of SNR, (b) Error2 as a function of SNR, (c) CPU time as a function of SNR, (d) flops 
as a function of SNR, (e) Error2 as a function of number of flops for SNR = −10 dB and (f) Error2 as a function of number of flops for SNR = 0 dB.

Fig. 10. Denoising results in the case of scenario 3: (a) Error1 as a function of SNR, (b) CPU time as a function of SNR, (c) flops as a function of SNR, (d) Error1

as a function of number of flops for SNR = −10 dB and (e) Error1 as a function of number of flops for SNR = 0 dB.
computational cost in comparison with the CoM2 and SOBI al-
gorithms; this statement can be easily confirmed by the results 
shown in Figs. 8(b–c). Note that, for CoM2, the required flops 
and consequently the CPU time greatly decreased in higher in-
put SNRs. As mentioned in Section 4.2, this is caused by using 
fewer number of sources to optimize the performance of the 
CoM2 algorithm. To compare the algorithms in terms of perfor-
mance and speed, we varied the number of channels for each 
algorithm to have almost similar numerical complexities. Then 
we compared the performance of the algorithms by using the 
measure Error1. Figs. 8(d–e) show the average Error1 of the 
four denoising algorithms as a function of number of flops for 
two SNR values −10 dB and 0 dB. As shown in these figures, 
the GEVD and DSS methods have smaller Error1 than CoM2

and SOBI, especially for high numerical complexities.
Fig. 9 shows the results obtained by using four denoising al-

gorithms in the case of the scenario 2. As shown in Figs. 9(a–b), 
for SNRs higher than −15 dB, all four algorithms generated 
similar Error1 but for SNR = −15 dB, CoM2 and SOBI out-
performed GEVD and DSS. In terms of Error2, for SNRs 
higher than −15 dB, GEVD, DSS and CoM2 generated ap-
proximately similar results, but SOBI could not compete with 
these algorithms. These results show that although SOBI can 
separate the epileptic subspace from noise subspace, it cannot 
effectively separate the epileptic subspaces corresponding to 
different epileptic sources from each other. Similar to Error1, 
for SNR = −15 dB, SOBI and CoM2 had lower Error2 than 
GEVD and DSS. As previously mentioned, the GEVD and DSS 
methods had lower computational cost in comparison with the 
CoM2 and SOBI algorithms as shown in Figs. 9(c–d). Similar to 
scenario 1, for scenario 2 we varied the number of channels for 
each algorithm to get an equivalent numerical complexity and 
we compared the performance of the algorithms by using the 
measure Error2. Figs. 9(e–f) show the average Error2 of four 
denoising algorithms as a function of number of flops for two 
SNR values −10 dB and 0 dB. In this scenario, similar to sce-
nario 1, for high numerical complexities the GEVD and DSS 
algorithms had smaller Error2 than CoM2 and SOBI.

Fig. 10 shows the denoising results of the four algorithms in 
the case of the scenario 3 in which we considered two epileptic 
patches with correlated activity. In this case, since the sources 
were highly correlated, we extracted only one epileptic source 
in each trial. As shown in Fig. 10(a), all four algorithms gen-
erated almost similar Error1. More particularly, the results ob-
tained by the GEVD and DSS methods were slightly better than 
the CoM2 and SOBI algorithms, especially for the SNRs higher 
than −15 dB. As the previously studied scenarios, the CPU 
time and flops required by the GEVD and DSS methods were 
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Fig. 11. Denoising of real interictal spikes data: (a) an epoch containing noise-free interictal spikes, (b) an epoch including spikes hidden in muscle activity and 
EEG denoised by (c) the GEVD-based method, (d) DSS-based method, (e) CoM2 and (f) SOBI. The source localization results obtained from 4-ExSo-MUSIC are 
depicted at the bottom of each column.
much lower than those of the CoM2 and SOBI algorithms as 
shown in Figs. 10(b–c). Similar to previous scenarios, for sce-
nario 3, we varied the number of channels for each algorithm to 
get an equivalent numerical complexity and we compared the 
performance of the algorithms by using the measure Error1. 
Figs. 10(d–e) show the average Error1 of four denoising algo-
rithms as a function of number of flops for two SNR values 
−10 dB and 0 dB. Similar to scenarios 1 and 2, the GEVD and 
DSS methods generated smaller Error1 than CoM2 and SOBI, 
especially for high numerical complexity.

In addition to above mentioned results, it is noteworthy that 
for all the scenarios, the GEVD and DSS methods are entirely 
automatic, while for CoM2 and SOBI, the appropriate number 
of sources (P ′) were defined by changing the number of sources 
and calculating error for each case. Furthermore for CoM2 and 
SOBI, the sources of interest were determined visually.

4.5. Application to real data

In this section we evaluate the denoising methods in the 
case of real data. The GEVD, DSS, CoM2 and SOBI algo-
rithms were applied to denoise interictal spikes obtained from 
a patient suffering from drug-resistant partial epilepsy. During 
video-EEG monitoring, scalp-EEG data were acquired from 32 
electrodes at a sampling frequency of 256 Hz. These data were 
reviewed in order to isolate two epochs: i) one epoch contain-
ing clean spikes (Fig. 11(a)), and ii) one epoch including spikes 
partially hidden in muscle activity with very high level of noise 
(Fig. 11(b)). The same procedure as for simulated data was ap-
plied to the noisy real EEG epoch to reconstruct the denoised 
EEG signals by using the four denoising algorithms as shown in 
Figs. 11(c–f). Since we do not know the ground truth to evalu-
ate qualitatively the performance of the four methods, a source 
localization process was performed on the original clean sig-
nal (considered as a reference), on the noisy data, as well as on 
the data denoised by GEVD, DSS, CoM2 and SOBI. As shown 
in Figs. 11(c–f), the interictal spikes are visible at electrodes 
F8, T4 and FT10 in the denoised data whereas they are par-
tially hidden in the noisy data. The denoising results of three 
algorithm GEVD, DSS and CoM2 are almost similar and they 
show interictal spikes at electrodes F8, T4 and FT10, but SOBI 
generates also some signals on the remaining electrodes. The 
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recent 4-ExSo-MUSIC algorithm [39] was used to achieve the 
source localization. Regarding the source localization results 
(bottom of each column of Fig. 11), the spike sources are local-
ized in the right anterior temporal region for the clean epoch. 
For the noisy epoch, the spike source is incorrectly localized in 
the left temporal region. The interictal data denoised by GEVD, 
DSS and CoM2 are localized in the right temporal neocortex in 
agreement with the source localization obtained from the clean 
epoch. The localization results of data denoised by SOBI are 
discordant with the localization of clean spikes.

5. Conclusion

In this paper, we compared two denoising methods based on 
GEVD and DSS with CoM2 and DSS, for denoising interictal 
epileptic EEG data. In order to extract the useful information to 
be used in the GEVD-based and DSS-based methods, a series 
of preprocessing stages were proposed, including spike peak 
detection, extracting the exact time support of spikes and clus-
tering of spikes involved in each epileptic source.

The four denoising algorithms were compared in terms of 
performance and numerical complexity by using simulated 
epileptic EEGs in three different scenarios. Results showed that 
for the scenario 1 with one epileptic source, the GEVD and 
DSS algorithms denoised the epileptic interictal data as well 
as CoM2 and SOBI for the SNR values higher than −15 dB. 
But for SNR = −15 dB, the CoM2 algorithm outperformed the 
GEVD and DSS methods. The results also showed that, for 
the second scenario with two uncorrelated sources, the GEVD, 
DSS and CoM2 methods surpassed SOBI in separating the 
epileptic subspaces corresponding to different epileptic sources 
for SNR values higher than −15 dB. But for SNR = −15 dB, 
the GEVD and DSS methods could not compete the CoM2
and SOBI algorithms. In addition, for the scenario 3 with two 
correlated epileptic sources, the GEVD and DSS methods had 
better performance than CoM2 and SOBI. In all scenarios, the 
GEVD and DSS algorithms had much lower computational cost 
in comparison with CoM2 and SOBI in terms of required flops 
and CPU time. We also examined the feasibility of these de-
noising algorithms dealing with real interictal data and showed 
that the GEVD, DSS and CoM2 algorithms denoised real data 
as well as simulated ones.

Finally in terms of implementation, an advantage of the 
GEVD and DSS methods over CoM2 and SOBI is the fact that 
an extra stage is not needed to visually select the sources of 
interest. Further work should consider more complicated sce-
narios with higher number of epileptic patches with different 
locations and different correlation states.

Appendix A. The wavelet-based spike peak detection 
algorithm

In this section, the wavelet-based single-channel spike peak 
detection algorithm [22,23] is given in detail. According to the 
definition of the Continuous Wavelet Transform (CWT), the co-
efficients of the wavelet transform of the observed signal from 
n-th channel, denoted by {xn[k]}, with the mother wavelet ψ(t)

are defined as follows:

D
(n)
a,b = 1

fs

T∑
k=1

xn[k]ψ∗
a,b[k] (A.1)

ψa,b[k] ∈ L2(R),

ψa,b[k] = 1√|a|ψ
(

k − b

a

)
, a �= 0, b ∈R (A.2)

where ∗ denotes the complex conjugate and fs is the sampling 
frequency of {xn[k]}. In this algorithm, complex Morlet wavelet 
is used as follows:

ψ(t) = C(1 + cos 2πf0t)e
2iπ�f0t , (A.3)

|t | ≤ 1

2f0
, � /∈ {−1,0,1}

where � sets up the number of oscillations of the complex part, 
f0 is the normalized frequency and C is a normalization coeffi-
cient (‖ψ‖ = 1) [22].

In the first stage, S1, by using the wavelet coefficients D(n)
a,b in 

the n-th channel, we calculate the measure T (n)
k for each time 

sample k and compare it with the decision threshold λ(n)
1 as 

follows:

T
(n)
k =

M∑
i=1

∣∣D(n)
ai ,k

∣∣2
> λ

(n)
1 (A.4)

where parameters M and ais are chosen such that the coeffi-
cients D(n)

ai ,k
approximately cover the bandwidth of the spikes. 

Consequently, at the output of the stage S1, the transient signals 
are enhanced compared to the background activity without any 
distinction between interictal spikes and muscular activity [22]. 
On the other hand, the experiments show that for a muscular 
artifact, compared with a spike, the squared modulus increases 
for high resolution scales [22]. This remark gives the idea to 
build a decision parameter G(n)

k which is calculated as the mean 

gravity center of the abscissa 1
ai

’s weighted by |D(n)
ai ,k

|2 on the 
detection interval around each sample point. Therefore, in the 
stage S2, the measure G(n)

k is calculated in the n-th channel, in 
the window of length 2w + 1, as follows [22]:

G
(n)
k =

∑k+w
j=k−w g

(n)
j

2w + 1
where g

(n)
j =

∑M
i=1(

1
ai

)|D(n)
ai ,j

|2∑M
i=1 |D(n)

ai ,j
|2

(A.5)

to separate the interictal spikes from muscular activity. Exper-
imentally, this quantity takes distinct values in the presence of 
an artifact or a spike. By comparing G(n)

k with a threshold λ(n)
2 , 

the stage S2 separates the useful signals from artifacts [22]. In 
[22], a practical method to choose the adaptive thresholds λ(n)

1

and λ(n)
2 was proposed.
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