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bstract

bjective.  –  Epileptic seizures are defined as manifest of excessive and hyper-synchronous activity of neurons in the cerebral cortex that cause
requent malfunction of the human central nervous system. Therefore, finding precursors and predictors of epileptic seizure is of utmost clinical
elevance to reduce the epileptic seizure induced nervous system malfunction consequences. Researchers for this purpose may even guide us to a
eep understanding of the seizure generating mechanisms. The goal of this paper is to predict epileptic seizures in epileptic rats.
ethods.  –  Seizures were induced in rats using pentylenetetrazole (PTZ) model. EEG signals in interictal, preictal, ictal and postictal periods were

hen recorded and analyzed to predict epileptic seizures. Epileptic seizures were predicted by calculating an index in consecutive windows of EEG
ignal and comparing the index with a threshold. In this work, a newly proposed dissimilarity index called Bhattacharyya Based Dissimilarity
ndex (BBDI), dynamical similarity index and fuzzy similarity index were investigated.
esults.  –  BBDI, dynamical similarity index and fuzzy similarity index were examined on case and control groups and compared to each other. The

esults show that BBDI outperforms dynamical and fuzzy similarity indices. In order to improve the results, EEG sub-bands were also analyzed.
he best result achieved when the proposed dissimilarity index was applied on Delta sub-band that predicts epileptic seizures in all rats with a
ean of 299.5 s.
onclusion.  –  The dissimilarity of neural network activity between reference window and present window of EEG signal has a significant increase
rior to an epileptic seizure and the proposed dissimilarity index (BBDI) can reveal this variation to predict epileptic seizures. In addition, analyzing
EG sub-bands results in more accurate information about constituent neuronal activities underlying the EEG since certain changes in EEG signal

ay be amplified when each sub-band is analyzed separately.

ignificance.  –  This paper presents application of a dissimilarity index (BBDI) on EEG signals and its sub-bands to predict PTZ-induced epileptic
eizures in rats. Based on the results of this work, BBDI will predict epileptic seizures more accurately and more reliably compared to current
ndices that increases epileptic patient comfort and improves patient outcomes.
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.  Introduction

Epilepsy is the second most common neurological disorder
fter stroke [1]. Epileptic seizures reflect the clinical signs of
n excessive and hyper-synchronous activity of neurons, which
similarity index of EEG and its sub-bands on prediction of induced
10.1016/j.irbm.2012.09.002

ay cause electrical disturbances in brain and make changes in
ensation, awareness and behavior [1]. About 1% of the people in
he world suffer from epileptic seizures. Epileptic seizures can be
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ontrolled by antiepileptic drugs in two thirds of patients while
nother 8% may benefit from epilepsy surgery. Unfortunately,
he remaining 25% of epilepsy patients cannot be treated with
ny available therapy [2]. Epileptic seizure prediction could help
pilepsy patients to have a normal life.

Since epilepsy is a condition related to the electrical activity
f the brain, it can be assessed by analyzing electroencephalo-
ram (EEG) signals. Epilepsy is characterized by occurrence
f recurrent seizures in EEG signal [3]. Conventional seizure
etection methods such as visual inspection of the EEG by a
rained neurologist are challenging because of the presence of

yogenic artifacts. These methods are also unable to detect the
haracteristic changes that precede seizure onsets. Hence, pre-
iction of seizures with these methods is challenging. Spectral
nalysis, which is another primary approach, is based on earlier
bservations that the EEG spectrum contains some characteristic
aveforms that fall primarily within four frequency bands. Such
ethods have proved to be beneficial for various EEG character-

zations. However, Fast Fourier Transform (FFT) suffers from
aving large noise sensitivity.

Newer spectral approaches based on parametric methods for
ower spectrum estimation such as autoregressive (AR) [4,5]
educe the spectral loss problems and give better frequency
esolution. Since the EEG signals are non-stationary, the para-
etric methods are not suitable for frequency decomposition of

hese signals. More recently, algorithms that are more sophis-
icated have been used, yielding increasingly accurate results.
or example, in [6] wavelet packet transform has been used for
eizure detection and in [7] it has been confirmed that the com-
lex Gaussian wavelet transform can be used to analyze of phase
ynchronization of EEG signal for seizure prediction. In Fact,
here is very little confirmed knowledge of the exact mechanism
esponsible for the seizure [8]. Over the years, many researchers
ave attempted to assess long-term EEG recordings to recognize
pileptic form transients [9,10]. Some relative weaknesses in this
iterature are the lack of extensive testing on baseline data free
rom seizures, the lack of technically rigorous validation and
uantification of algorithm performance in many studies.

Studies in seizure prediction vary in their theoretical
pproaches, validation of results, and amount of data analyzed.
EG-based seizure detection and prediction methods are mostly
ased on two approaches: firstly, examination of the waveforms
n the seizure-free EEG to find markers or changes in neuronal
ctivity such as spikes which may be precursors to seizures;
econdly, analysis of the nonlinear spatiotemporal evolution of
he EEG signals to find a governing rule as the system moves
rom a seizure-free to seizure state [11]. Recurrence quantifica-
ion analysis [12] and similarity index methods [13] are among
he second approach. Some other nonlinear analyses of epileptic
EGs such as the one proposed in [14] can also be categorized
s the second approach.

Dynamical similarity index [15] and its modification, fuzzy
imilarity index [16], have been widely employed for seizure
Please cite this article in press as: Niknazar M, et al. Application of a dis
epileptic seizures from rat’s EEG signals. IRBM (2012), http://dx.doi.org/

etection and prediction. In a recent study [17] dynamical sim-
larity index was also combined with mean phase coherence to
mprove the results of seizure prediction. However, both dynam-
cal and fuzzy similarity indices suffer intrinsic problems. As it
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ill be further explained in the next sections, the concept of
ynamical similarity index is strict or binary according to the
eaviside function, and both indices need to determine a radius

cale, which can be problematic.
In this study, we aim to examine the performance of a dissim-

larity index proposed by the authors [18], on epileptic seizure
rediction in rats. This dissimilarity index does not have above-
entioned problems. Moreover, results of recent investigations

8] indicate that in some cases, EEG sub-bands: delta, theta,
lpha, beta, and gamma may yield more accurate information
bout constituent neuronal activities underlying the EEG and
onsequently, certain changes in the EEGs that are not evident
n the original full-spectrum EEG may be amplified when each
ub-band is analyzed separately. Therefore, we wonder if the
esults can be improved using these sub-bands.

Various animal studies are currently conducted to test epilep-
ic seizure detection and prediction methods. The most popular
nd widely used animal models are the maximal electroshock
eizure test and the subcutaneous (s.c.) pentylenetetrazole (PTZ)
est. Development of various new antiepileptic drugs is mostly
ased on these two seizure models [19]. The s.c. PTZ test is
sed to find drugs effective against generalized seizures of the
etit mal (absence) type [19]. People with absence epilepsy have
epeated seizures that cause momentary lapses of conscious-
ess. These sudden and abrupt seizures most commonly occur
n childhood or adolescence and may have significant impact on
he educational development of sufferers [20].

The goal of this study is to predict epileptic seizures in rats
ith clonic seizures induced by s.c. injection of PTZ. The EEG

ignals in interictal, preictal, ictal and postictal periods were
ecorded and analyzed. The rest of this paper is structured as
ollows: the utilized data set is introduced in Section 2. The
hird section discusses the materials of our work. Our proposed

ethod is explained in detail Section 4. In this section, results
f our method tested on the dataset are discussed. Finally, in
ection 5, a conclusion is reported.

. Dataset

Data used in this study were collected at Pasteur Institute
f Iran. In this work, Male Wistar rats were used to study
TZ-induced epileptic seizures. Twenty-one male Wistar rats
eighing 200–250 g were housed in a controlled environment

6 a.m./6 p.m. light/dark cycle; 22 ±  3 ◦C) with free access to
ood and water. Two screw electrodes were inserted into the skull
ver the frontal and occipital cortex under ketamine (60 mg/kg,
.p.) -xylazine (10 mg/kg, i.p.) anesthesia. The epidural elec-
rodes were fixed on the skull using dental acrylic and an
xtra screw. The animals were allowed 3 days to recover and
andled gently to get familiar with the recording procedure.
hese rats were divided to case (six rats) and control (15 rats)
roups. EEG signals were then recorded in the control group
or approximately 60 minutes. For the test group, EEG signals
similarity index of EEG and its sub-bands on prediction of induced
10.1016/j.irbm.2012.09.002

ere recorded a few minutes before administration of a con-
ulsive dose of pentylenetetrazole (60 mg/kg, i.p.). Then, PTZ
as injected s.c. to freely moving rats through a polyethylene

ube and electrical activity was recorded for 60 minutes. All

dx.doi.org/10.1016/j.irbm.2012.09.002
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Table 1
Time recording of each experiment.

Rat No. Injection time Seizure onset Seizure end

1 21:34 29:02 30:35
2 10:33 15:09 16:24
3 6:05 9:18 9:36
4 7:16 20:05 20:36
5 5:55 21:25 22:39
6
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 5:11 9:59 11:01

ime format is minute:second. Starting time is always 00:00.

easurements and injections took place between 10:00 a.m. and
:00 p.m. EEG signals were recorded using an amplifier with
and-pass filter setting of 0.1–1000 Hz. The sampling rate was
0 kHz, and the analog-to-digital conversion is performed with

 12-bit resolution. The start time, injection time, seizure onset
ime and seizure end time were also written down.

Seizure onset was determined by an experienced experimen-
al scientist by observation of animal behavior including head
odding and general clonus in whole body [21]. The start time,
njection time, seizure onset time and seizure end time of exper-
ment is reported in Table 1. The interval between the seizure
nset time and injection time is considered as the maximum
rediction duration or extended preictal phase. The EEG dataset
as been downsampled to 1 kHz, and preprocessed by a 50 Hz
otch filter and a low pass 60 Hz filter.

. Materials  and  methods

.1.  Phase  space  and  trajectory  matrix

Based on the recent studies, EEG signals are multivariate
ime series caused by highly nonlinear, dynamic and multidi-

ensional systems [22]. One of the approaches for analyzing
pileptic EEG signals is to analyze the nonlinear spatiotempo-
al evolution of the EEG signals to find a governing rule as the
ystem moves from a seizure-free to seizure state [11]. Dynamic
ystems can be described by a set of states and transition rules,
hich specify how the system may proceed from one state

o another. Each state is the state of all independent variables
nvolve in operation of a system that is defined as a vector. Vec-
ors of different states make a vector space called phase space.
ynamics of a system can be studied by assessing this phase

pace [23]. In experimental situations, not all relevant variables
onstructing phase space are known or can be measured. We
ften have a discrete-time measurement of only one observable
uantity. This yields scalar discrete-time series sk = s(k�t). In
uch cases, the phase space has to be reconstructed. A single
ecord of a dynamic system is the outcome of all interacting
ariables of the system and thus, in principle, contains informa-
ion about the dynamics of all significant variables [24]. Hence,
hase space can be reconstructed from single record of the sys-
em. A frequently used method for the reconstruction is the time
Please cite this article in press as: Niknazar M, et al. Application of a dis
epileptic seizures from rat’s EEG signals. IRBM (2012), http://dx.doi.org/

elay method proposed by Takens [25] in which phase space is
econstructed by its trajectories

j = (
sj,  sj+τ, .  .  . , sj+(m−1)τ

)
(1)
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here j = 1, 2, .  .  ., N  −  (m  −  1)τ, in which N is the total number
f data points in the present window, m  is embedding dimension
nd τ  is time delay.

For finite and noisy datasets like EEG recordings, m  and τ

hould be carefully determined. The most common method for
hoosing a proper time delay is based on calculation of the first
ocal minimum of the mutual information (MI) function [26],
ince the first minimum of the MI(τ) portrays the time delay
here the signals (sT, sT+1, .  . ., sL−τ) and (sT+τ , sT+τ+1, .  . ., sL)
ave the minimal overlapping information. After the selection of
he optimum lag, minimum embedding dimension is determined
ased on Cao’s method [27].

.2. Dynamical  similarity  index

One of the most common nonlinear methods that analyzes the
onlinear spatiotemporal evolution of the EEG signals to find the
ransition from a seizure-free to seizure state is called dynamical
imilarity index method [15] formulized based on nonlinear time
eries basics proposed by Baulac and Varela [28]. The method
onsists of reconstruction of EEG dynamics and measurement
f similarity between reference state Sref and present state St.
eference windows should be recorded during an interval quite
istant in time from any seizure. For each window, trajectory
atrix is constructed using the vectors of phase space

ij =  sj+(i−1)τ (2)

here 1 ≤  i ≤  m  and 1 ≤  j ≤  N  −  (m  −  1)τ. Trajectory or aug-
ented matrix is a complete record of patterns occurs within

 window. To reduce noise, the trajectory matrices A(St) of the
liding window and A(Sref) of the reference window are pro-
ected on the principal axes of the reference window resulting
rom singular value decomposition (SVD) of the reference win-
ow, yielding X(St) and X(Sref), respectively [16]. In order to
ave more reliable reference window, it is better to select it
rom a long interval of interictal period. However, this increases
omputational cost of the algorithm. To achieve a significant
eduction in the volume of data without loss of potentially valu-
ble dynamical information, a random selection Y(Sref) of X(Sref)
s done [16]. In this study, the size of Y(Sref) equals the size of
(St). The second step is to compare Y(Sref) with X(St) using
ross-correlation integral:

XY (r) = 1

Nref Nt

Nref −(m−1)τ∑
m=1

Nt−(m−1)τ∑
n=1

×  Θ
(
r  − ∥∥Ym

(
Sref

) −  Xn (St)
∥∥)

(3)

Here, ||·||  denotes the Euclidian norm and �  is the Heaviside
tep function. Nref, Nt, m  and n are the number of points in the
hase space of reference window, the number of points in the
hase space of sliding window, index for columns of Y(Sref) and
similarity index of EEG and its sub-bands on prediction of induced
10.1016/j.irbm.2012.09.002

ndex for columns of X(St), respectively. The distance r  is usu-
lly defined as the 30% quintile of the cumulative neighborhood
istribution of the reference window [29]. In order to further
mproving the discriminatory power between two dynamics,

dx.doi.org/10.1016/j.irbm.2012.09.002
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ross-correlation integral is normalized by autocorrelation inte-
rals CXX (r) and CYY (r) yielding the dynamical similarity index
XY:

XY = CXY ⁄√CXXCYY (4)

Dynamical similarity index provides a sensitive measure of
loseness between two dynamics. If the reference and present
indow share the same underlying dynamics, the value of γXY

s around 1, on the contrary, it goes down to 0.

.3. Fuzzy  similarity  index

Fuzzy similarity index was extracted from dynamical sim-
larity index by Ouyang et al. [16] with some modifications.
he concept of dynamical similarity index is strict or binary
ccording to the Heaviside function. As a result, all data points
ust outside the hyper-sphere are discarded and all data points
nside the hyper-sphere are treated equally. In the fuzzy sim-
larity index, a Gaussian function is employed to replace the
eaviside function in the dynamical similarity; consequently,

he strict boundary in the dynamical similarity becomes smooth.
he Gaussian function represents a fuzzy similarity between
ach data point and adjacent points. After replacing Heaviside
unction with Gaussian function, correlation integral becomes:

F
XY (r) = 1

Nref Nt

Nref∑
i=1

Nt∑
j=1

exp
(
−∥∥Yi

(
Sref

) −  Xj (St)
∥∥2

/r2
)
(5)

Fuzzy similarity index is then defined as:

F
XY = CF

XY ⁄
√

CF
XX

CF
YY

(6)

Similar to Dynamical similarity index, if the reference and
resent window share the same underlying dynamics, the value
f fuzzy similarity index is around 1, otherwise it goes down to
.

.4. Bhattacharyya  Based  Dissimilarity  Index  (BBDI)

In [18], a new dissimilarity index inspired by dynamical
nd fuzzy similarity indices was proposed and is called Bhat-
acharyya Based Dissimilarity Index (BBDI) in this paper. As

entioned above, the concept of dynamical similarity index
s strict or binary according to the Heaviside function. Fuzzy
imilarity index has been proposed to overcome this problem
sing Gaussian function instead of Heaviside function. How-
ver, for fuzzy similarity index again we need to determine a
adius scale based on the cumulative neighborhood distribution
f reference set that is challenging. In order to overcome both
bove-mentioned problems, BBDI was proposed. Calculating
Please cite this article in press as: Niknazar M, et al. Application of a dis
epileptic seizures from rat’s EEG signals. IRBM (2012), http://dx.doi.org/

BDI is also computationally faster than calculation of former
ndices. Bhattacharyya distance is employed to measure dynami-
al dissimilarity between dynamics of reference state and current
tate. BBDI can illustrate the temporal distribution of changes in

t
a
p
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pileptic EEG signals. In this method, Bhattacharyya distance
etween X(St) and Y(Sref) is defined as:

DB

(
X (St) , Y

(
Sref

))
= 1

8

(
mX(St ) − mY(Sref )

)T
P−1

(
mX(St ) − mY(Sref )

)

+ 1

2
ln

⎛
⎝ det (P)√

det
(
PX(St )

)
det

(
PY(Sref )

)
⎞
⎠ (7)

here mX(St ) and mY(Sref ) are mean values of columns of matri-
es X(St) and Y(Sref), and PX(St ) and PY(Sref ) are covariance

atrices of these matrices, and P  =
PX(St )+P

Y(Sref )
2 . If the refer-

nce and present windows share the same underlying dynamics,
BDI has low values; on the contrary, it increases.

.5. Detection  of  a  preictal  phase

EEG recording of a seizure activity can be characterized by
our stages:

 ictal stage that starts at seizure onset and finishes at seizure
end;

 postictal stage which is the period following seizure end and
represents a return to normal background activity;
interictal stage which is the period between postictal stage of
one seizure and the moments before next seizure onset;
preictal stage that is moments before seizure onset.

The goal of seizure prediction is to detect transition from
nterictal stage to preictal stage. Since there is not certain def-
nition for preictal stage onset, we try to calculate an index in
onsecutive windows and comparing this index with a threshold.
rossing of index and threshold is considered as an alarm for
ossibility of seizure onset in following moments. In the litera-
ure of prediction of induced epileptic seizures in rats, definition
f preictal stage is different from its definition in humans. For
nduced epileptic seizures in rats, time interval between injection
nd seizure onset is considered as extended preictal. Therefore,
n alarm must be issued in the extended preictal stage to be con-
idered as a correct alarm. The goal of this study is to design an
utomated method to detect preictal phase. For this purpose, the
rst step is to calculate the mean value μ  and standard deviation
S.D.) σ  of each index during interictal phase. The second step
s to obtain a baseline for preictal phase detection. As for any
iven baseline, a local rise can be characterized by its height k
nd duration d. The height of the rise k  can be obtained in units
f the S.D. of the baseline epoch, then the threshold value can be
et to (μ  + kσ), whereas its duration d  can be quantified by the
ime during which the value of a profile rises over this threshold
30]. During practical implementation of this detection method,

 backward moving-average filter was first applied to smooth
he profiles of each index to avoid abrupt variations. Then the
similarity index of EEG and its sub-bands on prediction of induced
10.1016/j.irbm.2012.09.002

ime smoothed index reseeds over the threshold value (μ  + kσ)
nd remained over it within duration d  is considered as detection
oint. The parameters k  and d govern the mean height of a rise
ver a certain time and the threshold for preictal phase detection.

dx.doi.org/10.1016/j.irbm.2012.09.002
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time from all six rats in the test group, which shows that BBDI
can efficiently predict epileptic seizures. The green and yellow

Table 2
The anticipation times in second for dynamical similarity index and fuzzy sim-
ilarity index for all rats. Both indices failed to predict seizure for rats 2 and
4.

Rat No. Dynamical similarity index Fuzzy similarity index

1 390 391
2 – –
3 61 63
ig. 1. Top: long-term EEG recording of rat 3 in the test group. Bottom: smoo
nset. Solid black line represents the baseline for preictal phase detection param
pileptic seizure occurred at 09:18. Detection point of preictal phase is at 08:17

he parameters k  and d  can be optimized for the whole dataset.
he performance of detection [30], Q, is defined as:

 =
√

Se2 +  Sp2

2
(8)

here Se  is sensitivity, defined as fraction of correct detections
o all seizures; Sp  is specificity rate, defined as one minus the
verage number of false positive detections per hour of interictal
EG in test and the control groups (for more than one false
ositive per hour, Sp  is set to zero).

. Results

In this section, the results of implementation of the three
ndices are presented. EEG data of six rats in the test group and
5 rats in the control group were analyzed. Length of each slid-
ng window was 1 s (1000 points), length of reference window
as 100 seconds (100,000 points) and threshold value was set to

μ + kσ). Optimum performance for the seizure prediction algo-
ithms based on dynamical similarity index and fuzzy similarity
ndex values were k = −2.3 and d = 5 for dynamical similarity
ndex and k  = −2.6 and d = 5 for fuzzy similarity index. Both
ynamical similarity and fuzzy similarity indices could predict
our seizures out of six seizures correctly and had no false alarm
n the control group. For both indices, sensitivity and speci-
city were 67% and 90%. Therefore, value of 79% for Q  was
btained for both indices. Fig. 1 shows a correct prediction using
Please cite this article in press as: Niknazar M, et al. Application of a dis
epileptic seizures from rat’s EEG signals. IRBM (2012), http://dx.doi.org/

ynamical similarity index, and Fig. 2 shows smoothed dynam-
cal similarity index versus time for a rat in the control group. It
s observed that dynamical similarity index fluctuations appear
t high level over the long-term EEG recording.

4
5
6

ynamical similarity index versus time, which gradually decrease until seizure
k = −2.3 and d = 5. Administration of pentylenetetrazole was done at 06:05 and
anticipation time is 61 s.

Fig. 3 shows a correct prediction using fuzzy similarity index,
nd Fig. 4 shows smoothed fuzzy similarity index versus time
or a rat in the control group.

Dynamical similarity index and fuzzy similarity index had
imilar results on this dataset. In this dataset mean of duration
f extended preictal period was 484 s and mean of anticipation
ime for dynamical similarity index and fuzzy similarity index in
heir correct predictions were 324.5 s and 325.5 s, respectively.
able 2 shows anticipation times in terms of second for all rats.

The last index, studied in this work was BBDI. Optimum per-
ormance for seizure prediction based on BBDI was obtained
ith parameters k = 2.5 and d  = 5. Fig. 5 shows a correct predic-

ion using BBDI, and Fig. 6 shows smoothed BBDI versus time
or a rat in the control group.

BBDI could predict all six seizures correctly and had no
alse alarm in the control group. Sensitivity, specificity and Q
re all 100% for this index. Fig. 7 summarizes the anticipation
similarity index of EEG and its sub-bands on prediction of induced
10.1016/j.irbm.2012.09.002

– –
701 702
146 146
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ig. 2. Top: long-term EEG recording of a rat in the control group. Bottom: sm
epresents the baseline for preictal phase detection with parameters k = −2.3 an

ars in Fig. 7 represent the extended preictal duration and the
Please cite this article in press as: Niknazar M, et al. Application of a dis
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nticipation time, respectively. Mean times of the extended pre-
ctal duration and the anticipation time are 484 s and 293.5 s,
espectively. A paired Student t-test was also conducted for

p
e
a

ig. 3. Top: long-term EEG recording of rat 6 in the test group. Bottom: smoothed fu
olid black line represents the baseline for preictal phase detection parameters k =
pileptic seizure occurred at 09:59. Detection point of preictal phase is at 07:23. The
d dynamical similarity index fluctuations appear at high level. Solid black line
5.

he extended preictal duration and the anticipation time. The
similarity index of EEG and its sub-bands on prediction of induced
10.1016/j.irbm.2012.09.002

aired Student t-test showed that there is a significant differ-
nce between the mean extended preictal duration and the mean
nticipation time (P  < 0.02).

zzy similarity index versus time, which gradually decrease until seizure onset.
 −2.6 and d = 5. Administration of pentylenetetrazole was done at 05:11 and

 anticipation time is 146 s.

dx.doi.org/10.1016/j.irbm.2012.09.002


Please cite this article in press as: Niknazar M, et al. Application of a dissimilarity index of EEG and its sub-bands on prediction of induced
epileptic seizures from rat’s EEG signals. IRBM (2012), http://dx.doi.org/10.1016/j.irbm.2012.09.002

ARTICLE IN PRESS+Model
IRBM-210; No. of Pages 10

M. Niknazar et al. / IRBM xxx (2012) xxx–xxx 7

Fig. 4. Top: long-term EEG recording of a rat in the control group. Bottom: smoothed fuzzy similarity index fluctuations appear at high level. Solid black line
represents the baseline for preictal phase detection with parameters k = −2.6 and d = 5.

Fig. 5. Top: long-term EEG recordings of rat 5 in the test group. Bottom: smoothed BBDI values versus time, which gradually increase up to seizure onset. Solid
black line represents the baseline for preictal phase detection with parameters k = 2.5 and d = 5. Administration of pentylenetetrazole was done at 05:55 and epileptic
seizure occurred at 21:25. Detection point of preictal phase is at 12:51. The anticipation time is 514 s.
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ig. 6. Top: long-term EEG recording of a rat in the control group. Bottom: smo
or preictal phase detection with parameters k = 2.5 and d = 5.

Results show that BBDI is more reliable for PTZ-induced
pileptic seizure prediction. EEG sub-bands were also analyzed
o check if results would be improved. In order to extract indi-
idual EEG sub-bands, a wavelet filter was employed. Wavelet
ransform has the advantages of time-frequency localization,

ulti-rate filtering, and scale-space analysis [8]. Wavelet trans-
orm uses a variable window size over the length of the signal,
Please cite this article in press as: Niknazar M, et al. Application of a dis
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hich allows the wavelet to be stretched or compressed depend-
ng on the frequency of the signal. This results in excellent
eature extraction from non-stationary signals such as EEG

ig. 7. The extended preictal duration and the anticipation time for all rats in the
est group. The extended preictal duration and the anticipation are represented
ith green and yellow bars, respectively. Their mean times are 484 s and 293.5 s.
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 BBDI fluctuations appear at high level. Solid black line represents the baseline

ignals. In this study, discrete wavelet transform (DWT) based
n dyadic (powers of 2) scales and positions was used which
s computationally efficient. EEG signal was decomposed into
rogressively finer details by means of multi-resolution anal-
sis using DWT. After the first level of decomposition, two
equences representing the high (details) and low (approxi-
ations) resolution components of the signal were obtained.
he low-resolution components were further decomposed into

ow and high-resolution components applying a second level
ecomposition and so on. Continuing up to four levels of decom-
osition yielded five separate EEG sub-bands. The five EEG
ub-bands: delta, theta, alpha, beta, and gamma span the 0–60 Hz
requency range. To correlate the wavelet decomposition with
requency ranges of physiological sub-bands, the wavelet fil-
er used in this application requires frequency content limited
o 0–60 Hz band. Due to above-mentioned reasons, the EEG
as band-limited to 0–60 Hz range using a low-pass finite

mpulse response (FIR) filter. EEG signals were then subjected
o a four level decomposition using fourth-order Daubechies
avelet transform. After the first level of decomposition, EEG

ignal, s (0–60 Hz), was decomposed into its higher resolution
omponent, d1 (30–60 Hz) and lower resolution component, a1
0–30 Hz). In the second level of decomposition, the a1 compo-
ent was further decomposed into higher resolution components,
2 (15–30 Hz) and lower resolution components, a2 (0–15 Hz).
ollowing this process, after four levels of decomposition,

he components retained were a4 (0–4 Hz), d4 (4–8 Hz), d3
similarity index of EEG and its sub-bands on prediction of induced
10.1016/j.irbm.2012.09.002

8–15 Hz), d2 (15–30 Hz), and d1 (30–60 Hz). Reconstructions
f these five components using the inverse wavelet transform
pproximately correspond to the five physiological EEG sub-
ands delta, theta, alpha, beta, and gamma [8].
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Table 3
The anticipation times of original EEG and its sub-bands using BBDI for all rats.

Rat No. Original EEG Delta sub-band Theta sub-band Alpha sub-band Beta sub-band Gamma sub-band

1 395 395 395 395 395 395
2 26 42 28 30 32 36
3 63 63 – – – 3
4 652 616 616 616 616 616
5 514 535 402 

6 138 146 104 

Fig. 8. Top: long-term EEG recording of rat 5 in the test group. Bottom:
smoothed BBDI values of delta sub-band versus time that gradually increase
until seizure onset. Solid black line represents the baseline for preictal phase
detection with parameters k = 2.5 and d = 5. Administration of the pentylenete-
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razole was done at 05:55 and epileptic seizure occurred at 21:25. Detection
oint of preictal phase is at 12:30. The anticipation time is 535 s.

For delta, theta, alpha, beta and gamma sub-bands, BBDI
as computed to predict PTZ-induced epileptic seizures. Table 3
resents the anticipation time for original EEG signals and their
ub-bands for all rats in the test group.

For all sub-bands, best results were achieved with parameters
 = 2.5 and d = 5. Table 3 shows that only delta and gamma sub-
ands led to sensitivity, specificity and Q  equal to 100. Mean
nticipation time for gamma sub-band is 283 s which is less than
he anticipation time using original EEG but mean anticipation
ime for delta sub-band is 299.5 s which is a few seconds more
han the anticipation time of original EEG signal. Fig. 8 shows
rediction result for the rat of Fig. 5 using delta sub-band. It can
e seen that the anticipation time for this rat is increased by 21 s,
hich means that using EEG sub-bands may lead to prediction

mprovement.

. Conclusion

So far, several methods have been proposed to analyze EEG
Please cite this article in press as: Niknazar M, et al. Application of a dis
epileptic seizures from rat’s EEG signals. IRBM (2012), http://dx.doi.org/

ata for predicting epileptic seizures. For the first time, BBDI of
EG signal and its sub-bands were calculated that yielded bet-

er results than dynamical and fuzzy similarity indices. In our
429 503 510
103 138 138

ase, BBDI of delta sub-band yielded the best anticipation time
or epileptic seizures prediction. This animal study showed that
BDI value can reveal the hidden dynamics of EEG data. It was

ound that the dissimilarity of neural network activity between
eference window and present window has a significant increase
rior to an epileptic seizure. Based on such increase in dissimi-
arity, the preictal phase can be successfully detected using the
utomated detection algorithm proposed in this work. Another
mportant point confirmed by the results of this animal study is
hat EEG sub-bands delta, theta, alpha, beta, and gamma help to
et more accurate information about constituent neuronal activi-
ies underlying EEG signal and consequently, certain changes in
EG signal that are not evident in the original full-spectrum EEG
ay be amplified when each sub-band is analyzed separately.
s a result, using these sub-bands leads to superior diagnos-

ic results. As a future work, new dissimilarity indices will be
efined and tested on human EEG signals and their sub-bands
o track changes of neural network activity over time with more
etails.
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