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Abstract—A fast algorithm based on the nonlinear dynamical model for
the electrocardiogram (ECG) is presented for the precise extraction of the
characteristic points of these signals with baseline drift. Using the adaptive
bionic wavelet transform, the baseline wander is removed efficiently. In fact
by the means of the bionic wavelet transform, the resolution in the time-fre-
quency domain can be adaptively adjusted not only by the signal frequency
but also by the signal instantaneous amplitude and its first-order differen-
tial, which results in a better baseline wander cancellation. At the next step
the parameters of the model are chosen to have the least square error with
the original ECG. Determining the precise position of the waveforms of an
ECG signal with baseline wander is complicated due to the varying ampli-
tudes of its waveforms, the ambiguous and changing form of the complex
and the unknown drift. A model-based approach handles these complica-
tions, therefore a method based on this concept has been developed and the
fiducial points are accurately detected using the center and spread param-
eters of Gaussian-functions of the model. Simulation results show that the
proposed method has an average sensitivity of 99.58%, average detection
accuracy of 99.64%, and specificity of 100%.

Index Terms—Baseline wander, bionic wavelet transf, electrocardiogram
(ECG), ECG dynamical model, fiducial points.

I. INTRODUCTION

THE NEW generation of medical treatment has been supported by
computerized processes. Signals recorded from the human body

provide valuable information about the activities of its organs. Their
characteristic shape, or temporal and spectral properties, can be cor-
related with a normal or pathological function. In response to dynam-
ical changes in the behavior of those organs, the signals may exhibit
time-varying as well as nonstationary responses. In fact, those signals
are always contaminated by drift and interference caused by several
bioelectric phenomena, or by various types of noise, like intrinsic noise
from the recorder, noise from electrode-skin contact, and any low-fre-
quency interferences.

The focus of this paper is to detect all of the fiducial points related to
the five main waveforms in an electrocardiogram (ECG) with baseline
wander. Fiducial points in an ECG signal are the onset and offset of P
and T waveforms, and the locations of Q, R, and S. Efforts have aimed
to cope with the problem of characteristic (fiducial) points extraction in
an ECG. Since baseline drifts not only include low-pass interferences
but also additive or multiplicative perturbations, linear phase highpass
filters would not overcome the problem. In addition, a highpass filter
distorts the low frequency components of an ECG. Hence, various al-
gorithms have been proposed for the extraction of the fiducial points
of an ECG, and especially the QRS complex [1]. Among them, the
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wavelet transform (WT) has the most important role [2], mainly be-
cause it provides important information about the mathematical mor-
phology of signals having multiresolution characteristics such as ECG
signals. In a recent study, Krimi et al. used the wavelet transform mod-
ulus maxima to detect the T-waves of the ECG [3]. Wavelet transforms
have also been used for the QRS detection [4] and ectopic beat de-
tection [5]. When an ECG is contaminated with a source producing
baseline drifts, however, the same methods would not overcome the
problem.

Recently and based on the bionic wavelet transform (BWT), we have
introduced methods and their applications to noise and baseline wander
suppression in ECG [6]–[8] which is exclusively capable of removing
all kinds of drifts including effects of DC components and low fre-
quency interferences. On the other hand, research has been conducted
towards the generation of synthetic ECG cardiac signals to facilitate the
testing of signal processing algorithms in the recent years. Specifically,
in [9] and [10] a dynamic model has been developed, which reproduces
the morphology of the PQRST complex and their relationship to the
beat-to-beat (RR-interval) timing in a single nonlinear dynamic model.
Considering the simplicity and flexibility of this model it is reason-
able to assume that it can be easily adapted to a broad class of ECGs.
The proposed innovative approach includes the following two steps. 1)
Using the BWT a baseline corrected version of the initial ECG signal
is achieved. 2) The model is fitted to this ECG which tends to describe
the signal with a sum of Gaussians. The fiducial points are determined
via the parameters of these Gaussians.

The paper is organized as follows. Section II summarizes the dy-
namical model of an ECG signal. Section III describes the innovative
method used for the extraction of fiducial points. Simulation results are
provided in Section IV. Finally, summary and conclusions are provided
in Section V.

II. ECG DYNAMICAL MODEL

The model generates a trajectory in a 3-D state-space with coordi-
nates (x; y; z). In essence, each feature of the ECG is described by a
Gaussian with three parameters; the amplitude, width and phase. The
dynamical equations of motion are given by a set of ordinary differen-
tial equations as follows:

_x =�x � !y

_y =�y + !x

_z = �

i2fP;Q;R;S;Tg

ai��i exp �

��2i

2b2i
� (z � z0) (1)

where� = 1� x2 + y2,��i = (���i) mod 2�, � = atan2(y; x),
! is the angular velocity of the trajectory as it moves around the limit
cycle, and ai, bi are the amplitude and spread of Gaussian functions,
respectively [9]. In this model, the baseline wander of the ECG is mod-
eled with the parameter z0, which is a small sinusoidal component cou-
pled with the respiratory frequency. Numerical integration of the last
equation using an appropriate set of parameters leads to the familiar
ECG waveform, z. It can be observed that the model generates the
sum of five Gaussian functions, corresponding to PQRST, to be a one
cycle of the ECG signal. Fig. 1 shows a typical ECG signal and the five
Gaussian functions that are to be added to make the original ECG.

III. METHOD

In order to determine the precise locations of the fiducial points of
an ECG waveform with baseline wander, first it is necessary to remove
the drift and next to fit the model to the ECG and then to use the fit
parameters to describe the onset and offset of the PQRST waves.
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Fig. 1. (a) Real normal ECG waveform. (b) Five Gaussian functions of the
model with arrows indicating the fiducial points. (c) Original signal and the sum
of five Gaussians.

A. Baseline Correction With BWT

Previously, Yao and Zhang introduced a novel wavelet transform,
called the bionic wavelet transform, which is defined by the following
equation [11]:

BWTx(�; a) = x(t)h�T
t� �

a
dt
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In the above equation, hT (t) is the BWT mother function and is con-
sidered to have the following form:

hT (t) =
1
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p
a
~h

t

T
exp(j2�f0t): (3)

As can be seen, in contrast to the wavelet transform, both the am-
plitude and the time-spread of BWT mother function depend on the
T value. For evaluating the T parameter, they adopted a general non-
linear form based on a previously introduced auditory model [12]. This
results in the following formula for a function, namely the T-function:

T (� +�� ) = 1� ~G1

BWTs

BWTs + jBWTx(�; a)j
�1

� 1 + ~G2j@BWTx(�; a)

@tj
�1

(4)

where ~G1, ~G2 and BWTs are constants, and BWTx(�; a; h) is the
BWT coefficient at time � and scale a and �� is the calculation step.
They also showed that BWT coefficients can be easily calculated based
on the corresponding wavelet transform coefficients.

Recently, we have shown that BWT can be efficient in baseline
wander correction if we choose the initial center frequency of the
mother function, f0, to be 400 Hz [8], and relate it to the center
frequency of the m-th scale, fm, using a constant parameter, q, as
follows [11]:

fm =
f0

qm
; q > 1: (5)

The implementation of the algorithm is much the same as WT. First the
signal is decomposed into different subbands using the BWT, and then
the scales corresponding to the baseline drift are simply thresholded.
Finally the baseline corrected version of the signal is obtained through
the inverse BWT.

B. Fitting the Model to the Baseline Corrected ECG

For the purpose of fitting the nonlinear dynamical model to the base-
line corrected ECG signal, one should solve the following optimization
problem:

min
a ;b ;�

E ks(t)� z(t)k2
2

(6)

where s is the ECG signal and z is described with the following equa-
tion [13]:

z(ai; bi; �i) =
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2
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A fast implementation of the above problem would be possible with
an approximation of the locations of the fiducial points. To approximate
the fiducial points, a scheme based on the slope changes of the ECG
signal [14] is implemented as described below.

First a slope signal is constructed using the first or the second deriva-
tive of the ECG signal [14], or equivalently one can use the slope signal
defined as [15]

Slope(n) = �2s(n� 2)� s(n� 1) + s(n+ 1) + 2s(n+ 2): (8)

The above slope signal is quasi-periodic, reflects changes in the be-
havior of an ECG, and can be used as an R-detector. For the onset of P
and T waves the slope signal tends to be positive and it remains positive
until it reaches its peak. As the wave falls, the slope tends to be nega-
tive and it remains negative till the wave ends. So it is possible to have
an approximation of the onset and offset of the PQRST waveforms,
but unfortunately the slope signal itself is not a smooth signal and mis-
leads the thresholds used for point estimation. To solve this problem a
threshold is selected so as to preserve �% of the signal energy, and a
thresholded version of the slope signal is then obtained. After this using
a logic comparison, a three level thresholded slope gradient signal (that
we call the saturated signal) is achieved which is a more reliable signal
to perform thresholding properly. Now the approximated locations of
the fiducial points can be determined using the succession of 1, 0, and
�1. Fig. 2 shows the steps of the algorithm for an ECG signal chosen
from the MIT-BIH arrhythmia database [16]. As can be seen the esti-
mates are appropriate as an initial condition.

C. Precise Fiducial Points Extraction

As stated before, to determine the exact locations of the fiducial
points, i.e., the onset and offset of P and T waves, and the locations of
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Fig. 2. (a) ECG signal. (b) Slope signal. (c) Thresholded slope signal with � =

98%. (d) Saturated slope signal. (e) Fiducial points estimates.

Q, R and S peaks, we use the Gaussian functions of the model which
have been fitted to the available ECG signal. To determine the onset and
offset of P and T waves, we have used the approximately 99% confi-
dence bound considering the spread parameters, bis, for the termina-
tion of the two Gaussian functions representing these waves. In other
words, when any of the two Gaussian functions representing P and T
waves in the fitted ECG extends to three times its spread (equal to 99%
confidence bound) it is considered as the onset point. The same is true
for the offset point. Similarly to detect the QRS peaks, we have used

Fig. 3. (a) MIT-BIH ECG No. 228 (analyzed portion: 0:04 : 3:37 ). (b) Base-
line corrected ECG, and the fitted signal. The precise fiducial points are indi-
cated by ellipses.

the remaining three Gaussians center locations to extract these peaks.
To clarify this, refer to Fig. 1(b) which declares the above description.
The confidence bounds are indicated with double headed arrows.

IV. SIMULATION RESULTS

The proposed method was tested on the MIT-BIH arrhythmia data-
base [16]. For the BWT implementation we have used the following
parameters: ~G1 = 0:87, ~G2 = 45, BWTs = 0:8, as was stated in
[11]. In addition for thresholding, is set to 98%. The performance of
the system was verified with manual detection results. The manual de-
tection was used to provide a known reference for the exploration, so
these ECG’s were first annotated completely by an experienced cardi-
ologist. Furthermore we have used the following parameters to evaluate
our method: number of true positive detections (TP), number of false
positive detections (FP), number of true negative detections (TN), and
number of false negative detections (FN). On the basis of this termi-
nology, we can calculate sensitivity (Sn) and specificity (Sp) criteria,
defined as

Sp =
TN

TN + FP

Sn =
TP

TP + FN
: (9)

Also the accuracy (Ac) detection, which is defined as the ratio of
number of true detected points to the number of all points, has been
calculated for the test signals. Figs. 3 and 4 show the typical results of
the algorithm for two different ECG signals. Fig. 3 includes the precise
fiducial points specified on the baseline corrected ECG signal while
Fig. 4 includes the fiducial points on the original ECG. In fact by de-
termining the locations of the fiducial points on the baseline corrected
signal, their locations on the initial ECG can easily be found by corre-
spondence.

For evaluation, we have considered the four types of ECG signals
with baseline wander: Normal ECG (ex. ECG No. 222), ECG having
low amplitude P and T waves (ex. ECG No. 104), ECG contaminated
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Fig. 4. MIT-BIH ECG No. 222 (analyzed portion: 03:90 : 10:08 ), with the
precise fiducial points indicated by ellipses on the same signal.

TABLE I
MODEL-BASED ECG FIDUCIAL POINTS EXTRACTION PERFORMANCE ON THE

MIT-BIH ARRYTHMIA DATABASE

TABLE II
COMPARING THE SENSITIVITY (SN %) OF THE TECHNIQUES USED TO DETECT

ECG FIDUCIAL POINTS

with noise (ex. ECG No. 203), and ECG with ambiguous waves (ex.
ECG No. 228). The records start at 00:00 and have different lengths.
Their approximate lengths and evaluation results are provided in
Table I. It is worth noting that as we have restricted the model to
include only the PQRST waves (i.e., there are only five Gaussian
functions) no true negative detections would occur, and consequently
the specificity would be 100%.

In order to investigate the validity of results, we have compared our
algorithm to two approaches of points extraction, i.e., beat detection
(QRS-based) and T-wave detection. The best previously stated results
have been considered for both cases. Hence, for the beat detection we
have chosen the filter bank (FB) method [17], and for the T-wave ex-
traction, a recently proposed method based on the adjusted WT mod-
ulus maxima (WTMM) [3], is considered. The results are provided
Table II.

Another point of interest is to investigate the ability of the proposed
model-based algorithm for abnormal ECGs such as in bundle branch
block or atrial fibrillation, where some of the fiducial points are actually
missing or there have waveform repetitions. To overcome this problem
we have made modifications to the model which assumes more than
five waveforms in a single beat. In addition, we find the amplitude of
R wave, aR, for each beat. Then, an experimental threshold for the
amplitude of P and T waves is set which determines if the related wave
exists (� thr�aR) or missed (< thr�aR). Obviously, the threshold
depends on the ECG waveform. Based on preliminary studies on the
MIT-BIH database with various thresholds, we found that thr = 0:07
is a good choice for ECG lead V1. The results are shown in Fig. 5 for
atrial fibrillation.

Fig. 5. (a) First 1920 samples of the MIT-BIH ECG No. 210 (Lead V1 with
atrial fibrillation), with simulated baseline perturbation, and baseline trace. (b)
Baseline corrected ECG. The precise fiducial points are depicted with ellipses.

V. DISCUSSION AND CONCLUSION

We have presented and validated an ECG fiducial points detection
method for baseline wandered ECG signals. A two stage algorithm has
been utilized;first, a baseline corrected version of the wandered signal is
obtained using the bionic wavelet transform. Second, the ECG dynamic
model is fitted to the nonwandered signal using an estimation of the
fiducial points. Lastly, the precise fiducial points are determined with
respect to the parameters of the Gaussian functions of the model.

In comparison with other proposed methods for point detection, the
model-based approach has a superior performance for there is no deci-
sion rules based on comparison against thresholds. Approaches based
on signal derivatives, digital filters, and neural network classifiers are
of this type. But in the model-based method, like filter bank or singu-
larity detection techniques, there is no thresholding. Instead, the points
are determined due to the parameters of the Gaussian functions of the
model.

In presence of baseline wanders there is a need to use a promising
technique for baseline drifts suppression to allow the least mean square
error fit. In fact by the means of BWT, the resolution in the time-fre-
quency domain can be adaptively adjusted not only by the signal fre-
quency but also by the signal instantaneous amplitude and its first-order
differential. Hence, any kinds of baseline wander would be eliminated
efficiently. In order to give an impression about the nature of errors in
fiducial point detection using the BWT method, one should be aware of
the heart rate and the time periods between different waveforms. These
parameters mostly determine the overlap of time-frequency analyzing
windows and cause BWT to work less efficiently for ECGs with closely
adjacent peaks, which is the result of its intrinsic smoothing property.

Using a nonlinear model enables us to investigate wave morphology
variations. To have a good fit, we need an initial estimation for the
fiducial points locations. This would probably motivate the algorithm
not to be online, and have a computational complexity compared to
simpler linear techniques. Typically, the run-time of the algorithm is
less than twice that of computationally efficient detectors such as the
filter-bank method.
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The method has been validated using several ECG records from the
MIT-BIH arrhythmia database. None of the more complex cases re-
sult in sensitivity less than 98.10% and specificity of 100%, even for
ECGs with ambiguous waves. These results show that the developed
method provides a reliable and accurate detection of the fiducial points.
It outperforms the other algorithms and has an average detection ac-
curacy of 99.64% which is well within the acceptable range. In addi-
tion, through simple modifications, it would be robust to PQRST vari-
ations, which incorporates several pathological conditions. For highly
abnormal ECGs, where some of the fiducial points are missing, an ex-
perimental decision rule is used. This gives the opportunity to study
very low amplitude complexes, and therefore, it is suited for precise
ECG fiducial points detection.
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Automated Estimation of the Upper Surface of the
Diaphragm in 3-D CT Images
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Abstract—This communication describes a fully automated method by
which the position of the diaphragm surface can be estimated by deforming
a thin-plate model to match the bottom surface of the lung in CT images.
This method was applied to 338 X-ray CT scans, and its validity was proved
by the experimental results.

Index Terms—Computer-aided diagnosis (CAD), diaphragm, segmenta-
tion, three-dimensional (3-D) image processing, X-ray torso CT images.

I. BACKGROUND

Modern CT scanners can generate volumetric images with high spa-
tial resolution within 20 to 30 s; these images display the details of
the human body. Torso X-ray CT scans are widely used in clinical
medicine for lesion detection and surgical operations. However, it is te-
dious for radiologists to interpret such volumetric images that include
over 1000 transverse slices on a monitor or film. Computer-aided di-
agnosis (CAD) systems that can exhibit the 3-D anatomical structure
of the human body and determine the location of suspicious regions
are highly expected to reduce the tedium and increase the accuracy of
medical image interpretation.

Recognition of the anatomical structures of the human body is the
first step in the development of a CAD system. Further, for torso CT im-
ages, identification of the diaphragm and the subsequent division of the
torso into regions (chest and abdomen) is an important initial step for
anatomical structure recognition. Beichel et al. proposed a diaphragm
surface extraction approach using a semiautomatic process [1]. How-
ever, a fully automated process for diaphragm identification and body
cavity division is required for the development of a CAD system. In this
communication, we propose an automated scheme to locate the upper
surface of the diaphragm in noncontrast CT images, and we evaluate
its performance by using a large database of torso CT images.

II. METHODS

The diaphragm is located below the lungs and above the liver. The
shape of the diaphragm is not uniform and changes with breathing.
Moreover, it is composed of muscles that have a similar density (CT
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