
1

Versatile Task Assignment for Heterogeneous
Soft Dual-Processor Platforms

Matin Hashemi, Student Member, IEEE, Soheil Ghiasi, Member, IEEE

Abstract—This manuscript presents proofs of the theorems.

Theorem 1: For a convex cut on a directed acyclic graph:

∑

v∈V1

θ1(v)

︸ ︷︷ ︸

weight of
G1 vertices

+
∑

e∈E1

θ1(e)

︸ ︷︷ ︸

weight of
G1 edges

+
∑

e∈C

θ1(e)

︸ ︷︷ ︸

weight of
cut edges

=
∑

e∈C

θ′1(e)

︸ ︷︷ ︸

total weight
held by cut C

Lemma: The transformation propagates the attribute of
an arbitrary vertex (edge) along exactly one directed path,
referred to as the propagation path, from the vertex (edge)
to the unique sink vertex.

Proof of Lemma: Let a be an arbitrary vertex in the
directed acyclic graph. The transformation propagates θ1(a)
along exactly one of its outgoing edges, which is selected
at random. Let b be the destination vertex of the randomly-
selected outgoing edge. If b is the sink vertex, then the lemma
is proved. Otherwise, θ1(a) is propagated along exactly one of
the outgoing edges of b, and the same argument can be made
iteratively. Since graph is acyclic, we will never visit a vertex
that we have visited before. The graph has finite number of
vertices and hence, the iteration will have to end by arriving
at the sink vertex. Similar argument can be made for edge
attributes. �

Proof of Theorem 1: We argue that C and the propagation
path of an arbitrary vertex a ∈ G1 intersect at exactly one
edge. If C and the propagation path of vertex a do not
intersect, then a ∈ G1 is connected to the sink vertex via
a connected path and hence, C is not a cut. If they intersect
in more than one edge, then the propagation path direction
goes out of G1 and then back into G1, which means that C

is not convex. Therefore, the two edge set intersect at exactly
one edge, and hence, θ1(a) is accurately captured in θ′1 of the
edge. Similar arguments can be made for arbitrary edges in
G1 or C. �

Theorem 2: similarly we have:
∑

v∈V2

θ2(v)

︸ ︷︷ ︸

weight of
G2 vertices

+
∑

e∈E2

θ2(e)

︸ ︷︷ ︸

weight of
G2 edges

+
∑

e∈C

θ2(e)

︸ ︷︷ ︸

weight of
cut edges

=
∑

e∈C

θ′2(e)

︸ ︷︷ ︸

total weight
held by cut C

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California, Davis, CA 95616.
E-mail: {hashemi,ghiasi}@ucdavis.edu

Proof: Construct a new graph Gr from G by reversing the
direction of all edges, and then, apply Theorem 1 to Gr. �

Lemma 1: We have β

1 + δ
< β̈ ≤ β

Proof:
⌊

logβ
1+δ

⌋

≤ logβ
1+δ <

⌊

logβ
1+δ

⌋

+ 1

(1 + δ)blog
β

1+δc ≤ (1 + δ)log
β

1+δ < (1 + δ)blog
β

1+δc+1

β̈ ≤ β < (1 + δ)β̈ �

Theorem 3: If we set δ = F
√

1 + ε − 1, where ε > 0 and
F is the number of faces in task graph G, then we have

β(P ∗)

1 + ε
< β̈(P ∗) ≤ β(P ∗)

Proof: Let P ∗j denote a partial path consisting of the
first j edges of path P ∗. For example in Figure 10, for
path P ∗

3 = {longdash, dot}, the partial path P ∗1
3 has only

one edge (s∗[0, 0, 0, 0], r∗[0, 2, 2, 4]), and P ∗2
3 has two edges

(s∗[0, 0, 0, 0], r∗[0, 2, 2, 4]) and (r∗[0, 2, 2, 4], t∗[4, 2, 8, 4]).
Since k is the number of edges in P ∗, P ∗k is equal to P ∗.

Let β̈(P ∗j) denote the approximated β value of P ∗j and
β(P ∗j) is its original value. In our example, β̈(P ∗1

3) =
[0, 2, 2, 4] and β̈(P ∗2

3) = [4, 2, 8, 4] (Figure 10), and also,
β(P ∗1

3) = [0, 3, 2, 7] and β(P ∗2
3) = [4, 3, 8, 8] (Figure 8). In

addition, let β(ej) denote the attribute vector of the jth edge
in P ∗, e.g., β(e1) = [0, 3, 2, 7] and β(e2) = [4, 0, 6, 1]. We
have:
β(P ∗1) = β(e1) β̈(P ∗1) = f

(
β(e1)

)

β(P ∗j) = β(P ∗j−1) + β(ej)→ β̈(P ∗j) = f
(
β̈(P ∗j−1) + β(ej)

)

β(P ∗) = β(P ∗k) β̈(P ∗) = β̈(P ∗k)

We prove the theorem by induction. For k = 1, β(P ∗1) =
β(e1) and β̈(P ∗1) = f

(
β(e1)

)
. Based on Lemma 1:

β(P ∗1)

1 + δ
< β̈(P ∗1) ≤ β(P ∗1)

Let us assume that the theorem holds for k = j − 1. Our
objective is to prove that it holds for k = j. Based on the
induction assumption:

β(P ∗j−1)

(1 + δ)j−1
< β̈(P ∗j−1) ≤ β(P ∗j−1)

β(P ∗j−1)

(1 + δ)j−1
+β(ej) < β̈(P ∗j−1)+β(ej) ≤ β(P ∗j−1)+β(ej)

β(P ∗j−1) + (1 + δ)j−1β(ej)

(1 + δ)j−1
< ... ≤ ...

2

Since 1 < (1 + δ)j−1:

β(P ∗j−1) + β(ej)

(1 + δ)j−1
< β̈(P ∗j−1)+β(ej) ≤ β(P ∗j−1)+β(ej)

Since β(P ∗j) = β(P ∗j−1) + β(ej):

β(P ∗j)

(1 + δ)j−1
< β̈(P ∗j−1) + β(ej) ≤ β(P ∗j) (I)

We also know β̈(P ∗j) = f(β̈(P ∗j−1) + β(ej)). Based on
Lemma 1:

β̈(P ∗j−1) + β(ej)

1 + δ
< β̈(P ∗j) ≤ β̈(P ∗j−1) + β(ej) (II)

From (I) and (II) we have

β(P ∗j)

(1 + δ)j
< β̈(P ∗j) ≤ β(P ∗j)

Therefore, induction is complete and β(P∗k)
(1+δ)k < β̈(P ∗k) ≤

β(P ∗k). Since P ∗k = P ∗ we have
β(P ∗)

(1 + δ)k
< β̈(P ∗) ≤ β(P ∗)

Since k ≤ F , we have (1 + δ)k ≤ (1 + δ)F . After replacing
δ = F

√
1 + ε − 1, we get (1 + δ)F = 1 + ε, which implies,

(1 + δ)k ≤ 1 + ε. Hence,
β(P ∗)

1 + ε
< β̈(P ∗) ≤ β(P ∗) �

Corollary 2: The original hard constraints

β3(P
∗) ≤ βmax

3 and β4(P
∗) ≤ βmax

4

can be replaced with following constraints, which use approx-
imated values

β̈3(P
∗) ≤ βmax

3

1 + ε
and β̈4(P

∗) ≤ βmax
4

1 + ε

Proof: From Theorem 3, we have β(P ∗) < (1 + ε)β̈(P ∗).
Therefore, to guarantee the original constraint is satisfied, we
need (1+ε)β̈3(P

∗) to be bounded, i.e., (1+ε)β̈3(P
∗) ≤ βmax

3 .
The same argument holds for β4. �

Corollary 3: Let β̈max = f(βmax). The constraints

β̈3(P
∗) ≤ β̈max

3 and β̈4(P
∗) ≤ β̈max

4

guarantee that

β3(P
∗) ≤ (1 + ε)βmax

3 and β4(P
∗) ≤ (1 + ε)βmax

4

Proof: From Theorem 3, we have β3(P
∗)

1+ε
< β̈3(P

∗), and
also, β̈max

3 ≤ βmax
3 . The same argument holds for β4. �

Theorem 4: Let Q̈(P ∗) = F
(
β̈1(P

∗), β̈2(P
∗), β5(P

∗)
)

denote the approximated value of our cost function Q(P ∗) =
F

(
β1(P

∗), β2(P
∗), β5(P

∗)
)
, for the path P ∗. We have

(
1 − ε

1 + ε
S(P ∗)

)
Q(P ∗) ≤ Q̈(P ∗) ≤ Q(P ∗)

where S(P ∗) is defined as

S(P ∗) =
β1(P

∗)

Q(P ∗)
max

∂Q

∂β1
+

β2(P
∗)

Q(P ∗)
max

∂Q

∂β2

Note that although Q is originally a discrete function,
throughout the following mathematical analysis, we look at
it as a continuous function. That is, we use the same formula
for Q, but assume its domain is R instead of I. Note that
Q does not have to be differentiable. As long as Q is
differentiable on several intervals and continuous (i.e., piece-
wise differentiable), we are able to calculate the maximum
slope. For example, max ∂Q

∂β1
= max ∂Q

∂β1
= 1 for Q =

max{W1 +α1N, α2N +W2} = max{β1 +α1β5, α2β5 +β2},
because the slope of Q with respect to both β1 and β2 is either
0 or 1 on its entire domain.

Proof: Note that for better readability, we write Q instead
of Q(P ∗), and so on. When β̈ = β, we have Q̈ = Q. Since
Q is non-descending in β, maximum value of Q− Q̈ happens
when β̈ is farthest away from β. This point is on the top left
corner of the box shown Figure 1.A, i.e., β̈tl = β

1+ε
. Hence,

Q − Q̈ ≤ Q − Q̈tl. In addition, based on properties of ~∇Q,
we know that Q − Q̈tl ≤ (~β − ~βtl) • max ~∇Q. Therefore

Q − Q̈ ≤ (~β −
~β

1 + ε
) • max ~∇Q = (

ε

1 + ε
)~β • max ~∇Q

After dividing both sides by Q:

Q − Q̈

Q
≤ (

ε

1 + ε
)

~β

Q
• max ~∇Q

︸ ︷︷ ︸

S

By rearranging the above equation we have:

(1 − ε

1 + ε
S) Q ≤ Q̈ �

1

2

(P*)

..
(P*)

(P*)____
1+

1+ 1(P*)

tl(P*)=

Q(1)

1

1

..
1

..
Q

Q

max
s lo p e

(A) (B)

Qtl

tl=
1____

1+

Fig. 1. A) Point β(P ∗) in 2-D space. The gray box shows the area where the
approximated value β̈(P ∗) could be. Based on Theorem 3, the point farthest
away from β(P ∗) is when β̈(P ∗) = β(P∗)

1+ε
. B) Calculating the bound for

function Q.

Corollary 4: Let Smax be the maximum possible value of
S over the domain of function Q. We have

∀P ∗ : (1 − ε

1 + ε
Smax) Q(P ∗) ≤ Q̈(P ∗) ≤ Q(P ∗)

The above theorem states that the error in calculating
cost function is bounded within a constant factor. The main
objective of graph bi-partitioning is to find the optimal path
P ∗ = P ∗

opt which minimizes our cost function Q(P ∗). Using

3

the approximation method, however, Q̈(P ∗) is minimized for
some near-optimum path P ∗ = P ∗

near.

Corollary 5: Let ξ =
ε

1 + ε
Smax, and T =

1

Q
denote the

throughput. We have

(1 − ξ) Topt ≤ Tnear ≤ Topt

Proof: P ∗

near minimizes Q̈, thus, Q̈(P ∗

near) ≤ Q̈(P ∗

opt).
Based on Corollary 4, (1−ξ) Q(P ∗

near) ≤ Q̈(P ∗

near) and also
Q̈(P ∗

opt) ≤ Q(P ∗

opt). Therefore, (1− ξ) Q(P ∗

near) ≤ Q(P ∗

opt).
As a result, (1 − ξ) T (P ∗

opt) ≤ T (P ∗

near). �

