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Streaming Applications
 Widespread

 Cell phones , mp3 players, video conference,
real-time encryption, graphics, HDTV editing, 
hyperspectral imaging, cellular base stations

 Definition
 Infinite sequence of  data items
 At any given time, operates on

a small window of  this sequence
 Moves forward in data space

5 5 2 6 4 1 8 9 3 input

output-1 7 2 0.4 7.2 1

//53° around the z axis
const R[3][3]={

{0.6,-0.8, 0.0},
{0.8, 0.6, 0.0},
{0.0, 0.0, 1.0}}

Rotation3D {
for (i=0; i<3; i++)
for (j=0; j<3; j++)
B[i] += R[i][j] * A[j]

}



Application Model

 Data Flow Graph
 Vertices or Actors

 functions, computations

 Edges
 data dependency, communication between actors

 Execution Model
 any actor can perform its computation whenever all necessary input 

data are available on incoming edges.



Application Model

 An example Data 
Flow Graph: Vocoder
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http://www.cag.csail.mit.edu/streamit



Application Model

 SDF (Synchronous Data Flow Graph) is one special case
 Fixed input and output rates on the edges
 statically schedulable
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Shared Buffer Implementation

 Idea:
 Most of  the time channel buffers are completely or partially 

empty.

 Rules:
 1. No over-writing or reading another buffer’s data.
 2. Statically allocated
 3. No re-allocation



Visualizing Buffer Analysis
 Tow dimensional plane

 X-axis: Actor firings in the schedule (time)
 Y-axis: Buffer location in the memory (space)
 Filled Area: The range between Head and Tail indices 

 Advantage:
 Memory allocation problem can be viewed as a geometric 

layout instance
 A solution is valid when the laid out buffers do not conflict 

in the time-memory plane.
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Granularity and Buffer Allocation

 The granularity in buffer analysis compromises 
accuracy in temporal behavior of  buffers with analysis 
complexity:
 Baseline 
 Coarse-grain
 Fine-grain



Granularity and Buffer Allocation

Baseline Analysis Live Range Analysis
(Coarse-Grain)

Fine-Grain Analysis
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P. K. Murthy and S. S. Bhattacharyya. Shared buffer implementations of  signal processing systems using lifetime analysis techniques.



Fine-Grain Buffer Allocation
 Mathematic Formulation:

 Use of  existing tools
 Choose the best data structure



Fine-Grain Buffer Allocation
 LEMMA:

 In SA schedules the head index at the time t is always greater 
than equal the tail index at the same time:

 Constraints:

 Objective: Minimize Shared Buffer Size:



ILP Formulation

 The complexity of  buffer sharing instance, and ILP 
runtime grows exponentially. 

 Linear constraints cannot be easily used to articulate the 
“OR” logic:
 Binary variables For each buffer and each location in the 

shared memory space
 Constraints have to be generated for all time steps.



 In several industries there is a need for packing a set of  
2-dimensional objects on a larger rectangular unit of  
material by minimizing the waste.
 Two-Dimensional Bin Packing Problem (2BP):

 wood or glass industries, warehousing contexts, newspapers paging

 Two-Dimensional Strip Packing Problem (2SP): 
 paper or cloth industries

Strip Packing Problem and 
Buffer-Sharing



 The relationship between Packing Problems and Buffer 
Sharing Problem:
 Objects: Buffer Size in Time which form complex polygons
 Roll of  Material: Shared Buffer Memory 
 Objective: To allocate an index to each buffer in the shared 

memory with no conflict using minimum space
 Difference: We cannot move the objects (polygons) in time. 

We are only allowed to move them vertically. We also have no 
rotation.

Strip Packing Problem and 
Buffer-Sharing



Move-Down Algorithm

Skyline

 MDA is moving down the buffers in the following order:
G_H, D_G, C_D, B_C, A_B, E_G, C_E, F_G, C_F
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Move-Down Algorithm

 The final placement of  the buffers corresponding to the 
following order: G_H, D_G, C_D, B_C, A_B, E_G, C_E, F_G, 
C_F

 The height of  the final skyline indicates the shared memory size.

Final Skyline
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Move-Down Algorithm

 Another sequence which leads to the size 18 (14 is the optimal): 
A_B , D_G , G_H , C_E , C_F , B_C , E_G , F_G , C_D

18

Final Skyline
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Evolutionary Optimization using 
MDA

 Genetic Algorithms in General:
 Chromosome: Provides an abstract representation of  

solutions in the search space,
 Inheritance: Models the basic operations through which, 

chromosomes are perturbed to improve the solution quality
 Crossover 
 Mutation

 Fitness Function: Quantizes the quality of  candidate 
solutions, and determines survival of  selected candidates.



Evolutionary Optimization using 
MDA

 Initialization: Randomly select a set of  permutations

 Fitness function: 

 Selection:



Evolutionary Optimization using 
MDA

 Crossover:
 Example:

 Mutation:
 Example: 

 Iteratively, new children are generated and compared to the 
existing members until the termination point where we can 
return the best solution found.



Experimental Evaluation
 We have integrated our algorithm into the MIT 

StreamIt compiler
 Three composite stream objects in StreamIt 
 Filters specify data processing



Experimental Evaluation
 The StreamIt scheduler is designed based on the 

hierarchical nature of  the language.
 In Split-joins, one large buffer is used to implement 

multiple channels that either split to or join from 
several actors.



Experimental Evaluation
 Benchmark Applications:

 Two sorting algorithms: Bitonic Sort, Insertion Sort
 Two different implementation of  the Fast Fourier Transform
 Time Delay Estimation kernel
 Matrix Multiplication kernel



Experimental Evaluation
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Experimental Evaluation
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Conclusions
 Visualization of  buffers transforms the allocation 

problem into packing of  complex polygons

 Fine-grain analysis vs. conventional coarse-grain live 
range analysis: dramatic improvements

 The benefits of  this approach outweighs the reasonable 
increase in static analysis latency for a large class of  
resource-constrained embedded systems.


