
Look Into Details: The
Benefits of Fine-Grain

Streaming Buffer Analysis
Mohammad H. Foroozannejad
Matin Hashemi
Trevor L. Hodges
Soheil Ghiasi

University of California, Davis, CA

Streaming Applications
 Widespread

 Cell phones , mp3 players, video conference,
real-time encryption, graphics, HDTV editing,
hyperspectral imaging, cellular base stations

 Definition
 Infinite sequence of data items
 At any given time, operates on

a small window of this sequence
 Moves forward in data space

5 5 2 6 4 1 8 9 3 input

output-1 7 2 0.4 7.2 1

//53° around the z axis
const R[3][3]={

{0.6,-0.8, 0.0},
{0.8, 0.6, 0.0},
{0.0, 0.0, 1.0}}

Rotation3D {
for (i=0; i<3; i++)
for (j=0; j<3; j++)
B[i] += R[i][j] * A[j]

}

Application Model

 Data Flow Graph
 Vertices or Actors

 functions, computations

 Edges
 data dependency, communication between actors

 Execution Model
 any actor can perform its computation whenever all necessary input

data are available on incoming edges.

Application Model

 An example Data
Flow Graph: Vocoder

Duplicate splitter

DFT

Round robin joiner

DFTDFT DFT DFT DFT

Round robin splitter

Duplicate splitter

FIR Smoothing Identity

Round robin joiner

Deconvolve

Round robin splitter

Liner Interpolator

Round robin joiner

Multiplier

Decimator

Liner Interpolator

Decimator

Round robin joiner

Phase unwrapper

Const Multiplier

Linear Interpolator

Decimator

http://www.cag.csail.mit.edu/streamit

Application Model

 SDF (Synchronous Data Flow Graph) is one special case
 Fixed input and output rates on the edges
 statically schedulable

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

A
B

C

DS

5

0 0 0 0

7
5

3

Software Synthesis from SDF

0

6

13
SB

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Software Synthesis from SDF

5

0 0 0 0

7
5

3

0

6

13
SB

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Software Synthesis from SDF

5

0 0 0 0

7
5

3

0

6

13
SB

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Software Synthesis from SDF

5

0 0 0 0

7
5

3

0

6

13
SB

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Software Synthesis from SDF

5

0 0 0 0

7
5

3

0

6

13
SB

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Software Synthesis from SDF

5

0 0 0 0

7
5

3

0

6

13
SB

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Software Synthesis from SDF

5

0 0 0 0

7
5

3

0

6

13
SB

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Software Synthesis from SDF

5

0 0 0 0

7
5

3

0

6

13
SB

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Software Synthesis from SDF

5

0 0 0 0

7
5

3

0

6

13
SB

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Software Synthesis from SDF

5

0 0 0 0

7
5

3

0

6

13
SB

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Software Synthesis from SDF

5

0 0 0 0

7
5

3

0

6

13
SB

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Software Synthesis from SDF

5

0 0 0 0

7
5

3

0

6

13
SB

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Software Synthesis from SDF

5

0 0 0 0

7
5

3

0

6

13
SB

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Software Synthesis from SDF

5

0 0 0 0

7
5

3

0

6

13
SB

Shared Buffer Implementation

 Idea:
 Most of the time channel buffers are completely or partially

empty.

 Rules:
 1. No over-writing or reading another buffer’s data.
 2. Statically allocated
 3. No re-allocation

Visualizing Buffer Analysis
 Tow dimensional plane

 X-axis: Actor firings in the schedule (time)
 Y-axis: Buffer location in the memory (space)
 Filled Area: The range between Head and Tail indices

 Advantage:
 Memory allocation problem can be viewed as a geometric

layout instance
 A solution is valid when the laid out buffers do not conflict

in the time-memory plane.

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Visualizing Buffer Analysis

0

7

A

In
de

x
in

 M
em

or
y

Actor Firings

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Visualizing Buffer Analysis

0

7

A A

In
de

x
in

 M
em

or
y

Actor Firings

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Visualizing Buffer Analysis

0

7

A A B

In
de

x
in

 M
em

or
y

Actor Firings

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Visualizing Buffer Analysis

0

7

A A B B

In
de

x
in

 M
em

or
y

Actor Firings

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Visualizing Buffer Analysis

0

7

A A B B B

In
de

x
in

 M
em

or
y

Actor Firings

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Visualizing Buffer Analysis

0

7

A A B B B B

In
de

x
in

 M
em

or
y

Actor Firings

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Visualizing Buffer Analysis

0

7

A A B B B B B

In
de

x
in

 M
em

or
y

Actor Firings

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Visualizing Buffer Analysis

0

7

A A B B B B B B

In
de

x
in

 M
em

or
y

Actor Firings

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Visualizing Buffer Analysis

0

7

A A B B B B B B C

In
de

x
in

 M
em

or
y

Actor Firings

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Visualizing Buffer Analysis

0

7

A A B B B B B B C C

In
de

x
in

 M
em

or
y

Actor Firings

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Visualizing Buffer Analysis

0

7

A A B B B B B B C C C

In
de

x
in

 M
em

or
y

Actor Firings

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Visualizing Buffer Analysis

7

A A B B B B B B C C C C 0

In
de

x
in

 M
em

or
y

Actor Firings

Schedule: 2A 6B 4C D

Firing Sequence: A A B B B B B B C C C C D

3 1 1 6

4
2 1

4

B

C

DS

A

Visualizing Buffer Analysis

7

A A B B B B B B C C C C D 0

In
de

x
in

 M
em

or
y

Actor Firings

Granularity and Buffer Allocation

 The granularity in buffer analysis compromises
accuracy in temporal behavior of buffers with analysis
complexity:
 Baseline
 Coarse-grain
 Fine-grain

Granularity and Buffer Allocation

Baseline Analysis Live Range Analysis
(Coarse-Grain)

Fine-Grain Analysis

In
de

x
in

 M
em

or
y

Actor Firings Actor Firings Actor Firings

In
de

x
in

 M
em

or
y

In
de

x
in

 M
em

or
y

P. K. Murthy and S. S. Bhattacharyya. Shared buffer implementations of signal processing systems using lifetime analysis techniques.

Fine-Grain Buffer Allocation
 Mathematic Formulation:

 Use of existing tools
 Choose the best data structure

Fine-Grain Buffer Allocation
 LEMMA:

 In SA schedules the head index at the time t is always greater
than equal the tail index at the same time:

 Constraints:

 Objective: Minimize Shared Buffer Size:

ILP Formulation

 The complexity of buffer sharing instance, and ILP
runtime grows exponentially.

 Linear constraints cannot be easily used to articulate the
“OR” logic:
 Binary variables For each buffer and each location in the

shared memory space
 Constraints have to be generated for all time steps.

 In several industries there is a need for packing a set of
2-dimensional objects on a larger rectangular unit of
material by minimizing the waste.
 Two-Dimensional Bin Packing Problem (2BP):

 wood or glass industries, warehousing contexts, newspapers paging

 Two-Dimensional Strip Packing Problem (2SP):
 paper or cloth industries

Strip Packing Problem and
Buffer-Sharing

 The relationship between Packing Problems and Buffer
Sharing Problem:
 Objects: Buffer Size in Time which form complex polygons
 Roll of Material: Shared Buffer Memory
 Objective: To allocate an index to each buffer in the shared

memory with no conflict using minimum space
 Difference: We cannot move the objects (polygons) in time.

We are only allowed to move them vertically. We also have no
rotation.

Strip Packing Problem and
Buffer-Sharing

Move-Down Algorithm

Skyline

 MDA is moving down the buffers in the following order:
G_H, D_G, C_D, B_C, A_B, E_G, C_E, F_G, C_F

In
de

x
in

 M
em

or
y

Actor Firings

Move-Down Algorithm

 MDA is moving down the buffers in the following order:
G_H, D_G, C_D, B_C, A_B, E_G, C_E, F_G, C_F

Skyline

In
de

x
in

 M
em

or
y

Actor Firings

Move-Down Algorithm

 MDA is moving down the buffers in the following order:
G_H, D_G, C_D, B_C, A_B, E_G, C_E, F_G, C_F

Skyline

In
de

x
in

 M
em

or
y

Actor Firings

Move-Down Algorithm

 MDA is moving down the buffers in the following order:
G_H, D_G, C_D, B_C, A_B, E_G, C_E, F_G, C_F

Skyline

In
de

x
in

 M
em

or
y

Actor Firings

Move-Down Algorithm

 The final placement of the buffers corresponding to the
following order: G_H, D_G, C_D, B_C, A_B, E_G, C_E, F_G,
C_F

 The height of the final skyline indicates the shared memory size.

Final Skyline

In
de

x
in

 M
em

or
y

Actor Firings

Move-Down Algorithm

 Another sequence which leads to the size 18 (14 is the optimal):
A_B , D_G , G_H , C_E , C_F , B_C , E_G , F_G , C_D

18

Final Skyline

In
de

x
in

 M
em

or
y

Actor Firings

Evolutionary Optimization using
MDA

 Genetic Algorithms in General:
 Chromosome: Provides an abstract representation of

solutions in the search space,
 Inheritance: Models the basic operations through which,

chromosomes are perturbed to improve the solution quality
 Crossover
 Mutation

 Fitness Function: Quantizes the quality of candidate
solutions, and determines survival of selected candidates.

Evolutionary Optimization using
MDA

 Initialization: Randomly select a set of permutations

 Fitness function:

 Selection:

Evolutionary Optimization using
MDA

 Crossover:
 Example:

 Mutation:
 Example:

 Iteratively, new children are generated and compared to the
existing members until the termination point where we can
return the best solution found.

Experimental Evaluation
 We have integrated our algorithm into the MIT

StreamIt compiler
 Three composite stream objects in StreamIt
 Filters specify data processing

Experimental Evaluation
 The StreamIt scheduler is designed based on the

hierarchical nature of the language.
 In Split-joins, one large buffer is used to implement

multiple channels that either split to or join from
several actors.

Experimental Evaluation
 Benchmark Applications:

 Two sorting algorithms: Bitonic Sort, Insertion Sort
 Two different implementation of the Fast Fourier Transform
 Time Delay Estimation kernel
 Matrix Multiplication kernel

Experimental Evaluation

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Bitonic
Sort

Insertion
Sort

FFT2 FFT3 TDE Matrix
Mult.

Average
of the six

Coarse-Grained
Fine-Grained

Improvement of coarse-grain and fine-grain methods compared
to the baseline.

Experimental Evaluation

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Bitonic
Sort

Insertion
Sort

FFT2 FFT3 TDE Matrix
Mult.

Average
of the six

Optimal Solution With ILP
Fine-Grained (Best Case)
Fine-Grained (Worst Case)

Improvement in all fine-grain cases: GA worst case, GA best
case, and ILP, compared to the coarse-grain method

Conclusions
 Visualization of buffers transforms the allocation

problem into packing of complex polygons

 Fine-grain analysis vs. conventional coarse-grain live
range analysis: dramatic improvements

 The benefits of this approach outweighs the reasonable
increase in static analysis latency for a large class of
resource-constrained embedded systems.

