Exact and Approximate Task Assignment Algorithms for Pipelined Software Synthesis

Matin Hashemi Soheil Ghiasi

Laboratory for Embedded and Programmable Systems http://leps.ece.ucdavis.edu

Department of Electrical and Computer Engineering University of California, Davis Davis, CA United States

Streaming Applications

- Widespread
 - Cell phones, mp3 players, video conference, real-time encryption, graphics, HDTV editing, hyperspectral imaging, cellular base stations

- Definition
 - □ Infinite sequence of data items
 - □ At any given time, operates on a small window of this sequence
 - Moves forward in data space

```
5 5 2 6 4 1 8 9 3 ○○○ ← input

-1 7 2 0.4 7.2 1 ○○○ output
```

```
//53° around the z axis
const R[3][3]={
          {0.6,-0.8, 0.0},
          {0.8, 0.6, 0.0},
          {0.0, 0.0, 1.0}}
Rotation3D {
    for (i=0; i<3; i++)
        for (j=0; j<3; j++)
        B[i] += R[i][j] * A[j]
}</pre>
```


Programming Model

- Thread-based models
 - ☐ Difficult to develop and debug [Sutter and Larus, ACM Queue '05]
 - ☐ Fundamentally, unreliable and nondeterministic [Lee, IEEE Computer '06], [Weng, MIT tech report '75]
- To maximize throughput of stream applications
 - □ Pipelined distributed-memory dual-core
 - □ Connected through on-chip network

Software Synthesis

Need better CAD tools

[Rowen, MPSOC '3], [Rabaey, Gigascale '04], [Gordon, ASPLOS '06], [Martin, DAC 06], [Parkhurst, ICCAD '06], [Panel, EMSOFT '06], [Asanovic, UCB tech report '06]

 Need effective task assignment methods because of diminishing returns if applications don't use available processing power

[Leland, SC '95], [Karypis, SC '95], [Parkhurst, ICCAD '06], [Martin, DAC 06], [Asanovic, UCB tech report '06]

Application Model:Dataflow Graph

- Vertices or actors
 - ☐ functions, computations
- Edges
 - □ data dependency, communication between actors
- Execution Model
 - any actor can perform its computation whenever all necessary input data are available on incoming edges.
- SDF is one special case
 - ☐ statically schedulable [Lee '87]

Example

Performance Model: Implementation Dependant

- Throughput can be any function of workloads and communications
- W_G
 - computation workload, unit time
 - estimated from source code
 - □ implementation dependant
- Data rates
 - □ # of data tokens
 - □ known at compile time [Lee '87]
- C_{CUT}
 - □ communication **cost**, unit time
 - □ implementation dependant

N loop +N sub +N add +N mul +4N mem

 $T_i = X_i * Z_{N-i}$

Performance Model: Example 1


```
while(1) {
  for i=1..n
    X[i] = S[i] + S[n-i]
    Y[i] = S[i] * S[i]
  for i=1..n
    Z[i] = q[i] * Y[n-i]
  for i=1..n
    writef(X[i])
  for i=1..n
    writef(Z[i])
}
```

```
while(1) {
  for i=1..n
    X[i] = readf()
  for i=1..n
    Z[i] = readf()
  for i=1..n
    T[i] = X[i] *Z[n-i]
}
```


1 / Throughput = W_{G1} C_{CUT} C_{CUT} W_{G2} Exec. Period= Max{ W_1+W_2+N+N , $N+N+W_3$ }

correction factors for clock speeds

Performance Model: Example 2


```
while(1) {
  for i=1..n
    X[i] = S[i] + S[n-i]
    writef(X[i])
    Y[i] = S[i] * S[i]
  for i=1..n
    Z[i] = q[i] * Y[n-i]
    writef(Z[i])
}
```

```
while(1) {
  for i=1..n
    X[i] = readf()
  for i=1..n
    Z[i] = readf()
  for i=1..n
    T[i] = X[i] *Z[n-i]
}
```


 W_{G1} C_{CUT} C_{CUT} W_{G2}

Exec. Period= Max{ $W_1+W_2-2Nxmem+N+N$, $N+N+W_3$ }

Performance Model:

Example 3


```
while(1) {
  for i=1..n
    X[i] = S[i] + S[n-i]
    Y[i] = S[i] * S[i]
  for i=1..n
    Z[i] = q[i] * Y[n-i]
  for i=1..n
    P[i] = X[i]
    P[i+n] = Z[i]
  writep(P[1..2n])
}
```

```
while(1) {
  P[1..2n] = readp()
  for i = 1..n
    X[i] = P[i]
    Z[i] = P[i+n]
  for i = 1..n
    T[i] = X[i] * Z[n-i]
}
```


 W_{G1} C_{CUT} C_{CUT} W_{G2} Exec. Period= Max{ $W_1+W_2+OV+N+N$, hop, $N+N+OV+W_3$ }

Performance Model:

Example 4


```
while(1) {
  for i=1..n
    X[i] = S[i] + S[n-i]
    writep(X[i])
    Y[i] = S[i] * S[i]
  for i=1..n
    Z[i] = q[i] * Y[n-i]
    writep(Z[i])
}
```

```
while(1) {
  for i=1..n
    X[i] = readp()
  for i=1..n
    Z[i] = readp()
  for i=1..n
    T[i] = X[i] *Z[n-i]
}
```


Versatile Cost Function

- Throughput = 1 / Execution Period
 - □ implementation dependant
- Task assignment method has to be versatile: handle any realistic hardware-inspired function of
 - workloads
 - communications
- $Q_{CUT} = F (W_{G1}, C_{CUT}, W_{G2})$
- realistic: Q_{CUT} has to be non-decreasing in C_{CUT}

Convex Cut

- To ensure a feasible schedule [Cong, FPGA '07]
 - □ we need all data at the beginning

```
while(1) {
   for i=1..n
   A[i] = readf()
   for i=1..n
    Y[i] = readf()
   //computation
}
```

```
while(1) {
  for i=1..n
    X[i] = readf()
  //computation
  for i=1..n
    writef(Y[i])
}
```

Cycles limit the throughput [Rabaey '93], [Wolf '94]

Algorithm Idea

- Calculate cost function Q_C only from cut C, and not other parts of the graph
- Move workloads to edges
- Property:

$$\Box W_{C} = (0) + (W_{e}) + (W_{c}) + (W_{a} + W_{b})$$
$$= W_{a} + W_{b} + W_{c} + W_{e} = W_{G1}$$

$$\Box C_{C} = C_{cf} + C_{eg} + C_{cd} + C_{bd} \xrightarrow{cut C}$$

Algorithm Details

- move node workloads of G to its edges
- for planar graphs, a cut is equal to a path in dual graph
- expand G* to G'

Algorithm Details, cont.

- single-source shortest-path on G'
- pick the best cut

W _{G1}	C _c	shortest path for this W _{G1} ?	W _{G2} = W _G -W _{G1}	cost function Q _c
3	1+4 =5	✓	7-3=4	9
4	1+2 =3	✓	7-4=3	7
4	3+4 =7		7-4=3	
5	3+2 =5	✓	7-5=2	10

provably optimal in minimizing any realistic cost function

 $\text{Max } \{W_{\text{G1}}+C_{\text{C}}, W_{\text{G2}}+C_{\text{C}}\}$

Complexity

- Constructing G' is the most complex part of the algorithm
- Both runtime and memory consumption depend on the number of vertices in G'
- O(N x W_G)
- NP Complete: reduction from set partitioning

Approximate Algorithm

Approximate workload values in graph G'. A range of workload values w is represented by one single y value, where y=f(w) is the approximation function, and δ is a constant parameter: $f(w) = (1 + \delta)^{\lfloor \log w \rfloor}$

■ Example (1+δ=2)

w	y=f(w)		
0	0		
1	1		
2-3	2		
4-7	4		
8-15	8		

Approximate Algorithm, cont.

Theorem:

$$\frac{w}{1+\delta} < y \le w$$

$$\frac{W_C}{(1+\delta)^k} < \Psi_C \le W_C$$

- Cost function
 - \square $Q_C = F(W_{G1}, C_C, W_{G2})$
 - \square $\Omega_{\rm C}$ = F ($\Psi_{\rm G1}$, $C_{\rm C}$, $\Psi_{\rm G2}$)
- $Q_{C,min} < \Omega_{C,min} < (1+\epsilon) Q_{C,min}$
- $\epsilon = \delta k$
- Error in calculating cost function is bounded within an adjustable factor.

Experiment Platform

- Digilent Virtex II PRO board
- Processors: MicroBlaze
- Communication links: FSL

application (.str file)

partitioned application (multiple .c files)

Xilinx EDK C Compiler

Ŋ.

StreamIt

- basic element: Filter
- CONSTRUCTS: Pipeline, SplitJoin, Feedback
- planar graph

Partitioning Algorithm:

[Thies, MIT tech report '03]

- □ limited to structured graphs
- dynamic programming

B = 9 +
$$\overline{3}$$
 + 2 + 3
 $\sum_{b \text{ in B}} X_b Y_b = O(N^2 B)$

Benchmarks

	Description		sk Grap tructure		Single-processor Throughput
			E _G	F _G	(K sample / sec.)
BSORT	Bitonic Sort	756	1012	259	187
MATMUL	Blocked Matrix Multiply	23	23	3	135
FFT	Fast Fourier Transform	152	207	58	264
TDE	Frequency Domain Convolution	46	52	9	580
FILTER	Discrete Filter	53	59	9	18.0

Throughput

	StreamIt		ТАР		Throughput vs single-processor		Additional
	Workload Imbalance %	Throughput	Workload Imbalance %	Throughput	StreamIt	ТАР	Throughput (TAP-StreamIt)
BSORT	7.7	296.3	3.7	319.2	1.58	1.70	.12
MATMUL	6.5	186.3	9.7	208.0	1.38	1.55	.17
FFT	11	417.7	4.9	470.4	1.58	1.77	.19
TDE	4.1	933.8	4.1	933.8	1.61	1.61	.00
FILTER	0.7	34.6	0.7	34.6	1.88	1.88	.00
Avg.					1.61	1.70	.09

FFT Streamlt / TAP

39%

45%

55%

61%

MATMUL Streamlt / TAP

57%
60% _ 43%
40%

TDE Streamlt / TAP

Exact Algorithm

	Runtime (second)	Memory Consumption (MB)	Dual-processor Throughput (K sample / sec.)
BSORT	31.8	2543	319
MATMUL	57.5	321	208
FFT (64)	46.7	2553	470
TDE	76.6	844	933
FILTER	121.5	1366	34.6

Throughput of dual-processor hardware when using the exact partitioning algorithm. It requires the mentioned time and memory to perform.

ÞΑ

Approximate Algorithm

Throughput degradation versus reduction in runtime and memory consumptions when using the approximate partitioning algorithm. All values are normalized against the exact algorithm.

questions?