
Exact and Approximate
Task Assignment Algorithms for

Pipelined Software Synthesis

Matin Hashemi
Soheil Ghiasi

Laboratory for Embedded and Programmable Systems
http://leps.ece.ucdavis.edu

Department of Electrical and Computer Engineering
University of California, Davis
Davis, CA
United States

2

Streaming Applications

 Widespread
 Cell phones , mp3 players, video conference,

real-time encryption, graphics, HDTV editing,
hyperspectral imaging, cellular base stations

 Definition
 Infinite sequence of data items
 At any given time, operates on

a small window of this sequence
Moves forward in data space

5 5 2 6 4 1 8 9 3 input

output-1 7 2 0.4 7.2 1

//53° around the z axis
const R[3][3]={

{0.6,-0.8, 0.0},
{0.8, 0.6, 0.0},
{0.0, 0.0, 1.0}}

Rotation3D {
for (i=0; i<3; i++)
for (j=0; j<3; j++)
B[i] += R[i][j] * A[j]

}

3

Programming Model
 Thread-based models

 Difficult to develop and debug [Sutter and Larus, ACM Queue ‘05]

 Fundamentally, unreliable and nondeterministic
[Lee, IEEE Computer ’06], [Weng, MIT tech report ‘75]

 To maximize throughput of stream applications
 Pipelined distributed-memory dual-core
 Connected through on-chip network

P1 P2

point-to-point
fifo

clk = f1 clk = f2

P1

P2

on-chip router

clk = f1

clk = f2

4

Software Synthesis

 Need better CAD tools
[Rowen, MPSOC ‘3], [Rabaey, Gigascale ’04], [Gordon, ASPLOS ’06], [Martin, DAC 06],
[Parkhurst, ICCAD ’06], [Panel, EMSOFT ‘06], [Asanovic, UCB tech report ‘06]

 Need effective task assignment methods
because of diminishing returns if applications
don’t use available processing power
[Leland, SC ’95], [Karypis, SC ’95], [Parkhurst, ICCAD ’06], [Martin, DAC 06],
[Asanovic, UCB tech report ‘06]

5

Application Model:
Dataflow Graph
 Vertices or actors

 functions, computations
 Edges

 data dependency, communication between actors
 Execution Model

 any actor can perform its computation whenever all
necessary input data are available on incoming edges.

 SDF is one special case
 statically schedulable [Lee ‘87]

6

Example

sort sort sort sort sort sort sortsort

merge merge merge merge

merge merge

merge

N/2 N/2

N/4 N/4 N/4 N/4

N/8 N/8 N/8 N/8 N/8 N/8 N/8 N/8

NN-Element Merge Sort
http://www.cag.csail.mit.edu/streamit

7

Example Duplicate splitter

DFT

Round robin joiner

DFTDFT DFT DFT DFT

Round robin splitter

Duplicate splitter

FIR Smoothing Identity

Round robin joiner

Deconvolve

Round robin splitter

Liner Interpolator

Round robin joiner

Multiplier

Decimator

Liner Interpolator

Decimator

Round robin joiner

Phase unwrapper

Const Multiplier

Linear Interpolator

Decimator

Vocoder
http://www.cag.csail.mit.edu/streamit

8

Performance Model:
Implementation Dependant
 Throughput can be any function of

workloads and communications
 WG

 computation workload, unit time
 estimated from source code
 implementation dependant

 Data rates
 # of data tokens
 known at compile time [Lee ‘87]

 CCUT
 communication cost, unit time
 implementation dependant

N loop +N sub +N add
+N mul +4N mem

N loop +N sub
+N mul +3N mem

N loop +N sub
+N mul +3N mem

N

N
N

for i=1..N
Xi = Si+SN-i
Yi = Si

2

for i=1..N
Ti = Xi*ZN-i

for i=1..N
Zi = qi*YN-i

X

Y

Z

S

X Y

T

X Z

Y

Z

task
graph

G

9

Performance Model:
Example 1

P1 P2
fifo

while(1) {
for i=1..n
X[i]= S[i]+S[n-i]
Y[i]= S[i]*S[i]

for i=1..n
Z[i]= q[i]*Y[n-i]

for i=1..n
writef(X[i])

for i=1..n
writef(Z[i])

}

while(1) {
for i=1..n
X[i] = readf()

for i=1..n
Z[i] = readf()

for i=1..n
T[i]= X[i]*Z[n-i]

}

1 / Throughput =
Exec. Period= Max{ W1+W2+N+N , N+N+W3 }

CUT

for i=1..N
Xi = Si+SN-i
Yi = Si

2

for i=1..N
Ti = Xi*ZN-i

for i=1..N
Zi = qi*YN-i

X

Y

Z

S

X Y

T

X Z

Y

Z

WG1 WG2CCUT CCUT correction factors
for clock speeds

10

Performance Model:
Example 2

P1 P2
fifo

while(1) {
for i=1..n
X[i]= S[i]+S[n-i]
writef(X[i])
Y[i]= S[i]*S[i]

for i=1..n
Z[i]= q[i]*Y[n-i]
writef(Z[i])

}

while(1) {
for i=1..n
X[i] = readf()

for i=1..n
Z[i] = readf()

for i=1..n
T[i]= X[i]*Z[n-i]

}

for i=1..N
Xi = Si+SN-i
Yi = Si

2

for i=1..N
Ti = Xi*ZN-i

for i=1..N
Zi = qi*YN-i

X

Y

Z

S

X Y

T

X Z

Y

Z
CUT

Exec. Period= Max{ W1+W2-2Nxmem+N+N , N+N+W3 }

WG1 WG2CCUT CCUT

11

Performance Model:
Example 3

Exec. Period= Max{ W1+W2+OV+N+N , hop , N+N+OV+W3 }

P1

P2

on-chip router

while(1) {
for i=1..n
X[i]= S[i]+S[n-i]
Y[i]= S[i]*S[i]

for i=1..n
Z[i]= q[i]*Y[n-i]

for i=1..n
P[i]=X[i]
P[i+n]=Z[i]

writep(P[1..2n])
}

while(1) {
P[1..2n]=readp()
for i=1..n
X[i] = P[i]
Z[i] = P[i+n]

for i=1..n
T[i]= X[i]*Z[n-i]

}

CUT

for i=1..N
Xi = Si+SN-i
Yi = Si

2

for i=1..N
Ti = Xi*ZN-i

for i=1..N
Zi = qi*YN-i

X

Y

Z

S

X Y

T

X Z

Y

Z

WG1 WG2CCUT CCUT

12

Performance Model:
Example 4

while(1) {
for i=1..n
X[i]= S[i]+S[n-i]
writep(X[i])
Y[i]= S[i]*S[i]

for i=1..n
Z[i]= q[i]*Y[n-i]
writep(Z[i])

}

while(1) {
for i=1..n
X[i] = readp()

for i=1..n
Z[i] = readp()

for i=1..n
T[i]= X[i]*Z[n-i]

}

CUT

for i=1..N
Xi = Si+SN-i
Yi = Si

2

for i=1..N
Ti = Xi*ZN-i

for i=1..N
Zi = qi*YN-i

X

Y

Z

S

X Y

T

X Z

Y

Z

P1

P2

on-chip router

Exec.
Period= Max{ W1+W2-2Nxmem+N+N , (N+N)hop , N+N+W3 }

WG1 WG2CCUT CCUT CCUT

13

Versatile Cost Function

 Throughput = 1 / Execution Period
 implementation dependant

 Task assignment method has to be versatile:
handle any realistic hardware-inspired function of
 workloads
 communications

 QCUT = F (WG1, CCUT, WG2)
 realistic: QCUT has to be non-decreasing in CCUT

14

Convex Cut
 To ensure a feasible schedule

[Cong, FPGA ’07]
 we need all data at the beginning

 Cycles limit the throughput
[Rabaey ’93], [Wolf ’94]

while(1) {
for i=1..n
A[i] = readf()

for i=1..n
Y[i] = readf()

//computation
}

while(1) {
for i=1..n
X[i] = readf()

//computation
for i=1..n
writef(Y[i])

}

15

Algorithm Idea

 Calculate cost function QC only from cut C, and
not other parts of the graph

 Move workloads to edges
 Property:

WC= (0)+(We)+(Wc)+(Wa+Wb)
= Wa+Wb+Wc+We = WG1

 CC = Ccf + Ceg + Ccd + Cbd

Wa

Wa+Wb

Wa+Wb+Wc+Wd

Wc

0

0
0

Wf

We

d

c b

a

ef

g

Cab,

Cbd,

Cdg,

Ccd,

Cac,

Ccf,
Cce,

Cfg ,
Ceg,

G1

G2

cut C

16

Algorithm Details
 move node workloads of G to its edges
 for planar graphs, a cut is equal to a path in dual graph
 expand G* to G’

2

1

3

3

1
c

w

1
2

4

G

+0

+1 +3
+4

WC=WG10
1
2
3
4
5
6
7=WGG’

3,1

1,0

2,4

4,3

wc

G
WG = 3 + 1 + 1 +
2

s* t*

1,0

3,1

c w

4,3

2,4m*

G*

17

Algorithm Details, cont.
 single-source shortest-path on G’
 pick the best cut

1

3

c

0
1
2
3
4
5
6
7=WG

WC=WG1

4

2

2

1

3

3

1
1

2

4

s* t*m*

provably optimal in minimizing
any realistic cost function







shortest path
for this WG1?

5

4

4

3

WG1

7-4=33+4 =7

107-5=23+2 =5

77-4=31+2 =3

97-3=41+4 =5

cost
function

QC

WG2

= WG-WG1
CC

Max {WG1+CC , WG2+CC}

18

Complexity

 Constructing G’ is the most complex part of the algorithm
 Both runtime and memory consumption depend on

the number of vertices in G’
 O(N x WG)
 NP Complete: reduction from set partitioning

2

1

3

3

1
c

w

1
2

4

G

0
1
2
3
4
5
6
7=WG

WC=WG1

G’

1,0

3,1

c w

4,3

2,4

G*

3,1

1,0

2,4

4,3

wc

G
number of vertices = N

19

Approximate Algorithm
 Approximate workload values in graph G’. A range of

workload values w is represented by one single y value,
where y=f(w) is the approximation function, and δ is a
constant parameter:

 Example (1+δ=2)
w y=f(w)
0 0
1 1

2-3 2
4-7 4

8-15 8

20

Approximate Algorithm, cont.

ΨC=ΨG1
0
1

2

4

+0

+1 +3

+4

approximate G’

 Theorem:

 Cost function
 QC = F (WG1, CC, WG2)
 ΩC = F (ΨG1, CC, ΨG2)

 QC,min < ΩC,min < (1+ε) QC,min

 ε = δk

 Error in calculating cost function
is bounded within an adjustable
factor.

WG

O(N x WG)

log1+δWG

O(N x log1+δWG)

+0

+1
WC=WG1

+3

+4

0
1
2
3
4
5
6
7=WGexact G’

1,0

3,1

c w

4,3

2,4

1,0

3,1

c w

4,3

2,4G*

44-7
8-15

2-3
1
0
w

2

8

1
0

y=f(w)

21

Experiment Platform
Measurement

on FPGA Board

StreamIt Compiler

Xilinx EDK
C Compiler

application
(.str file)

binary code

Task
Assignment

Processor
Assignment

Code
Generation

Task
Scheduling

partitioned
application

(multiple .c files)

 Digilent Virtex II PRO board
 Processors: MicroBlaze
 Communication links: FSL

22

StreamIt
 basic element: Filter

 constructs:
Pipeline, SplitJoin, Feedback

 planar graph

 Partitioning Algorithm:
[Thies, MIT tech report ‘03]

 limited to structured graphs
 dynamic programming

B = 9 + 3 + 2 + 3
∑b in B XbYb = O(N2 B)

23

Benchmarks

Description
Task Graph
Structure

Single-processor
Throughput

(K sample / sec.)|VG| |EG| |FG|

BSORT Bitonic Sort 756 1012 259 187

MATMUL Blocked Matrix Multiply 23 23 3 135

FFT Fast Fourier Transform 152 207 58 264

TDE Frequency Domain Convolution 46 52 9 580

FILTER Discrete Filter 53 59 9 18.0

24

Throughput
StreamIt TAP Throughput vs

single-processor Additional
Throughput

(TAP-StreamIt)
Workload
Imbalance

% Throughput

Workload
Imbalance

% Throughput StreamIt TAP

BSORT 7.7 296.3 3.7 319.2 1.58 1.70 .12

MATMUL 6.5 186.3 9.7 208.0 1.38 1.55 .17

FFT 11 417.7 4.9 470.4 1.58 1.77 .19

TDE 4.1 933.8 4.1 933.8 1.61 1.61 .00

FILTER 0.7 34.6 0.7 34.6 1.88 1.88 .00

Avg. 1.61 1.70 .09

Throughput of dual-processor hardware for both StreamIt and TAP algorithms.

25

FFT
StreamIt / TAP
■ ■

39%

61%

45%

55%

26

MATMUL
StreamIt / TAP
■ ■

57%
43%60%

40%

27

TDE
StreamIt / TAP
■ ■

28

Exact Algorithm

Runtime
(second)

Memory
Consumption

(MB)

Dual-processor
Throughput

(K sample / sec.)

BSORT 31.8 2543 319

MATMUL 57.5 321 208

FFT(64) 46.7 2553 470

TDE 76.6 844 933

FILTER 121.5 1366 34.6

Throughput of dual-processor hardware when using the exact partitioning algorithm. It
requires the mentioned time and memory to perform.

29

Approximate Algorithm

Throughput degradation versus reduction in runtime and memory consumptions when using the
approximate partitioning algorithm. All values are normalized against the exact algorithm.

30

questions?

