
TRANSACTIONS ON CLOUD COMPUTING 1

Blue-Pill Oxpecker: a VMI Platform for
Transactional Modification

Seyed Mohammad AghamirMohammadAli, Behnam Momeni, Solmaz Salimi, Mehdi Kharrazi

Abstract—Although multiple techniques have been proposed with the goal of minimizing the semantic gap in virtual machine

introspection, most concentrate on passive observation of the internal state, while there are also a number of proposals with which

active modification of the VM’s internal state is made possible. However there are issues when modifications are applied, such as

keeping a consistent kernel state and avoiding a crash. In this paper we propose Oxpecker, a VMI platform for transactional

modification. The out-of-VM read access allows an introspector to detect malware in the guest OS (e.g., rootkit) and the transactional

write access allows Oxpecker to reliably neutralize the detected threats. To begin a transaction, Oxpecker monitors VM state changes

waiting for an idle moment which is free of possible race-conditions in the guest kernel memory. Thereafter, it invokes a VMI client’s

callback to proceed with reading/writing in its memory. Upon user request or possible exceptions, transaction is rolled back while the

transaction ACID properties are maintained at all times. Oxpecker is implemented and evaluated under different real-world workloads.

Additionally and as a practical example, a tool is developed, and open sourced, based on Oxpecker with which guest VM processes

could be killed.

✦

1 INTRODUCTION

V IRTUALIZATION technologies have been widely de-
ployed over the past decade and have affected the

simple client user to large enterprise users. Virtualization
has not been without an effect on the security of the
machines going virtual. One of the more interesting facts
is that the virtualized machine could be observed from
the hypervisor level and that brings about a number of
interesting capabilities. One of the earliest suggestions was
proposed by Garfinkel et. al [1], where they argue that by
placing an IDS outside of the VM, they could monitor the
VM for malicious activity while the IDS is immune from any
tampering from within the VM. Their approach was named
VMI (i.e., virtual machine introspection) and has brought
about a number of proposals [1], [2], [3], [4], [5], [6] with the
aim of monitoring a VM from the hypervisor level.

Virtual machine introspection is inherently passive, as
it tries to read a VM state without trying to modify it.
Knowing that a threat exists is important, but being able
to neutralize it is an even more important capability. For
example, consider an anti-rootkit technique which intro-
spects the VM kernel memory without trusting in its OS
executable codes. It may monitor running processes by
scanning their memory. A rootkit may try to hide by ma-
nipulating the kernel data structures or keep running by
corrupting the related kernel modules which can be used
for its removal. Nevertheless, by an out-of-VM read/write
access, the running rootkit and its memory regions can be
observed, debugged, and/or removed. This leaves a rootkit
empty-handed because any kind of execution or memory
access is inherently visible to an out-of-VM introspector.

• S. M. AghamirMohammadAli, B. Momeni, S. Salimi, and M. Kharrazi
are with the S4Lab, Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran.
E-mail: {aghamir@ce., behnam.momeni@, s.salimi@, kharrazi@}
sharif.edu

Manuscript received RECEIVED-DATE; revised REVISED-DATE.

This manuscript presents a VMI platform for out-of-VM
transactional read/write access enabling several functional
and security use cases. For example, the internal state of
a VM can be actively modified to force a kernel module
to execute paths which are not usually traversed, guide a
fuzzing algorithm to obtain higher kernel code coverage, or
to facilitate reproducing of race conditions, conduct process
injection, restore remote access to an encrypted VM, or per-
form batch updates and reconfiguration patches for a series
of VMs to name a few. Some of these applications were
discussed previously in [7], [8], [9], however, to the best of
our knowledge, there has been no VMI solution which could
provide a transactional and out-of-VM read/write access.
For example, Zhui Deng et al. [10] provided one of the
earlier techniques to realize writable VMI, but it requires a
helper process in the VM. Each one of the proposed writable
VMI solutions [7], [8], [9], [11], [12], [13] missed at least
one transactional property (as discussed in Section 6) and
could not support all the noted applications without causing
crashes in the guest VM (GVM).

To elaborate on the importance of the transactional
write capability, assume an out-of-VM anti-rootkit technique
which intends to kill a rootkit process. In addition to know-
ing the addresses and appropriate read/write times to avoid
possible race conditions, a causal relationship between read
and written values must be maintained. An out-of-VM
process terminator needs to read the linked list of processes,
read the previous/next pointer values of the target process,
and then write new values in order to point those entries
to each other and remove the target process from the linked
list. As shown in Fig. 1, the newly written pointer values for
task A and C depend on the old read values obtained by
following the next and prev pointers of task B. Therefore,
a concurrent addition of task D by a guest process can
potentially corrupt the linked list unless their read/write
operations are serialized properly.

This writing challenge has two main parts: where to

DOI: 10.1109/TCC.2021.3067829 © 2021 IEEE Published by the IEEE Computer Society

TRANSACTIONS ON CLOUD COMPUTING 2

Fig. 1: Linux kernel process_list manipulation. GVM
and Oxpecker are adding/removing task D/B concurrently.

write and when to write. The first challenge is addressable
by an appropriate semantic view of the machine state and
is a shared problem with read-only VMI solutions. As for
the second challenge, previously proposed solutions exploit
the extracted guest OS state to prevent a race condition
between the VMM and guest kernel. However, they solve
this challenge partially, relinquishing at least one of the
transactional write properties. For example, the Exterior [7]
uses a dual VM binary code reuse technique to avoid
the race condition by injecting instructions in the guest
kernel, but it fails to guarantee the consistency property.
Our analysis of common OSes reveals a clue for solving
this challenge. Normally, each system call tries to finish
as soon as possible to minimize the resource contention.
This makes it probable for an out-of-VM writer to modify
memory without the risk of concurrent modifications. For
example, experiments have shown that even under heavy
workloads, Linux kernel becomes idle by waiting for less
than nine minutes on average.

With the above noted observation, we propose Blue-
Pill Oxpecker 1, with which a transactional read/write VMI
service for the kernel space is provided. Oxpecker monitors
the guest kernel state at the end of each invoked syscall
looking for a moment that there is no competing writer pro-
cess. Then it begins a transaction, allowing a user provided
routine to read/write into/from the guest kernel memory
in absence of possible race conditions.

Acceptable guest OS performance depends on the hard-
ware acceleration features which allow user-space and
kernel-space codes (and syscall invocations) to be per-
formed without slow interventions of the host OS or hy-
pervisor. Whenever an out-of-VM introspection is required,
a VM EXIT event should be handled switching the pro-
cessor context to the hypervisor, and then back to the
GVM once again. This makes it critically important for a
practical VMI solution to minimize the number of VM EXIT
events. Monitoring of system calls is paused and resumed
periodically by Oxpecker in order to achieve low overhead
while also minimizing the time to start for each asked
transaction. These optimizations have enabled Oxpecker to
impose about 75.84% overhead in the worst case and 1.78%

1. Oxpecker birds are usually red-billed eating parasites off large
mammals. It has been noted [14] that at times, they injure the mammal
by pecking the wounds. As in our work, Oxpecker is transparent from
the VM’s point of view, therefore, we have called it a Blue-Pill Oxpecker.

in the best case which is an order of magnitude less than
the 2300% overhead of the Exterior [7] tool. We should
emphasize that Oxpecker is focused on read/write access
to the guest kernel memory, as the importance of out-of-VM
solutions is in their ability to deal with infected guest kernel
codes. If a threat is confined to the guest userspace, it can be
mitigated as discussed in previous works [15], [16] using a
guest kernel-level solution too. List of overall contributions
follows:

• A simple yet efficient solution is presented in order
to decide whether guest kernel memory modifications
may cause a race condition,

• An architecture is designed for out-of-VM transactional
read/write access to a given guest kernel memory with
untrusted executable codes,

• A reference implementation of the proposed architec-
ture is open sourced and its performance and consis-
tency are evaluated empirically,

• Achieving high performance by minimizing the num-
ber of VM exit events and periodical VM trapping.

In what follows, Section 2 reviews related VMI solu-
tions. Section 3 presents the Oxpecker architecture. Practical
challenges and details of a reference implementation of
Oxpecker are explained in Section 4. Afterwards, Section 5
evaluates the correctness and performance of the proposed
architecture. Discussion of presented features and a brief
comparison with previous VMI solutions is presented in
Section 6. The paper is concluded in Section 7.

2 RELATED WORK

The importance of dominating the guest OS and VMI
tools race conditions which concurrently access a GVM’s
memory, makes semantic gap challenge [17] more intricate
for writable VMI. We should note that there have been
hardware-assisted approaches for handling of concurrent
reading [18] and writing [19] for VMI, leveraging hardware
transactional memory (HTM) [20]. These approaches trade
flexibility and adaptability in order to obtain performance.
Nevertheless, Oxpecker is a software-based VMI platform,
hence, hardware-assisted approaches fall outside the scope
of this work.

Previous VMI tools fall into two main categories, one is
focused on introspection solutions for read-only VMI and
another one centers around solutions which try to modify
the GVM state. The rest of this section reviews the more
relevant VMI solutions in these two categories.

2.1 Read-Only Monitoring

A VMI solution can work from outside of the GVM inde-
pendently [21], [22], [23], [24], [25], with some collaboration
with GVM [26], [27], [28], or with an injected program or
agent inside the GVM [29], [30], [31]. Among the proposed
solutions, we concentrate on independent out-of-VM solu-
tions as they are intended to work for most of the trusted
computation bases without fundamental assumptions.

Some of the earliest VMI solutions were designed for
malware analysis [21], [24], [25] where they scan the GVM
state for footprints of malicious activities. Some other VMI
solutions [32], [33], [34], [35] were designed for digital

TRANSACTIONS ON CLOUD COMPUTING 3

forensics purposes to monitor the GVM state passively. Both
types of these solutions, try to narrow the GVM state to
obtain only relevant information for the particular use cases
and do not aim to generally solve the semantic gap issue.

A number of other VMI solutions are designed to check
the GVM kernel integrity. OSck [36] checks the kernel physi-
cal memory mapping, ensures the integrity of sensitive files,
OS data, and also detects kernel rootkits. RTKDSM [23]
monitors kernel data structures with the goal of resolving
the semantic gap and tracks kernel changes by monitor-
ing all write instructions for specific kernel addresses. The
ProbeBuilder [37] generates kernel data structure probes by
looking for “pointer-offset-pointer” patterns in the memory
and finding instructions in the execution flow which can
dereference them. This allows probes to be generated in the
absence of documented kernel data structures, which was
one of the open problems in the RTKDSM.

Other notable techniques are Virtuoso [38] and
VMST [22], where they reuse the same binary inside and
outside of the GVM and use their data to learn about specific
information regarding the memory structure of the GVM.

2.2 Active Modification

Two types of VMI techniques exist which support GVM
memory modification. One type requires assistant from
within the GVM (e.g., a helper process). Another type is
implemented independent of GVM and works from out-of-
VM (which are more robust). An early example is the work
of Zhui Deng et al. [10] which first selects an already existing
guest process and then hijacks it, running an implanted
process in the context of that victim process. Functionality
of this implanted process is restricted to the victim process
in order to decrease the risk of being detected. X-TIER [9]
works similarly but injects a kernel module instead of a
process. The implanted kernel module which is called an X-
module is wrapped by a generic loader to become loadable
independent of the exact version of the guest OS. An X-
module is then executed furtively by mapping/unmapping
its kernel memory pages when it calls into other kernel
functions (to stay hidden during execution).

Hypershell [11] design is partially similar to the Process
Implanting but allows a userspace process which is running
in the host machine to use a helper process within the GVM
to interact with the guest kernel. It intercepts all syscalls
and when it finds the appropriate guest process, injects the
desired syscall arguments to be executed in the GVM.

Expanding on VMST [22], Exterior [7] introduced the
first Writable VMI solution which can perform automatic
and fine-grained out-of-VM write operations, without inject-
ing an agent or employing the guest OS capabilities. Exterior
has a dual-VM architecture in which it redirects the memory
state modifications from a secure VM (SVM) to an actual
GVM. The introspecting process is executed in the SVM,
and all instructions of the SVM are emulated one by one,
incurring a high performance overhead. This instruction
level monitoring allows Exterior to detect all data operations
on various kernel data regions and redirect them to the
memory of GVM. The idea of dual-VM architecture is also
used in the process out-grafting [39] method. To trace a
suspicious process behavior, process out-grafting technique
relocates the process from GVM to SVM.

CIVIC [8] employs a cloned VM and injects code in it,
hence, needs an extra VM similar to dual-VM solutions, and
direct modification or reconfiguration of GVM is not possi-
ble. In fact, although CIVIC restricts modifications and side
effects to a cloned live VM, the VM states must be kept in
synchronization in order to avoid possible inconsistencies.

To the best of our knowledge, previously proposed VMI
solutions which support modification in the GVM, fail to
provide a transactional write capability which is an essential
requirement in a real-world deployment. In the following
section, we discuss the proposed architecture for Oxpecker
and how it provides a transactional write capability.

3 OXPECKER ARCHITECTURE

Oxpecker enables an out-of-VM introspector to perform a
series of read/write operations on the guest kernel memory
within a transaction without requiring any cooperation from
a trusted guest OS. The rest of this section presents the
related adversarial model, the high level architecture of Ox-
pecker, how Oxpecker deals with the guest kernel memory,
how it forms and maintains a transaction, and details of its
components and their corresponding algorithms.

3.1 Adversarial Model and Architectural Assumptions

It is assumed that the guest OS is under the control of the
attacker, where it could add/remove guest kernel modules,
create/terminate guest processes, and scan guest memory
for clues about presence of out-of-VM introspection. The
guest OS kernel modules are untrusted and so cannot be
called to perform certain operations. However, it is assumed
that the guest kernel data structures themselves are known
and can be used for consistent out-of-VM introspection.
This is a reasonable assumption because even though a
malware can add or modify the kernel code, it is unrealistic
to assume it would convert the kernel data structures to
some alternative format. Such change, although possible,
would require the malware to re-implement all other kernel
modules which are dependent on those data structures.

Furthermore, it is assumed that a generic method is
available to access the GVM kernel memory. That is, a low-
level API exists for reading/writing arbitrary bytes from
the guest memory, of course, without any consistency guar-
antees. Such a generic API is provided for Windows and
Linux kernels by LibVMI [40] library. The consistent and
transactional API of Oxpecker is built on top of this generic
read/write API. In fact Oxpecker needs to acquire the
knowledge of an appropriate time for applying read/write
operations in order to avoid inconsistencies with parallel
write accesses to the guest OS kernel.

3.2 Transaction Formation

Fig. 2 demonstrates the Oxpecker high level architecture.
The Coordinator component (first component shown at top
of Fig. 2) acts as a facade layer and allows Oxpecker clients
to begin/rollback transactions and read/write to the guest
kernel memory. Coordinator component needs to know about
the appropriate times to begin transactions. It employs the
Action Monitor component to look for the events which rep-
resent potential decrease in the guest kernel activity. Can-
didate events are then inspected by the Consistency Checker

TRANSACTIONS ON CLOUD COMPUTING 4

component to find out about possible race conditions. If it
can ensure about absence of race conditions in the guest
kernel, it proceeds by invoking the user callback to perform
read/write operations. It also tracks memory changes as a
set of old memory values paired with their memory ad-
dresses, so it can rollback all changes and ensure atomicity
of the transaction if the user canceled the transaction or if
an exception occurred while executing the user callback.

The Syscall Interceptor component (shown at bottom left
of Fig. 2) is responsible to communicate with the hypervisor
in order to setup required traps and receive correspond-
ing notifications upon execution of GVM syscalls. The last
component which is shown at bottom right of Fig. 2 is
the Generic Read/Write Introspection which provides low-
level read/write introspection access to the GVM memory
without any guarantee about consistency or atomicity of
carried operations. This modular approach allows arbitrary
read/write introspection schemes to be leveraged into an
API with guaranteed transactional properties. For a better
presentation of events, a typical operating scenario is exem-
plified in Fig. 2 through the following ten steps:

1) Client uses Coordinator to initiate a transaction,
2) Coordinator asks Action Monitor to call it back upon

activity changes in GVM. Action Monitor registers a
syscall trap using Syscall Interceptor component in the
VMM to pause execution of GVM after each syscall,

3) VMM is notified upon every following syscall invo-
cation through sysret/sysexit/iret instructions,
triggers a VM_EXIT, pauses the GVM, and generates
an event so the GVM’s state can be inspected before
execution of that instruction. Syscall Interceptor receives
VM_EXIT events and redirects them to Action Monitor.

4) Coordinator asks Consistency Checker to determine
whether all read/write accesses to the GVM kernel
memory are guaranteed to be consistent,

Fig. 2: The Oxpecker architecture. Coordinator (top) provides
client APIs, manages other components to run user callback,
and rollbacks memory changes in exceptional scenarios. Ac-
tion Monitor tracks guest kernel activity at candidate times to
begin a transaction. Consistency Checker examines existence
of potential race conditions. Syscall Interceptor registers a
trap to be called on every syscall of GVM. Generic Read/Write
Introspection provides a low-level access to GVM memory
without any transactional guarantee.

5) Consistency Checker employs the underlying generic
read API to introspect the GVM kernel state and detect
possible race conditions,

6) Consistency Checker informs Coordinator that consistent
read/write access can be carried now (step 7) or the
GVM should be resumed to continue its execution
while the transaction is kept pending (step 3),

7) Knowing that there is no race condition, Coordinator
runs the client’s callback, passing read/write requests
through the generic read/write API into the GVM
memory space,

8) Client may request the transaction to be canceled before
invocation/completion of the registered callback.

9) If an exception occurs or transaction is canceled, rollback
will be called in order to reapply original values of all
modified memory locations,

10) Coordinator asks Action Monitor to stop notifying about
guest state changes which uses Syscall Interceptor to
allow GVM to run without generating VM_EXIT events.

The rest of this section explains the inner design of the
aforementioned components.

3.3 Coordinator

The Coordinator component sits at the core of Oxpecker
architecture to manage the proper usage of different compo-
nents and maintain prerequisites which should be satisfied
before execution of each component in order to ensure
the GVM kernel memory consistency. Coordinator provides
two main APIs for its clients: beginTransaction and
cancelTransaction.

The beginTransaction function finds the proper time
for reading/writing from/into the GVM kernel memory.
This API receives the specific read/write operation details in
form of a callback and executes it upon finding the proper
time. Fig. 3 shows how this functionality is supposed to
work (in the beginTransaction function) corresponding
to the first seven steps of Fig. 2. The cancelTransaction
function (shown as the second function in Fig. 3) is provided
for resetting the VMM configuration to its normal state.
As shown in lines 7-8 of Fig. 3, the VM syscall traps and
inspection of the kernel state for determination of a race-
free moment are pursued at most for 20 subsequent events.
Thereafter, VM is resumed to operate normally for δ seconds
and then the monitoring routine starts over. The reason is
that when a proper race-free moment is not observed in the
short run, kernel is crowded with syscalls and so resuming
its operation at normal speed (without unnecessary VM exit
events) can increase the probability of finishing competing
tasks before the next round of examinations. Moreover,
because Nitro just locks the SYSCALL traps, high workload
creates a queue from user space process to enter into the
kernel space. Therefore, the number of kernel processes
increases over time. Performed evaluations confirm this
hypothesis, both improving the guest VM’s overhead and
decreasing the Oxpecker’s delay time before application of
the callback.

3.4 Action Monitor and Syscall Interceptor

Each guest running process at each given time may ex-
ecute either in the userspace or the kernel space. There

TRANSACTIONS ON CLOUD COMPUTING 5

Fig. 3 Coordinator algorithm to begin/cancel a transaction.

1: function BEGINTRANSACTION(Callback)
2: done← False
3: while done 6= True do
4: listener← SYSCALLINTERCEPTOR.SETTRAPS(True)
5: count← 0
6: for event ∈ listener do
7: if count ≥ 20 then
8: break
9: if event = SY SRET then

10: condition← CONSISTENCYCHECKER()
11: if condition then
12: done← True
13: break
14: count← count + 1
15: if done = True then
16: results← CALLBACK() [atomic]

17: SYSCALLINTERCEPTOR.CONTINUE()
18: if done = False then
19: SLEEP(δ)

20: function CANCELTRANSACTION()
21: listener ← SYSCALLINTERCEPTOR.SETTRAPS(False)
22: for event ∈ listener do
23: SYSCALLINTERCEPTOR.CONTINUE()

are three common methods in x86/x86-64 compatible ar-
chitectures for realization of syscalls: 1) interrupt-based
approach which uses a software interrupt such as “int
0x80” instruction, 2) the SYSCALL group of instructions
using syscall/sysret, and 3) the SYSENTER group of
instructions using sysenter/sysexit.

By pausing the GVM execution at either entry or exit
points of syscalls, it is possible to inspect all guest processes
which can potentially cause a race condition when attempt-
ing to write into the GVM kernel memory space. The syscall
exit point is used as a trigger for performing this inspection.

At the exit point of every executed syscall (i.e. upon
execution of iret, sysret, or sysexit instructions), it is
expected that all acquired locks over GVM kernel memory
objects have been already released. Thus, pausing the sys-
tem call right at its exit point ensures that no race condition
may happen between introspector and that specific process.
However, read/write operations may be yet inconsistent
with other kernel processes which are running in parallel.
Therefore, the Consistency Checker is tasked with detect-
ing possible race-conditions with other kernel processes
through inspection of GVM kernel memory as explained
in Section 3.5. It should be noted that Action Monitor needs
to freeze GVM temporarily for Consistency Checker, hence if
there is no race-condition present, it can prolong the freeze
in order to complete the transaction at hand.

In summary, the Action Monitor component has two ob-
jectives: 1) configuring the VMM with a trap listener (using
Syscall Interceptor), so it causes a VM_EXIT to be generated
upon each system call of the GVM, and 2) pausing all virtual
CPUs of the GVM to give Coordinator a chance to inspect its
memory space safely.

3.5 Consistency Checker and Generic Introspection

Existent libraries such as LibVMI [40] can be used in place
of the Generic Read/Write Introspection component. Neverthe-
less, knowing the proper timing is essential for consistent

Fig. 4 Consistency Checker algorithm

1: function CONSISTENCYCHECKER(GVM)
2: processes← RETRIEVEPROCESSLIST(GVM)
3: for process ∈ processes do
4: if ISINKERNELSPACE(process.eip) then
5: if process.status = running then
6: return False
7: return True

GVM modifications. It is not trivial to maintain transaction
properties [41] without any cooperation of guest OS, but
we had two observations making it possible to guarantee
consistency of modifications independent of the guest OS
implementation details. We should note that the only de-
pendence on OS is limited to its process data structures
for enumeration of processes which are active in the kernel
space. This dependence can also be generalized using a
volatility template [42] to learn about the GVM processes.

The first observation is that a modern OS kernel is sup-
posed to be deadlock free. For this reason, it avoids leaving
the kernel space while holding a lock because it is not
clear when it might return to the kernel space, and another
kernel thread or process may require the lock in the mean-
time. For example, consider the delete_module syscall.
It takes a lock for the module_list in order to remove
a target module. Now suppose that kernel stops running
delete_module syscall while the lock is kept. This makes
all other processes which try to access the module_list

to hang indefinitely until execution of delete_module

is resumed and the lock is released. In other words, a
functional OS kernel needs to release taken locks when a
process leaves the kernel space and when it returns to the
kernel space, it may reacquire the needed locks.

The second observation is that even in a heavily loaded
system in which different threads are invoking syscalls one
after another, OS tries to minimize the execution time of
each syscall in order to maximize the performance. Measur-
ing the amount of time which is spent in user and kernel
spaces, we found that even in a highly loaded system there
are times that no process is in the kernel space. Using this
observation, Oxpecker can monitor the execution of GVM
in order to find an appropriate time which is free of any
possible race conditions. Finding a time instant in which
only the idle process is running in the kernel space is
likely as we will show later on. So the trade-off between
the guest kernel memory modification delay and the kernel
consistency assurance after applying the asked modifica-
tions can be resolved reasonably in favor of the guaranteed
consistency without a considerable performance loss.

At the exit point of each syscall, all virtual CPUs of
the guest VM are paused so the GVM state can be kept
unchanged while existence of race-conditions is being ex-
amined. Afterwards, the Coordinator component is notified
which in turn calls the Consistency Checker (CC) component.
The CC component checks for possible race conditions for
read/write operations in GVM by inspecting its kernel
memory state. Specifically, CC iterates over all running
processes in the GVM kernel space by reading its ker-
nel memory using the Generic Introspection API. It checks
whether there are any kernel processes which may modify

TRANSACTIONS ON CLOUD COMPUTING 6

Fig. 5: The Oxpecker component diagram. The beginTransac-
tion and cancelTransaction APIs configure/deconfigure VMM
through Coordinator and Action Monitor components which
in turn use Nitro Framework for invoking user callback in a
proper time. Consistency Checker employs LibVMI APIs for
introspecting the paused guest VM. All exceptions are han-
dled automatically for maintaining transaction properties.

the memory in parallel or just the idle process is running
in the kernel space.

As shown in Fig. 4, both of kernel threads and user
processes which have switched to the kernel space can
be enumerated by reading the GVM kernel memory. The
good news is that the number of competing processes in
the kernel space can decrease only at the end of syscall
or interrupt handling procedures. Using this knowledge
and limiting inspection moments to end of syscalls (as
detected by Action Monitor component) makes it possible
to use hardware virtualization while waiting for VM_EXIT
events and improve performance from emulation speed to
an acceptable slow down (about 75.84% max overhead on
tested scenarios).

The next section describes practical challenges and im-
plementation details of the Oxpecker components.

4 IMPLEMENTATION

Oxpecker is implemented and evaluated in a customized
KVM/QEMU environment using Windows and Linux guest
OSes. Fig. 5 shows the Oxpecker component diagram which
is designed in three main layers. Our implementation of
Oxpecker is available at [43]. The rest of this section elab-
orates on implementation details of the noted components
and their associated practical challenges.

4.1 Hypervisor, Libvmi, and Nitro Framework

Kernel-based Virtual Machine (KVM) [44] in Linux employs
a two level architecture. The VMM independent functional-

ities are provided by kvm.ko module while hardware spe-
cific details are placed in modules such as kvm-intel.ko
and kvm-amd.ko. Userspace programs can communicate
with the KVM modules to create/manage VMs through
ioctl requests to the /dev/kvm device node since Linux
version 2.6.20 and QEMU version 1.3.

The QEMU process can map memory pages which are
allocated to the GVM memory to its own virtual memory
address space in the host machine and so can read/write
its contents. But there is a “semantic gap” between the
memory pages which are seen in QEMU, depicting the
physical memory of the GVM, and the address spaces of
different guest processes and/or guest kernel. Other patches
to QEMU such as LibVMI [40] deal with this semantic gap
problem allowing a host process to access the memory of
guest processes. Oxpecker uses the LibVMI [45] introspec-
tion API (refer to I in [46]) and builds required consistency
guarantees on top of that API LibVMI facilitates access to
GVM memory, without providing any guarantee about con-
sistent read/write operations. Specially, the provided write
API of LibVMI can lead to GVM crashes. LibVMI supports
different hypervisors such as Xen, KVM, and QEMU.

In addition to the generic read/write access to GVM,
Coordinator needs to be notified about syscall operations so it
can inspect the guest kernel state at change instants without
degrading the execution performance. The Nitro framework
(refer to II in [46]) is responsible to intercept syscalls and
notify Action Monitor component before returning from each
syscall or interrupt handling routine. The original Nitro
code could cause about 30% overhead on GVM. However,
the overhead in Oxpecker is much less as reported in Sec-
tion 5, because syscalls are only monitored from the user
request moment until the beginning of a transaction.

4.2 Action Monitor and Coordinator Component

Oxpecker uses KVM/QEMU with Nitro [47] patch through
the Action Monitor component as shown in Fig. 5, to enforce
a VM EXIT after all syscalls while using the hardware virtu-
alization performance benefits. However, the original Nitro
Framework only pauses the virtual CPU which had executed
a syscall. Thus, a modified Nitro patch is developed [43] in
Oxpecker which pauses all virtual CPUs while emulating
the iret, sysret, and sysexit instructions in order to
avoid race conditions while checking the number of running
processes in the kernel space. It sets/removes syscall traps
and notifies the Coordinator component right before allowing
the guest OS to return from every syscall.

The Coordinator component, as the name suggests, coor-
dinates tasks between the different Oxpecker components.
As shown in Table 1, six APIs are provided for Oxpecker
clients. The main API is beginTransaction which takes
a callback function and invokes it after finding the appro-
priate time for consistent read/write access to the GVM.

4.3 Consistency Checker Component

The Consistency Checker component is supposed to count
the number of running processes in the kernel space. Since
recognition of running processes needs knowledge of the
GVM kernel data structures, this implementation uses Linux
kernel version 4.9 and Windows 7 SP1 for demonstration

TRANSACTIONS ON CLOUD COMPUTING 7

purposes. Having the data structures which are used in
other OS versions is enough to port this component. This
approach can be generalized using a volatility template [42]
or a framework like rekall [48] (as is used in our reference
implementation) to learn about the GVM processes.

4.3.1 Linux Guest OS

The main data structure providing this information in Linux
is task_struct structure which describes a process or
task in the kernel. For each process, the state field in the
corresponding task_struct indicates its running status
which can be running, sleeping, or stopped. Moreover, to
find that a process is going to be scheduled in kernel or
userspace, the sp field of the structure pointed to by thread
field of the task_struct is used. LibVMI is configured
by reading the System.map from the guest kernel. This file
contains the “symbol table” which maps symbol names and
their addresses in memory. Also the init_task is a kernel
symbol which points to the head of a list of all existing
task_struct data structures. This list begins with a hard-
coded task_struct, namely Swapper process, which has a
zero pid representing the idle process in Linux which causes
no inconsistency as it does not access critical sections.

In brief, Consistency Checker starts by finding the address
of init_task and task_struct list in memory by look-
ing at System.map. It then iterates over the list to enumerate
running status of all processes. For each task_struct, it
inspects its state value and existence of a kernel stack
frame pointer to find all processes which are running in the
kernel space and can cause a potential race condition with
writes in the kernel memory. This method has a drawback,
as it depends on task_struct of all processes. An adver-
sary can remove a process (e.g. a rootkit) from the tasks list
while keeping it in the runqueues. In this situation, that pro-
cess stays in the kernel space indefinitely. Such processes can
be determined by looking at runqueues or memory contents
with help of the rekall [48] and Volatility [42] framework.

4.3.2 Windows Guest OS

Each process in Windows is represented with an instance
of EPROCESS data structure containing a KPROCESS for
kernel control data. Also, running processes may have one
or more threads which are tracked by instances of the
ETHREAD data structure (which similarly keeps its kernel
control data in the KTHREAD). EPROCESS maintains its
threads list as a linked list in its ThreadListEntry member.

PsActiveProcessHead can be used to retrieve the list
of EPROCESS instances. To find running processes, this
linked list should be traversed, checking the corresponding
threads, and for each KTHREAD instance, its state field
should be examined. Finding that a process is running in
kernel or user space is trickier. KernelStack (a member of the
KTHREAD data structure) is used to maintain the execution
context of each thread by pointing to its stack frame. Value
of eip (indicating the current execution address) can be
extracted by looking at two words behind the KernelStack.
Similar to the Linux guest OS scenario, this process might
be affected by hidden processes. However, we can get the
full list of processes by looking into the memory [42], [48].

TABLE 1: Oxpecker APIs. X (in API names) can be 8, 16, 32,
or 64 bits.

API Description

beginTransaction Asynchronous function to start a transaction.
cancelTransaction Cancel/rollback an ongoing T-VMI transaction.
t read X To read X bits from a virtual address.
t write X To write X bits at a virtual address.
t read X pa To read X bits from a physical address.
t write X pa To write X bits at a physical address.

4.4 Killing Process Using Oxpecker

Oxpecker APIs allow a VMI client to implement arbitrary
programs without worrying about possible memory-level
inconsistencies. However, the program must handle the
behavioral (design-level) inconsistencies by itself. For ex-
ample, Oxpecker can ensure that there is no race condition
while an out-of-VM client tries to kill a guest process (i.e.,
there are no kept locks on the guest memory), however,
the client still needs to check that the target process is
not uninterruptible. To exemplify a similar situation with
regards to the read API of the LibVMI, we can point out to
a scenario that user tries to read a virtual address which
is not mapped (for the asked process). In this scenario,
LibVMI raises VMI FAILURE error. Now, assume that user
had completed a series of successful read/write operations
before triggering that VMI FAILURE error or killing an
uninterruptible process. The rollback mechanism automati-
cally reverts the effect of previous write operations, covering
the erred callback routine modifications.

As a practical example, Oxpecker provides a tool (refer
to III in [46]) to kill a process in Linux distributions by
re-implementing the necessary read/write instructions in
do exit function of Linux kernel using the Oxpecker APIs.
Details of process killing example and its evaluation results
are available in the Oxpecker repository [43].

Next section employs Oxpecker in more challenging
scenarios to evaluate its functionality and performance.

5 EVALUATION

This section evaluates a reference implementation of Ox-
pecker through two types of experiments. First, the per-
formance effect of Oxpecker is observed under different
workloads in order to measure the performance of both the
host and guest machines. Second, the write consistency is
monitored during Oxpecker concurrent modifications.

Since Oxpecker is not dependent on the guest userspace
workload, the experiment scenarios are designed to create
different kernel workloads. This is accomplished through
the common network-driven (HTTP and FTP) applications
in addition to the TPC-H [49] standard benchmark. Fig. 6
shows the Linux GVM setup used in these experiments.
Similar deployment was used for Windows GVM.

Two GVM OSes run Ubuntu 16.04 LTS with Linux kernel
4.4 (unmodified LTS version) and Windows 7 SP1 over a one
core CPU having 2 GB RAM. Oxpecker does not require
modifications in the introspected GVM. The host virtual
machine (HVM) runs Debian 9.4 with Linux kernel 4.9.0
over two Intel core i7 4710HQ 2.50GHz CPUs with 3 GB

TRANSACTIONS ON CLOUD COMPUTING 8

��✁✂✄☎✆✝✞ ✟✝✠✡✂☛☞✌✌

✍✎✏☎ ✑✂✄☎✆✝✞ ✒✝✠✡✂☛☞ ✓✍✑✒✔

✕✖✗✘✙☞✚✂✝☛ ✛✜✢✣ ✤☞✄☛☞✞✘✢✜✛✜✥ ✦✂☎✡ ✧✂☎✄✎ ★✝☎✠✡✩

✕✪✁✠★✆✏✘✫✣ ✬✭✒✘✮ ✯✰✩

��✁✂✄☎✆✝✞ ✟✝✠✡✂☛☞✌✌

✯✆☞✏☎ ✑✂✄☎✆✝✞ ✒✝✠✡✂☛☞ ✓✯✑✒✔

✕✖✗✘✱✚✆☛☎✆ ✲✳✜✥✢ ✴✵✗✣ ✤☞✄☛☞✞✘✢✜✢ ✆☛✟✎✶✂✷☞✶✩

✕✪✁✠★✆✏✘✲✣ ✬✭✒✘✫ ✯✰✩

��✆✏☞✏✌✌

✖✸★☞✠✹☞✄

✴✂✚✑✒✺

✧✂☎✄✎ ✻✄✝✟☞✦✎✄✹

Fig. 6: Deployment diagram. HVM hosts Oxpecker, Nitro,
and LibVMI to inspect/modify GVM kernel memory.

RAM in both scenarios. The HVM kernel is patched with
Nitro, so the GVM syscalls can be intercepted efficiently.

In what follows, Section 5.1 presents the first type of
experiments conducted to measure the performance of host
and guest machines under different workloads in presence
of Oxpecker concurrent transactions. The second category of
experiments for inspection of possible inconsistencies dur-
ing concurrent memory accesses is presented in Section 5.2.

5.1 Performance Experiments

Performance of VMI and specially its overhead on GVM
is an important metric for evaluation of a VMI solution.
An experiment is designed to measure the performance of
Oxpecker from two aspects. One aspect is the performance
that a client of read/write VMI operations may expect when
accessing the GVM. Another aspect is the effect of Oxpecker
on the performance of the GVM.

To evaluate the Oxpecker performance in real condi-
tions, different workloads are created on the GVM while
the VMI requests are being processed. The Locust [50]
testing platform is used to generate a variety of client
traffics running in HVM, while a server is running in GVM.
Number of client requests affects the guest kernel workload
(i.e., server). Locust simulates concurrent users, noted by
c, sending requests to the server interleaved by random
wait intervals (between 100 to 1000 milliseconds) generated
by the HttpUser implementation. For database scenario,
GVM runs queries according to TPC-H in an infinite loop,
executing 22 queries [51] in each round on a PostgreSQL
instance.

Alongside with the client/server and database queries
which make the background load on VM, an Oxpecker client
sends a series of uniform requests to GVM, waiting for µ
seconds between consecutive requests. Oxpecker executes
asked transactions after finding the proper time to avoid
race conditions while accessing the GVM memory. There-
fore, there will be an inevitable delay between beginning of
each VMI transaction until its actual execution. This time is
used as a criteria to measure the Oxpecker performance.

Fig. 7a and Fig. 7b summarize the statistics of the VMI
client delay for both workloads (i.e. FTP and HTTP client-
server requests) in Linux and Windows environments re-
spectively. Each experiment is repeated 1000 times for each
c value. The time interval between consecutive VMI write
requests is configured as five seconds. Two CPUs are used in
the evaluation environment (using just one thread per CPU)
for HVM and one CPU for GVM. Therefore, 1000 concur-
rent users exhaust GVM simulating a high load production

environment. The Standard Error of Mean (SEM) is calcu-
lated according to the SEM = (Std.Dev)/

√
N formula,

normalizing the standard deviation with root of N (the size
of sampling data which is 1000 in this case). SEM can be
multiplied by 1.96 to obtain an estimated 95% confidence
interval. As shown in Fig. 7, SEM values increase when
the number of concurrent users (c) increases. Moreover,
increasing the c and generating higher workloads in both
of the FTP and HTTP test scenarios leads to an increase in
the variance and mean of observed delays because it is more
probable for guest kernel to be busy processing FTP/HTTP
requests. There is an exception in the HTTP application (for
both OSes) in which the mean delay decreases when the
number of concurrent users is increased from one user to 10
users. This can be explained in terms of the active syscalls
because in the c = 1 scenario of HTTP application, the
system was idle in most of the times. Hence, the rate of
SYSEXIT events was lower and Oxpecker had to wait longer
for SYSEXIT traps. Consequently, it caused higher delay
time during the test with one user in the HTTP scenario. In
the FTP scenario, mean delay is higher than HTTP and TPC-
H scenarios. This is due to a higher workload created by
FTP requests. It performs more operations such as authen-
tication and file operations which increase kernel workload
by invoking more syscalls for file/network access.

Finally, Fig. 7 shows the feasibility of Oxpecker in high
load situations even when the GVM is exhausted by clients.
In the worse case scenario (1000 concurrent user and FTP
scenario), the average delay time is less than 9 minutes.
That is, one can execute Oxpecker transactions in less than
9 minutes in high load environments.

So far, the performance that Oxpecker clients can expect
for reading from/writing into GVM is evaluated under
different workloads. Another important performance aspect
is the overhead which these operations add to the GVM
processes. The output of Locust.io [50] while running FTP
client for 5 minutes is used to measure this overhead. Fig. 7c
depicts the calculated requests per seconds for each c value,
indicating the number of concurrent users. Furthermore, the
gap time between VMI requests is set to 5 seconds (µ) and
the back-off time (δ) is set to 0.5 seconds.

The overhead is calculated according to Eqn. 1 in which
R(c, µ, δ) represents the number of requests per second for
FTP application in GVM when Oxpecker setups with µ and
δ. Also, R(c,∞,∞) indicates the overall time when the
Oxpecker is not present at all.

Overhead(c, µ, δ) =
R(c,∞,∞)−R(c, µ, δ)

R(c,∞,∞)
(1)

As the number of concurrent users and requests rate
increase, the Oxpecker’s delay and the average response
time increase too filling the system capacity. Thereafter,
the rate of FTP requests remains unchanged or slightly
decreases (see Fig. 7c around c = 50). In fact, for c > 50, the
CPU is overwhelmed, hence, increasing concurrent clients
cannot increase the system load and requests per seconds
furthermore because extra requests have to wait for their
turns to be processed by the FTP server.

Fig. 7c shows that the overhead of Oxpecker is about
28.62% (or 75.84%) at most and is as low as 2.71% (or
1.78%) at best when δ is set to 5 (or 0.5) seconds. In the

TRANSACTIONS ON CLOUD COMPUTING 9

(a) Linux (b) Windows

✥

�✥

✁✥

✂✥

✄✥

☎✥✥

✶ ✺ ✶✆ ✶✺ ✷✆ ✷✺ ✸✆ ✸✺ ✹✆ ✹✺ ✺✆ ✺✺ ✻✆ ✻✺ ✼✆ ✼✺ ✽✆ ✽✺ ✾✆ ✾✺✶✆
✆
✶✺
✆
✷✆
✆
✷✺
✆
✸✆
✆

❘
✝
✞
✟
✝
✠
✡✠
☛
✠
✝
☞
✌
✍
✎

❚✏✑ ✒✓✔✕✑✖ ✗✘ ✙✗✒✙✓✖✖✑✒✚ ✓✛✑✖✛ ✜✙✢

✣✤✦✧ ➙✧ ➙✮
✣✤✦✧ ★✧ ★✮

✣✤✦✧ ★✧ ✥✩★✮

(c) Locust delays

Fig. 7: Two initial figures show Oxpecker’s delay to begin a transaction in Linux and Windows. Last figure shows the GVM
overhead showing the average response time of Locust FTP requests. The c is the number of concurrent users sending
requests and µ = 5s indicates the uniform gap between transaction requests.

worst case scenario, where the background workload is
higher on GVM, Oxpecker makes 75.84% overhead on GVM
processes which supports the relative usability of Oxpecker
in production environment.

5.2 Write Consistency

This section inspects write accesses of Oxpecker to kernel
regions while GVM kernel modules can potentially access
and modify them concurrently. For this purpose, a kernel
module (refer to IV in [46]) is developed which waits for
a second using the msleep_interruptible and repeats
execution of a critical section. Within the critical section, it
holds a mutex (i.e. my_lock) and busy waits for one second.
Concurrently, a series of VMI transactions are initiated after
loading this kernel module in the GVM in order to modify
the same data item (i.e. dining_spoon) in the kernel space.
This shared variable is inspected in the critical section and
if it is modified while the my_lock mutex is being held,
it is counted as a crash by increasing the value of crash
variable. Oxpecker client competes with this kernel module
to update this shared variable with this difference that it
generates and writes a random number in each cycle. If
Oxpecker misses any race condition while trying to update
the same data item, the kernel module will be able to detect
the concurrent modifications.

This experiment is repeated under two conditions. Once
using the LibVMI API which provides no transactional
guarantees and once using the Oxpecker API. As expected,
the LibVMI scenario generates more crashes as it keeps
updating the shared variable at arbitrary moments. But
Oxpecker makes the modification while the kernel module
is sleeping out of critical section and so the crash variable
stays at zero.

6 DISCUSSION

Section 2 reviewed VMI solutions including those with
memory modification capability. This section compares
writable VMI solutions based on the criteria shown in the
Table 2. The first four rows indicate the main properties of
an ACID [41] transaction. Transactions contain a series of
read/write operations. If only one execution thread tried to

TABLE 2: Comparison of writable VMI solutions.
(Un)Supported features are marked as (✗)✓. The 1vcpu
shows that only one virtual CPU is supported. TC solu-
tions need trusted guest kernel code while KDS needs non-
tampered kernel data structures. GUSP and GKM mean that
a guest userspace process and kernel module interfaces are
provided respectively while HUSP means that VMI client
can use the interface of a host userspace process (with
mapped syscalls). TRW-API means that VMI client should
use read/write APIs in a transaction context to access the
GVM. The 1x (2x) reports that the same (double) amount
of GVM memory is approximately required. Finally, #CS,
#Int, #SC, and #Inst indicate the number of context
switches, interrupts, syscalls, and executed instructions.

Process
Implanting

X-TIER Hypershell
CIVIC Exterior

Oxpecker

Atomicity ✗ ✗ ✗ ✓ ✗ ✓

Consistency ✓ ✗ ✓ ✓ ✗ ✓

Isolation 1vcpu 1vcpu ✗ ✓ ✓ ✓

Durability ✓ ✓ ✓ ✗ ✓ ✓

Guest Kernel TC TC TC TC KDS KDS

Fully Out-of-VM ✗ ✗ ✗ ✗ ✓ ✓

Flexibility GUSP GKM HUSP GUSP HUSP TRW-API

Memory Usage 1x 1x 1x 2x 2x 1x
#VM EXIT #CS #Int #SC 0 #Inst #SC

Usability

Year 2011 2013 2014 2017 2013 2018

access data structures, it could proceed flawlessly with this
assumption that the transaction operations were not faulty
(e.g., dereferencing a null pointer). However, in a real-world
system, multiple guest processes invoke syscalls and try to
access the same kernel memory pages that a VMI client is
interested in, from out-of-VM. As depicted in the first four
rows of Table 2, at least one of transaction properties is
missed by each solution, except the Oxpecker.

Next group of criteria return to the underlying capa-
bilities that they need to function properly. “Guest Kernel”
row indicates the trust level and integrity of the guest
kernel which is assumed in the proposed solution. Most

TRANSACTIONS ON CLOUD COMPUTING 10

of solutions need a trusted guest kernel code (i.e. they can
be detected by rootkits) except Exterior [7] and Oxpecker
which just need known kernel data structures and do not
rely on the guest modules themselves. “Fully Out-of-VM”
row marks solutions which do not need any in-VM agent
and instead use the VMM capabilities to pause/resume
the VM and read/write from/into its memory. The benefit
of these solutions is in their independence of untrusted
guest kernel with the drawback of facing the semantic gap
problem. Furthermore, the granularity of the introspection
API provided for each solution (7th row), such as injecting a
kernel module or changing a byte in the memory, indicates
which use cases could be implemented over it.

Aside from functionality, proposed solutions can be
compared based on their resource usages. Some VMI solu-
tions [7], [8] require cloning GVM for sake of consistency,
hence, doubling the host machine memory as shown by
2x in the “Memory Requirement” row. The “#VM EXIT” row
reports the extra VM EXIT events which are added due to
the VMI operations. Each VM exit event acts like a process
context switch, but is much costlier due to the GVM state
switching. In fact, as the number of VM EXIT events is
reduced, GVM will be able to run longer on hardware virtu-
alization uninterruptedly and incur a smaller performance
overhead. The “Usability” row combines the provided func-
tionality and aforementioned memory and performance fac-
tors in a qualitative manner. As more features are provided,
usability is increased and as more memory is used and
further overhead is imposed, the usability is decreased.

In the rest of this section, details of the previously
proposed methods are examined. One of the earliest solu-
tions was Process Implanting [10], in which the number of
VM EXIT events is limited to the number of process context
switches and consistency is maintained since all modifica-
tions pass through the guest syscalls. Thus, it depends on
the correct operation of guest syscalls. For example, a rootkit
can detect an implanted process by inspecting its memory
addresses right before scheduling it or during the execution
of its invoked syscalls. In order to resolve this issue and
provide isolation from other guest processes, Process Em-
bedding depends on the existence of a single virtual CPU
so all context switches can be intercepted sequentially and
the implanted process can be removed from the guest OS
memory before scheduling the next potentially malicious
process. Memory modifications for implanting a process
itself are reversed at its removal, but its writes to the guest
memory remain durable. These modifications are not atomic
as they may be interrupted by exceptions.

Similarly, X-TIER [9] requires a single virtual CPU con-
figuration. It tries to provide atomicity by intercepting in-
terrupts and exceptions during the execution of an injected
kernel module. However, if it calls an external function,
the processing of interrupts will be resumed, and the guest
kernel functions can be executed before resuming the exe-
cution of the injected module. Additionally, exceptions in
the execution of the guest module itself are intercepted and
delayed. Memory pages of the injected kernel module are
unmapped at its removal, its modifications to other data
structures are durable, but atomicity is not guaranteed.
More crucially, if injected module tries to modify a shared
memory while another kernel thread is taking its lock,

memory inconsistency may arise as the injected module
cannot wait for the lock to be released. Such an issue limits
its usage to read-only introspections in practice. Also, all
interrupts lead to VM EXIT events in order to guarantee the
injected kernel module isolation. Finally, injected module
can be detected if a rootkit modifies one of the called
external functions and check for its return address which
is unmapped in X-TIER solution.

Hypershell [11] needs a helper process inside the GVM.
Therefore, consistency and durability are achieved, but
atomicity is not guaranteed since termination of the helper
process leaves half of the operations applied and cancels
the rest without any rollback mechanism. Finally, the shared
helper process limits the concurrency of introspecting pro-
cesses. For example, guest file descriptors are shared among
independent introspecting processes. Generally, the shared
kernel context of the helper process challenges the isolation
between host-based introspecting processes.

CIVIC [8] periodically clones the GVM and works on
a cloned VM. This approach ensures atomicity, consistency,
and isolation while missing the durability for the original
GVM as all operations are executed over separate cloned
VMs. Furthermore, although it uses a copy-on-write ap-
proach to keep memory usage low, the memory usage is
doubled in the worst case. Cloned VM introspection mech-
anism itself is based on injecting a process in the VM and so
depends on the presence of trusted guest kernel code.

Finally, Exterior [7] uses a dual-VM setup. A secure VM
(SVM) to run the introspecting process, monitor its executed
instructions, and emulate their effects to update the GVM.
This emulation causes the maximum relative overhead.
However, the trust level is much lower and knowing about
the non-tampered guest kernel data structures is enough to
redirect SVM operations to GVM. Data durability and isola-
tion are achieved, but there is no guarantee about atomicity
of executed instructions because they are streamed to the
GVM memory. It also avoids redirecting memory accesses
of specific sequences of instructions (e.g., lock taking) in
order to reduce inconsistencies. Because the GVM is paused
at a random moment for SVM operations to take effect, if
a redirected memory operation modifies a critical section
which had been locked by GVM before being paused, the
crash of GVM is highly plausible.

For example, Fig. 8 depicts two sample situations in the
delete_module syscall which can cause inconsistencies.
There is a possibility that module_mutex is unlocked by
VMI in line 3 while it was locked in the paused GVM.
Exterior [7] is immune to these types of errors because
it ignores redirection of lock taking routines such as the
mutex_unlock example. However, if GVM is paused in
line 8 and Exterior continues by removing a module, it
interferes with the guest OS in line 9 because the mod local
variable is pointing to a dangling area which was used by
an old module. This inconsistency leads to a crash in GVM.

On the other hand, Oxpecker guarantees atomicity by
maintaining a transaction and rolling back modifications in
case of exceptions. Consistency and isolation are guaranteed
because GVM is monitored and paused at a proper moment
in order to eliminate any potential race condition. Different
transaction requests are also serialized similar to the guest
processes. However, this serialization has a drawback. If a

TRANSACTIONS ON CLOUD COMPUTING 11

1 SYSCALL_DEFINE2(delete_module, const char __user*, ←֓

name_user, unsigned int, flags) {

2 /*some initialization... setting ‘name‘ in kernel*/

3 // mutex_unlock by VMI

4 if (mutex_lock_interruptible(&module_mutex) != 0)

5 return -EINTR;

6 mod = find_module(name);

7 /*some further checks*/

8 // delete module by VMI

9 ret = try_stop_module(mod, flags, &forced);

10 mutex_unlock(&module_mutex);

11 /*release some resources and return*/

12 }

Fig. 8: Parts of the delete_module syscall source code
from Linux kernel v4.9. If a VMI client unlocks the
module_mutex in line 3, two processes enter into critical
section causing inconsistency. Also if it removes the module
in line 8, line 9 might crash due to dangling mod variable.

rootkit keeps running in the kernel space without releas-
ing the CPU, no race-free moment may be identified and
Oxpecker transaction will be delayed indefinitely. The good
news is that such a behavior blocks concurrent processes to
use the same CPU and is not used by rootkits which need to
be stealthy. Write operations are committed to the memory
of GVM and so durability is also achieved. It requires no in-
VM agent and operates in presence of untrusted kernel code
since it just needs to know about the non-tampered guest
data structures. Overhead of the Oxpecker is relatively low
as it needs to intercept syscalls and the rest of kernel/user
codes can run using hardware virtualization. The memory
usage is also limited to the memory which is required by
the out-of-VM client itself.

7 CONCLUSION

The manuscript presented an architecture for out-of-VM
transactional access to the GVM kernel memory, namely
the blue-pill Oxpecker. Oxpecker has a three layer architec-
ture providing read/write API for VMI clients in the host
machine through Coordinator component in the first layer,
monitoring GVM state changes and examining its memory
for possible race-conditions in the second layer, and reusing
generic VMI APIs in the third layer for updating guest
kernel memory after finding the proper race-free moment.

The Oxpecker architecture is implemented based on the
Nitro framework and LibVMI in the third layer and evalu-
ated under different workloads. As Oxpecker performance
and accuracy are affected by the guest kernel workload, real-
world network applications are used to generate a tunable
workload. Experiments showed that the max overhead is
about 75.84% which is much lower than the 2300% over-
head obtained with a somewhat similar Exterior [7] frame-
work which also lacks the transactional writing feature
provided by the Oxpecker. The Oxpecker transactional read-
/write API can be used to construct higher-level services
such as out-of-VM rootkit removal, kernel hot patching,
access restoration, and batch configuration updates.

REFERENCES

[1] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through
vmm-based out-of-the-box semantic view reconstruction,” in Pro-

ceedings of the 14th ACM conference on Computer and communications
security. ACM, 2007, pp. 128–138.

[2] A. More and S. Tapaswi, “Dynamic malware detection and record-
ing using virtual machine introspection,” in Best Practices Meet
(BPM), 2013 DSCI. IEEE, 2013, pp. 1–6.

[3] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An
architecture for secure active monitoring using virtualization,” in
2008 IEEE Symposium on Security and Privacy (sp 2008). IEEE, 2008,
pp. 233–247.

[4] B. D. Payne, D. D. A. Martim, and W. Lee, “Secure and flexible
monitoring of virtual machines,” in Computer Security Applications
Conference, 2007. ACSAC 2007. Twenty-Third Annual. IEEE, 2007,
pp. 385–397.

[5] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-vm monitor-
ing using hardware virtualization,” in Proceedings of the 16th ACM
conference on Computer and communications security. ACM, 2009,
pp. 477–487.

[6] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu, “Process out-grafting:
an efficient out-of-vm approach for fine-grained process execution
monitoring,” in Proceedings of the 18th ACM conference on Computer
and communications security. ACM, 2011, pp. 363–374.

[7] Y. Fu and Z. Lin, “Exterior: Using a dual-vm based external shell
for guest-os introspection, configuration, and recovery,” ACM
SIGPLAN Notices, vol. 48, no. 7, pp. 97–110, 2013.

[8] S. Suneja, R. Koller, C. Isci, E. de Lara, A. B. Hashemi, A. Bhat-
tacharyya, and C. Amza, “Safe inspection of live virtual ma-
chines,” in Proceedings of the 13th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments, VEE 2017,
Xi’an, China, April 8-9, 2017, 2017, pp. 97–111.

[9] S. Vogl, F. Kiliç, C. A. Schneider, and C. Eckert, “X-TIER: kernel
module injection,” in Network and System Security - 7th International
Conference, NSS 2013, Madrid, Spain, June 3-4, 2013. Proceedings,
2013, pp. 192–205.

[10] Z. Gu, Z. Deng, D. Xu, and X. Jiang, “Process implanting: A new
active introspection framework for virtualization,” in 30th IEEE
Symposium on Reliable Distributed Systems (SRDS 2011), Madrid,
Spain, October 4-7, 2011, 2011, pp. 147–156.

[11] Y. Fu, J. Zeng, and Z. Lin, “Hypershell: a practical hypervisor layer
guest os shell for automated in-vm management,” in 2014 USENIX
Annual Technical Conference (USENIX ATC 14), 2014, pp. 85–96.

[12] W. Qiang, G. Xu, W. Dai, D. Zou, and H. Jin, “Cloudvmi: A cloud-
oriented writable virtual machine introspection,” IEEE Access,
vol. 5, pp. 21 962–21 976, 2017.

[13] R. Wu, P. Chen, P. Liu, and B. Mao, “System call redirection:
A practical approach to meeting real-world virtual machine in-
trospection needs,” in 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2014, pp. 574–585.

[14] J. del Hoyo, A. Elliott, and D. Christie, “Family buphagidae
(oxpeckers),” in Handbook of the Birds of the World. Lynx Edicions,
2009, pp. 642–653.

[15] J. Y.-C. Cheng, T.-S. Tsai, and C.-S. Yang, “An information retrieval
approach for malware classification based on windows api calls,”
in Machine Learning and Cybernetics (ICMLC), 2013 International
Conference on, vol. 4. IEEE, 2013, pp. 1678–1683.

[16] T. G. Paul and T. G. Kumar, “A framework for dynamic malware
analysis based on behavior artifacts,” in Proceedings of the 5th
International Conference on Frontiers in Intelligent Computing: Theory
and Applications. Springer, 2017, pp. 551–559.

[17] P. M. Chen and B. D. Noble, “When virtual is better than real
[operating system relocation to virtual machines],” in Hot Topics
in Operating Systems, 2001. Proceedings of the Eighth Workshop on.
IEEE, 2001, pp. 133–138.

[18] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion, “Sok:
Introspections on trust and the semantic gap,” in 2014 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May
18-21, 2014, 2014, pp. 605–620.

[19] Y. Liu, Y. Xia, H. Guan, B. Zang, and H. Chen, “Concurrent and
consistent virtual machine introspection with hardware transac-
tional memory,” in 20th IEEE International Symposium on High
Performance Computer Architecture, HPCA 2014, Orlando, FL, USA,
February 15-19, 2014, 2014, pp. 416–427.

[20] M. Herlihy and J. E. B. Moss, “Transactional memory: Architec-
tural support for lock-free data structures,” SIGARCH Comput.
Archit. News, vol. 21, no. 2, pp. 289–300, May 1993.

[21] A. Bianchi, Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Black-
sheep: detecting compromised hosts in homogeneous crowds,”

TRANSACTIONS ON CLOUD COMPUTING 12

in the ACM Conference on Computer and Communications Security,
CCS’12, Raleigh, NC, USA, October 16-18, 2012, 2012, pp. 341–352.

[22] Y. Fu and Z. Lin, “Space traveling across VM: automatically
bridging the semantic gap in virtual machine introspection via
online kernel data redirection,” in IEEE Symposium on Security and
Privacy, SP 2012, 21-23 May 2012, San Francisco, California, USA,
2012, pp. 586–600.

[23] J. Hizver and T. Chiueh, “Real-time deep virtual machine intro-
spection and its applications,” in 10th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE ’14,
Salt Lake City, UT, USA, March 01 - 02, 2014, 2014, pp. 3–14.

[24] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl,
and A. Kiayias, “Scalability, fidelity and stealth in the DRAKVUF
dynamic malware analysis system,” in Proceedings of the 30th
Annual Computer Security Applications Conference, ACSAC 2014,
New Orleans, LA, USA, December 8-12, 2014, 2014, pp. 386–395.

[25] N. Rakotondravony and H. P. Reiser, “Visualizing and controlling
vmi-based malware analysis in iaas cloud,” in 35th IEEE Sympo-
sium on Reliable Distributed Systems, SRDS 2016, Budapest, Hungary,
September 26-29, 2016, 2016, pp. 211–212.

[26] M. Carbone, M. Conover, B. Montague, and W. Lee, “Secure
and robust monitoring of virtual machines through guest-assisted
introspection,” in International Workshop on Recent Advances in
Intrusion Detection. Springer, 2012, pp. 22–41.

[27] D. A. S. de Oliveira and S. F. Wu, “Protecting kernel code and data
with a virtualization-aware collaborative operating system,” in
Computer Security Applications Conference, 2009. ACSAC’09. Annual.
IEEE, 2009, pp. 451–460.

[28] A. Srivastava and J. Giffin, “Efficient protection of kernel data
structures via object partitioning,” in Proceedings of the 28th annual
computer security applications conference. ACM, 2012, pp. 429–438.

[29] M. Carbone, M. Conover, B. Montague, and W. Lee, “Secure
and robust monitoring of virtual machines through guest-assisted
introspection,” in Research in Attacks, Intrusions, and Defenses - 15th
International Symposium, RAID 2012, Amsterdam, The Netherlands,
September 12-14, 2012. Proceedings, 2012, pp. 22–41.

[30] Z. Wang, X. Jiang, W. Cui, and P. Ning, “Countering kernel rootkits
with lightweight hook protection,” in Proceedings of the 16th ACM
conference on Computer and communications security. ACM, 2009,
pp. 545–554.

[31] X. Xiong, D. Tian, P. Liu et al., “Practical protection of kernel
integrity for commodity os from untrusted extensions.” in NDSS,
vol. 11, 2011.

[32] Y. Cheng, X. Fu, X. Du, B. Luo, and M. Guizani, “A lightweight live
memory forensic approach based on hardware virtualization,” Inf.
Sci., vol. 379, pp. 23–41, 2017.

[33] J. Dykstra and A. T. Sherman, “Acquiring forensic evidence from
infrastructure-as-a-service cloud computing: Exploring and evalu-
ating tools, trust, and techniques,” Digital Investigation, vol. 9, pp.
S90–S98, 2012.

[34] B. Hay and K. Nance, “Forensics examination of volatile system
data using virtual introspection,” ACM SIGOPS Operating Systems
Review, vol. 42, no. 3, pp. 74–82, 2008.

[35] A. L. Shaw, B. Bordbar, J. Saxon, K. Harrison, and C. I. Dalton,
“Forensic virtual machines: dynamic defence in the cloud via
introspection,” in Cloud Engineering (IC2E), 2014 IEEE International
Conference on. IEEE, 2014, pp. 303–310.

[36] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel,
“Ensuring operating system kernel integrity with osck,” ACM
SIGARCH Computer Architecture News, vol. 39, no. 1, pp. 279–290,
2011.

[37] C.-W. Wang, C.-W. Wang, and S. Shieh, “Probebuilder: Uncovering
opaque kernel data structures for automatic probe construction,”
IEEE Transactions on Dependable and Secure Computing, vol. 13, no. 5,
pp. 568–581, 2016.

[38] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. T. Giffin, and W. Lee,
“Virtuoso: Narrowing the semantic gap in virtual machine intro-
spection,” in 32nd IEEE Symposium on Security and Privacy, S&P
2011, 22-25 May 2011, Berkeley, California, USA, 2011, pp. 297–312.

[39] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu, “Process out-grafting:
an efficient ”out-of-vm” approach for fine-grained process exe-
cution monitoring,” in Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS 2011, Chicago, Illinois,
USA, October 17-21, 2011, 2011, pp. 363–374.

[40] H. Xiong, Z. Liu, W. Xu, and S. Jiao, “Libvmi: A library for bridg-
ing the semantic gap between guest os and vmm,” in Computer and

Information Technology (CIT), 2012 IEEE 12th International Conference
on. IEEE, 2012, pp. 549–556.

[41] T. Haerder and A. Reuter, “Principles of transaction-oriented
database recovery,” ACM Computing Surveys (CSUR), vol. 15, no. 4,
pp. 287–317, 1983.

[42] A. Walters, “The volatility framework: Volatile memory artifact
extraction utility framework,” 2007.

[43] (2019, May) Consistent writable vmi api. [Online]. Available:
https://github.com/Oxpecker-VMI/oxpecker

[44] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm:
the linux virtual machine monitor,” in Proceedings of the Linux
symposium, vol. 1, 2007, pp. 225–230.

[45] B. D. Payne, “Simplifying virtual machine introspection using
libvmi,” Sandia report, pp. 43–44, 2012.

[46] (2019, May) Oxpecker technical details. [Online]. Available:
https://github.com/Oxpecker-VMI/oxpecker/blob/master/report/technical details.pdf

[47] J. Pfoh, C. Schneider, and C. Eckert, “Nitro: Hardware-based
system call tracing for virtual machines,” in International Workshop
on Security. Springer, 2011, pp. 96–112.

[48] M. Cohen, “Rekall memory forensics framework,” DFIR Prague,
2014.

[49] T. P. P. Council, “Tpc benchmark h standard specification version
2.18.0, 2018.”

[50] “An open source load testing tool.” [Online]. Available:
https://locust.io/

[51] G. Rahn, “Tpc-h benchmark kit with
some modifications/additions.” [Online]. Available:
https://github.com/gregrahn/tpch-kit

Seyed Mohammad AghamirMohammadAli re-
ceived his B.E. in Computer Engineering and
B.S. in Pure Mathematics from Sharif University
of Technology, Tehran, Iran, in 2010. Later on,
he joined the S4Lab at the Department of Com-
puter Engineering, Sharif University of Technol-
ogy, and conducted research in the area of vir-
tual machine introspection. He obtained his M.S.
degree in Information Technology in 2018 from
Sharif University of Technology.

Behnam Momeni received his B.E. and M.Sc.
degrees in computer engineering and informa-
tion technology (with first rank) from Sharif Uni-
versity of Technology, Tehran, Iran, in 2010 and
2012, respectively. Thereafter, he conducted re-
search on software deobfuscation in S4Lab, De-
partment of Computer Engineering, Sharif Uni-
versity of Technology, Tehran, Iran receiving his
Ph.D. in 2018 (with first rank). His research inter-
ests include operating system, software analy-
sis, software security, and vulnerability analysis.

Solmaz Salimi s a Ph.D. candidate in the field of
Computer Engineering working at S4lab, Sharif
University of Technology. Before that, she ob-
tained her M.Sc. degree in computer engineer-
ing from Iran University of Science and Technol-
ogy, Tehran, Iran, in 2015. Her research interests
focus on software security, including software
program analysis, vulnerability detection, analy-
sis and exploitation techniques.

Mehdi Kharrazi received his B.E. in E.E. from
the City College of New York, New York, in 1999,
and M.Sc. and Ph.D. in E.E. from NYU Tandon,
Brooklyn, NY, in 2002 and 2006. He is cur-
rently an Associate Professor with the Depart-
ment of Computer Engineering, Sharif University
of Technology, Tehran, Iran. His current research
interests include software, system, and network
security and is the director of Safety and Security
in Software and Systems Laboratory (S4Lab).

https://github.com/Oxpecker-VMI/oxpecker
https://github.com/Oxpecker-VMI/oxpecker/blob/master/report/technical_details.pdf
https://locust.io/
https://github.com/gregrahn/tpch-kit

	Introduction
	Related Work
	Read-Only Monitoring
	Active Modification

	Oxpecker Architecture
	Adversarial Model and Architectural Assumptions
	Transaction Formation
	Coordinator
	Action Monitor and Syscall Interceptor
	Consistency Checker and Generic Introspection

	Implementation
	Hypervisor, Libvmi, and Nitro Framework
	Action Monitor and Coordinator Component
	Consistency Checker Component
	Linux Guest OS
	Windows Guest OS

	Killing Process Using Oxpecker

	Evaluation
	Performance Experiments
	Write Consistency

	Discussion
	Conclusion
	References
	Biographies
	Seyed Mohammad AghamirMohammadAli
	Behnam Momeni
	Solmaz Salimi
	Mehdi Kharrazi

